
Haskal - a Haskell shell

Mats Jansborg and Aleksandar Despotoski

May 18, 2006

Why a new type of Shell?

I Limited functionality

I No type safety

Unix shells as Monads

I Where | corresponds to >>=

I cat x to return x

Related Work

I H4sh
I Haskell functions as Programs
I http://www.cse.unsw.edu.au/ dons/h4sh.html

I Hashell
I Uses combining of Haskell commands and shell commands
I http://haskell.org/hashell

General Approach

I Make System functions available as Haskell functions

Example

cat :: Program String String

I Define operators to compose programs and Haskell functions

I Example

>|< corresponds to the normal pipe in Shells

General Approach

I Importing the programs
I Go through the path
I Compile the file with all programs (to Object file)

I Read User Input

I Compile and link together with programs and operators

HS-Plugins

I Used for executing Haskell code dynamically

I Compiling, linking and running is done by hs-plugins

I Works fine for compiling program files, but rather slow for
user input.

How to model commands?

I Using the monad analogy:

instance Monad command where ...

echo :: [Arg] -> String -> Command String
cat :: [Arg] -> a -> Command a
echo [] "foo" >>= cat [] :: Command String

I Problem: we need to (de)serialise inputs and outputs

Add support for serialisation

I class Marshal a where
marshal :: a -> ([Word8] -> [Word8])
unmarshal :: [Word8] -> a
marshalList :: [a] -> ([Word8] -> [Word8])
unmarshalList :: [Word8] -> [a]

Commands in Haskal

I newtype Command i o = Command [IO ()]

class Cmd c where
toCommand :: (Marshal i, Marshal o) =>

c i o -> Command i o

I instance Cmd Command where ...
instance Cmd (->) where ...
instance Cmd Program where ..

I newtype DoIO i o = DoIO (i -> IO o)
instance Cmd DoIO where ...

Redirection

I Combining commands in parallel

(>|<) :: (Cmd c1, Cmd c2, Marshal t,
Marshal i, Marshal o) =>

c1 i t -> c2 t o -> Command i o

I Redirecting standard output, input and error

(>|), (|<), (&>|) :: (Marshal i, Marshal o, Cmd c) =>
c i o -> String -> Command i o

Example

$ls >|< words >|< map length >|< sum
1228

$ls >|< map (dropWhile (/=’.’)) . words >| "file"
$cat |< "file"
.cabal
.hs
...

Name clashes

I $ls >|< words >|< map length >|< sum

<haskal>:1:32:
Ambiguous occurrence ‘sum’
It could refer to either ‘Data.List.sum’,
imported from Prelude at
Implicit import declaration
or ‘P.sum’, imported from P at

/tmp/MeZeX10978.hs:2:0-8

I Need to use qualified names

$ls >|< words >|< map length >|< Prelude.sum
1228

Command line arguments

I Argument is a typeclass too

class Argument a where
toArgument :: a -> [String]
listToArgument :: [a] -> [String]

I instance Argument String ...
instance Arguemnt (Program i o) ...
instance Argument Int ...
...
instance Argument a => Argument [a] ...

I Add options to programs with

(-.) :: Argument a => Program i o -> a -> Program i o
(#) :: Argument a => Program i o -> a -> Program i o

What we’d really want

I More precise types:

ls :: Program i [File]

I Problem: argument changes the type

ls -."l" :: Program i [FileDetails]
I We need dependent types for this

I Nicer syntax, writing e.g.

ssh -."l" #"jansborg" #"remote.mdstud.chalmers.se"

is really annoying for interactive use.

Other features implemented

I Job control.

I Tab completion of program names and files.
I Commands to haskal are prefixed with ’:’

I :cd changes directory
I :background, :foreground and :jobs deals with job

control.
I :load imports extra modules into the command line session
I :rehash regenerate the module with the program bindings
I :typeOf gives the type of an expression. Works only for

monomorphic types.
I :which gives the path to a program.

Non-features

I Any kind of error handling mechanism.

I Exit codes or similar.

I A way of defining functions interactively or by sourcing a file.

Conclusions

I

Although most users think of the shell as an
interactive command interpreter, it is really a
programming language in which each statement runs
a command. Because it must satisfy both the
interactive and programming aspects of command
execution, it is a strange language, shaped as much
by history as by design.

– Brian Kernighan Rob Pike 1984

I A Haskell shell is probably only usable for scripting.

I Rewrite using GHC API.

