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Abstract

The dynamic behaviour of cell signalling pathways is usually studied by
differential equation models. In order to build such models we have classified
common biochemical reactions into different types that are used as structural
building blocks. To compare data from different experiments we have also
classified experiments into different categories.

Usually, models are manually inferred from experimental data. As the main
result of this thesis we present a model identification algorithm that au-
tomatically identifies both the structure and the parameters of a model
from experimental data, provided that this data is sufficiently extensive.
The algorithm is a carefully designed heuristic algorithm that is efficient for
pathways of realistic size.

Presently, artificial, but biologically plausible, models and simulated data
from these models have been used to test the algorithm. The algorithm can
potentially handle real biological experiments: the number of measurement
points can be reduced to acceptable levels and the algorithm can handle
noisy data.

As a secondary result of this thesis we present a prototype software tool,
where data simulation and model identification are integrated into a single
virtual laboratory environment.

Keywords: model identification, signalling pathways, biological modelling,
parameter estimation.
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Preface

The thesis

This thesis is written within a joint project between Computing Science,
Chalmers University of Technology and Cell and Molecular Biology, Goteborg
University. The project started in the year 2000 in order to establish math-
ematical models and software tools for the modelling, simulation, visualisa-
tion and analysis of signalling pathways in general.
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Chapter 1

Introduction

Signalling pathways are found in all cells and are involved in a complex
network of information transfer inside the cell. The structure of a pathway
can be described by a graph, where the substances (vertices) are connected
by interactions (edges). A directed edge indicates that a given substance
affects another substance, see figure 1.1 for an example. This gives a useful
overview of the pathway, but it is not a complete description, since the
strength of the interactions, the speed of the reactions, the concentrations
of the substances etc. are not described. Despite this fact, this is the level of
detail at which biologists traditionally model the pathways. In part this is
due to lack of quantitative experimental data and the difficulty to manually
infer the model from such data.

To create more powerful descriptions of signalling pathways, mathematical
models can be considered. One of several basic motives for creating a more
complete model is to simulate the system. In order to be simulated, a
model must contain both the structure and the parameters, such as rate
constants. A sufficiently exact model may then be able to predict data from
the corresponding real system.

Ideally, it would be possible not only to simulate experimental data from a
model, but also to automatically identify a model from experimental data.
Those two issues, data simulation and model identification, complement each
other as illustrated in figure 1.2, and close a loop between model and data.

The main result of this thesis is a model identification algorithm, that recon-
structs both the structure and the parameters of a model from experimental
data. The output of the algorithm is the model that best fits the data.
The algorithm simultaneously takes advantage of all experimental data in a
set of experiments. This is especially important when experiments are not
directly comparable, which is usually the case in reality. For example, ex-
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Figure 1.1: A simplified overview of the main components in the High Os-
molarity Glycerol (HOG) signalling pathway in yeast. The details of the
pathway are covered in section 2.1.

periments might have different input stimuli and genetic background (genes
can be deleted and the corresponding protein has zero concentration).

Presently, only artificial, but biologically plausible, models and experimental
data from these models have been used. There are several advantages of
using artificial data. It is much easier to improve and test the details of
the algorithm. This is mainly because experimental technical obstacles are
removed and because it takes short time to simulate an experiment. It is
also easier to develop the methodology of the work process. A future goal is
to apply the algorithm to real experimental data. This is further discussed
in chapter 7.

In order to evaluate the performance of the algorithm, simulated data have
been produced and processed in different ways. As a base case, data have
been simulated deterministically. In an attempt to resemble real experimen-
tal data, a stochastic simulation method has been employed and the data
have also been exposed to measurement noise.

As a secondary result of this thesis, the functionalities presented in figure
1.2 have been implemented in a prototype software tool. The model iden-
tification algorithm reconstructs the model structure and parameters based
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Figure 1.2: The desired relationship between a biological model and exper-
imental data involves two main functionalities: data simulation and model
identification.

on experimental data. In order to decrease the complexity of the analysis,
known parts of the biological model can be added manually. Experimental
data can be added manually or simulated from a model. In the latter case,
the experiments are specified by manual input.

The intention of the prototype software tool is to show the principle of the
model identification algorithm, as well as its crucial role in an integrated
environment. Several benefits arise if a well functioning integrated environ-
ment can be established. For example, in experimental planning, the tool
could be used to propose the best experimental strategy.

The main target group of this thesis is bioinformaticians. In order to let peo-
ple without previous knowledge of biology read the thesis, an introduction
to the biology of signalling pathways and to biological modelling is included.

1.1 Related work

To infer a model from experimental data is a fundamental question con-
sidered in many scientific disciplines. In biology, the rapid development of
large-scale experimental techniques, such as microarrays, has highlighted the
demand for proper model identification algorithms. A general article cov-
ering reverse engineering of biological complexity is written by Csete and
Doyle [1].

Other efforts in this direction have been made by Koza et al. [2], who
have used genetic programming to reconstruct networks of chemical reac-
tions from observed time domain data. Both the structure of the networks
and the rates of each reaction within the network for two models, the phos-



pholipid cycle and the synthesis and degradation of ketone bodies, were
reconstructed. The phospholipid cycle is the larger of the two models. It is
composed of four enzymatic reactions, similar to reactions that will be used
in this work. The difference is that Koza et al. are modelling metabolic
pathways and therefore need reaction types having several substrates and/or
products. The concentration of each enzymes as a function of time was con-
sidered known and served as input to the model. For instance, an enzyme
could have a linear increase in concentration over time. Data was artificially
produced from the model and taken from one out of six metabolites. The
strength of this method is that output data is not needed from all of the
metabolites. The drawback is the high demand of computational power and
it is also unclear how the method can handle noisy data. Therefore, there
is a need for more efficient ways of reconstructing biological models.

A related area is reconstruction of gene regulatory networks, where the ef-
fects of genes on the transcription of other genes are considered. This ap-
proach is mainly focused on large-scale systems. Morohashi and Kitano have
applied genetic algorithms in order to identify gene regulatory networks from
time series data [3]. Liang et al. [4] have created a reverse engineering al-
gorithm (REVEAL) for reconstructing genetic networks. In this approach,
genes are idealised as being either on or off.

The principle of the algorithm presented in this thesis is to determine the
structure incrementally. This approach is taken from Wedelin [5], who re-
constructs the statistical interaction structure and parameters in multidi-
mensional binary samples.



Chapter 2

Background

2.1 Signalling pathways

Signalling pathways are the means by which cells communicate with their
environment and with each other. They sense changes in the environment
outside the cell or inside the cell. In general, a protein or a complex of
proteins located in the cell membrane (transmembrane proteins) works as
a sensor. A cascade of proteins in the cell transmits the signal and finally
initiate a transcriptional response, that is, genes are expressed. The transla-
tional response involves protein synthesis of the expressed genes. See figure
2.1 for an overview. Typically, a signalling pathway consists of several pro-
teins activating/deactivating each other.

Trangdational response Input stimuli

Cytoplasm

Transcriptional response

Nucleus with DNA

Figure 2.1: The information flow of a signalling pathway in a yeast cell.



The principles of a signalling pathway might best be understood by studying
an example. Therefore, we focus on the High Osmolarity Glycerol (HOG)
pathway [6, 7] of Saccharomyces cerevisiae. The HOG pathway is activated
by external osmotic stress (an increase in extracellular osmotic pressure due
to e.g. increased salt concentration). Like any other cell, the yeast cell
has to adjust to altered osmotic pressure to maintain a turgor pressure!
that is needed for growth and morphogenesis?, and a relative internal water
concentration for optimal efficiency of biochemical reactions. When the
solute concentration of the extracellular medium increases, water flows out
of the cell and consequently turgor pressure and cell volume drop. One
response, followed by the rapid activation of the HOG pathway by osmotic
shock, is increased glycerol production. Glycerol works as an osmolyte and
drives water into the cell to regain volume and turgor. With that, essential
intracellular processes are re-established.

A simplified overview of the main components in the HOG signalling path-
way is shown in figure 1.1 in the Introduction. The response is mediated
by two independent upstream branches that converge on the protein Pbs2,
leading to the activation of Hogl. Omne branch is dependent on the Shol
transmembrane protein [8, 9, 10]. Shol is not the actual sensor, but plays a
crucial role in the pathway. The sensor is not yet discovered. In the other
branch, the transmembrane protein Slnl works as an osmosensor [11]. Two
independent pathways carry the signal down to Pbs2, which is phosphory-
lated (activated) by Ssk2 and Ssk22 [12, 13] and associated to the complex
Stell-Ste50 [14]. Furthermore Pbs2 phosphorylates Hogl, which upon ac-
tivation is entering the nucleus [13, 15] and, in turn, activates several tran-
scription factors?. Feedback reactions are believed to take place on several
levels in the pathway and a general de-phosphatase (de-activation) activity
is also present. The genes GPD1 and GPP2 are involved in the metabolism
of glycerol, and they are both strongly up-regulated by an osmotic shock.

The HOG pathway in yeast is an example of a signalling pathway contain-
ing a mitogen activated protein kinase! (MAPK) module, see figure 2.2. A
MAPK module consists of three protein kinases: a MAPK kinase kinase
that activates a MAPK kinase, which, in turn, activates a MAPK enzyme
[16]. Specific phosphorylation and activation of enzymes in the MAPK mod-
ule transmits the signal down the cascade, resulting in phosphorylation of

'"Turgor pressure - hydrostatic pressure that develops within a walled cell, such as
a yeast cell, when the osmotic pressure of the cell contents is greater than the osmotic
pressure of the surrounding fluid.

2Morphogenesis - the evolutionary or embryological development of the physical form
of an organism.

3Transcription factor - any protein other than RNA Polymerase that is required for
transcription.

‘Kinase - an enzyme that transfers a phosphate group from another molecule to the
substrate.
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Figure 2.2: The activation cascade of a MAPK pathway. All boxes repre-
sent proteins. Fach protein exists in two states, one inactive and one active
(denoted pho for phosphorylated). In this case MAPK kinase kinase is ac-
tivated by a sensor transmembrane protein and the activated MAPK affects
transcription factors in the cell nucleus.

many proteins with regulatory functions throughout the cell, including other
protein kinases, gene transcription factors and other enzymes.

Proteins that are able to bind several (different) other proteins, are called
scaffold proteins. They might facilitate signal transduction by forming
multi-molecular complexes that can be rapidly activated by an incoming
signal. In the HOG pathway, Pbs2 is believed to act as a scaffold protein
[16, 17]. In many cases, scaffold proteins are necessary for full activation of
a signalling pathway [18, 19].

To analyse the different events in the HOG signalling pathway, genetics and
molecular biology are used in numerous ways. Cells are exposed to high
osmolarity medium and the response to the hyperosmotic stress is analysed.
The phosphorylation (activation) state of Hogl is measured to elucidate
the kinetics and the duration of the response. mRNA expression patterns
of a few genes, dependent on activated Hogl, are also studied. In order
to understand the physiological response to the stress, the rate of glycerol
production and intracellular levels of glycerol are measured.

2.2 Mathematical modelling of biological systems

In a biological system, a substance X can have several states, X1, Xs,..X,,.
Different states usually correspond to different levels of activity within the
system. From now on, the short notation X;(¢#) will be used (instead of
the ordinary [X;(¢)]) for denoting the concentration of X; at time ¢. The



total concentration of all states of X, Xy, can be assumed constant during
short time periods (minutes). The assumption being that production and
degradation are both zero (or that their sum is zero).

Signal transmission in biological systems occurs mostly through two mech-
anisms [20]: (1) protein-protein interactions (two substances bind to each
other) and (2) enzymatic reactions such as protein phosphorylation and de-
phosphorylation. The Michaelis-Menten model combines those two mecha-
nisms and accounts for the kinetic properties of many enzymes [21]. As an
example, we consider this model more in detail, since it illustrates funda-
mental principles of biological modelling.

A substance state X; is turned into another state Xy by an enzyme E
according to the following reaction

k1 ks
EFE+X, +— EX; — EF+ Xy
ko

where X = transition state complex, k; = reaction constant of £+ X; —
E X4, ko = reaction constant of EX; — E+ X7 and k3 = reaction constant
of EX, — E + X5. It is assumed that the reaction £ + X9 — EX; does
not occur. An implicit assumption is that X; >> FE. This assumption
is usually valid for metabolic systems, but may not be valid for signalling
pathways.

We want to obtain an expression for the rate of product formation in the
variables X, F and rate constants. Initially, we have

%Xg(t) = ks EX (t). (2.1)

The concentration of E can be expressed as
E(t) = Byt — EX1(1). (2.2)
A relationship between E, X; and EX; can be identified. First note that

the rate of formation of £ X, equals k1 £ X; and that the rate of breakdown
of EX; equals (ko + k3)EX;. At catalytic steady-state we obtain

(2.3)

where Ky = ]”k—ﬁk?’ Substitute equation 2.2 into equation 2.3



EX] (t) _ (Etot - E[‘(X]\]/I(t))X1 (t) ] (24)

We rearrange and solve for £ X,

Eio X1(t)
EX((t) = —————. 2.5
Finally, equation 2.5 is substituted into equation 2.1
d k3 Foror X1 (t
4 xy() = Kol X0 (1) (2.6)
dt X1(t) + Ky

Equation (2.6) gives the sought expression: the product formation in terms
of Xy, F and rate constants. By assuming Kj; > X; in equation 2.6, a
linear approximation is obtained. We want to point out that there are other
ways of modelling the enzymatic reaction considered above. There also
exist other kinds of reactions in a cell, which must be considered in order
to model cellular systems. One example of this could be reactions having
several substrates and/or products. We would also like to emphasize that
higher order derivatives are usually not considered in this kind of modelling.

By combining a set of substances with reactions (like the reaction presented
above), a full differential equation model of biological system can be created.
For instance, several models of MAPK pathways can be found in the litera-
ture. Huang and Ferrell [22] developed a model to describe MAPK activation
in Xenopus oocytes. Within a large model of second messenger cascades in
neurons, Bhalla and Iyengar [20] also consider the MAPK module. Another
model, described by Asthagiri and Laufenburger [23], illustrates adaptation
of a MAPK cascade. Other references covering biological modelling of sig-
nalling pathways are found in [16, 18, 19, 24, 25, 26, 27, 28|.

2.3 Simulation of biological models

Systems of differential equations are often difficult to solve analytically, but
can be simulated by numerical methods. The simplest method is Fuler’s
method, which will be used within the scope of this thesis. The formula for
the method is

X(t+ At) = X (t) + AtX'(2) (2.7)



This procedure is repeated for all substances and for the desired number of
iterations (time). We note that the formula is asymmetrical: it advances
the solution through an interval At, but uses derivative information only at
the beginning of that interval. Several better integration methods exist, but
the basic principle for them is the same as in Fuler’s method.

In signalling pathways, the number of molecules of each substance is only
in the order of 1000 per cell. For that reason, it may be useful to con-
sider each molecule individually. In that case, we shift from continuous
models represented by differential equations whose variables are concentra-
tions, to discrete models, represented by stochastic processes whose variables
are numbers of molecules. In the real world, the concentrations undergo
stochastic fluctuations. When the concentrations are low, as they might be
in signalling pathways, the fluctuations should not be neglected. In order to
simulate such systems in a more realistic way, stochastic simulation can be
applied.

A reaction based on differential equations (like the Michaelis-Menten reac-
tion), can easily be adapted to the discrete case. Instead of considering X
as concentration of a substance, we let it reflect the number of molecules of
that substance. In the differential equation model, the reaction constants are
called macroscopic or deterministic rate constants. In the discrete model,
we instead consider mesoscopic rate constants, which are related to, but
not identical to, macroscopic rate constants [29]. When converting from
macroscopic to mesoscopic rate constants we must take into account that
the number of molecules are absolute values and not concentrations. There
are standard methods to perform stochastic simulation on biological models.

2.4 Literature data

An ordinary signalling pathway includes a number of reactions and thereby
a number of parameters. It is difficult to experimentally measure concen-
trations and values of parameters, but there are some values given in the
literature. The origin of those values are usually in vitro® experiments and
it is not obvious that the corresponding parameter values in vivo®
same. In table 2.4 values of total concentration of MAPK:s are presented.
The values are collected from the literature [19, 20, 22, 26, 27, 30]. The
differences of the values in table 2.4 have two main origins: (1) the values
are low and difficult to measure, and (2) different cell types and different
MAPK pathways have been studied.

are the

SLatin, literally ”in glass.” Refers to tests or reactions taking place outside a living
organism, on a microscope slide, in a test tube, etc.
SLatin, literally ”in life.” Refers to tests or reactions taking place in a living organism.
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Ref. | Ref. | Ref. Ref. Ref. | Ref.

[19] | [20] | [22] [26] | [27] | [30]
Protein uM | uM | M uM uM | uM
MAPKKK | 0.3 < 0.015' 0.1
MAPKK 02 [0.18|>0.24° | >06°]03 | <0.035*
MAPK 0.4 |0.36 | 0.24° >0.37103 ]0.1°

Table 2.1: Total concentration given in the literature of different MAPK:s.
Notes: 1. The MAPKKK Mos modelled between 0.6nM-0.015uM 2. The
MAPKK Mek-1 modelled between 0.24-6uM 3. The MAPK p42 modelled
between 0.24-6uM 4. SteTp 5. Ksslp and FusSp 6. MAPKK modelled
between 0.6-1.3uM 7.The MAPK p4/p442 modelled between 0.3-2.8uM .

It is even harder two find estimates of the reaction parameters. For Michaelis-
Menten reactions, parameter k is proposed to be 0.01-0.1 s~ [19, 27], pa-
rameter d proposed to be 0.05-0.8 s~ ! [19] and parameter a proposed to be
0.5-20 uM Ls~1 [19]. Values of Ky = %t£ are also presented in the litera-
ture and range from 0.01 to 1.5 pM [22, 27]. An assumption that d =4k
is also mentioned [20].

We conclude that it is difficult to experimentally measure concentrations and
parameters of signalling pathways, but that the order of their magnitude can
be estimated from the literature.

11
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Chapter 3

Modelling of signalling
pathways

By studying the HOG pathway, and analysing the kinetic equations for that
specific pathway, we have identified several different general reaction types.
By combining such building blocks, also other pathways (in yeast and other
cell types) are possible to model. For the purposes of this work, four reaction
types were selected. They include a sensor reaction, a non-catalysed reaction
and two different catalysed reactions. This collection is large enough to let
us build interesting and non-trivial test models and was therefore selected
at this stage. However, we wish to point out that the four reaction types
are not sufficient to fully model the HOG signalling pathway, why other
reactions must also be considered in the future.

It is assumed that other reactants (ATP, water etc.) are present at con-
stant concentration and so can be included in the rate constants. Similar
assumptions can be found for instance in reference [22].

3.1 Reaction types

Sensor reaction (reaction 1) is used when a physical effect (pe) affects
one substance X to change state from X; to Xs.

pe
X1 — X2

As an example, the physical effect might be osmotic stress, which means
increased salt concentration around the cell. The magnitude of the physical

13



effect (e.g. salt concentration) over time is given by the function f(¢). The
rate of formation of the substance according to this reaction is given by

d d

aXl(t) = *%XQ(t) = *kpeXl(t)f(t)- (3-1)

where k. is a parameter for the effect of pe on the reaction. The simplest
form of f(t) is a step function being high after a given stimulation time
point, that is

fit) = { b, t21 (3.2)

l9, otherwise

where [; and [y are constants and ¢4 is the stimulation time point.

Specifically, we define step(ts) to be a step function with Iy = 0 and Iy =1
according to

_ )Lt >
step(ts) = { 0, otherwise (3.3)

Furthermore, we define stairs(ty, f2) to be a double step function according
to

1, t>t
stairs(t1,t2) = 05, t1 <t <ty (34)
0, otherwise

The two functions, step and stairs, will be used as examples when testing
the model identification algorithm.

Non-catalysed reaction (reaction 2) is used for the spontaneous tran-
sition between two states, X; and Xs.

X]—>X2

where k is the reaction constant. The rate of formation of the substance
according to this reaction is given by

14



CX0(1) = =5 Xo(t) = —kXa (1), (3.5)

Catalysed reaction (reaction 3) is used for a catalysed transition be-
tween two states, X; and Xs.

k
X]+E — X2+E

where k is the reaction constant and E is a substance working as catalyst
(E=Enzyme). The rates of formation of the substances according to this
reaction are given by

CX0(1) =~ S Xol1) = ~KXa()B(D). (3.6)

The enzyme is not affected by this reaction.

Catalysed reaction of the Michaelis-Menten type (reaction 4) is
used for a catalysed transition between two states, X; and Xs. Thus, reac-
tion 4 is the non-linear alternative to reaction 3.

kK
Xi1+F — X9+ FE

where k is the reaction constant, K s is the Michaelis-Menten constant and
E is a substance working as catalyst (E=Enzyme). The rates of formation
of the substances according to this reaction are given by

d _ dy o KEQX().

X1 (t) + Ky (3.7)

The enzyme is not affected by this reaction.

A simplified model of a signalling pathway can be constructed by defining
a set of substances, their different states and a set of reactions of type 1-4.
In general, a model is defined by a structure and a set of parameters. The
structure is composed of substances with reactions between them. Examples
are presented in the next section.

15



3.2 Test models

We present two artificial, but biologically plausible models of signalling path-
ways. Those will serve as test models when evaluating the algorithm. They
also exemplify the way of combining several reactions to a model of a biolog-
ical system. The structure of the test models are similar to the structure of
a MAPK signalling pathway. However, a specific model of the HOG path-
way has presently not been considered. Instead, the main effort has been
to develop the model identification algorithm in order to close the loop be-
tween model and data. The application of the HOG pathway on the model
identification algorithm is discussed in chapter 7.

Sensor Sensor

Test model | Test model 11

Figure 3.1: Test model I and II. Curved reactions with ”Sensor” label cor-
respond to sensor reactions (type 1), straight-line reactions correspond to
non-catalysed reactions (type 2) and curved reactions without label corre-
spond to catalysed reactions (type 3 or 4).

Test models I and II are presented in figure 3.1 and detailed information
about the reactions are listed in table 3.1. Test model I is composed of
three substances (A,B and C) and ten reactions. The substance states A;
and Ay are two different states of the substance A. In the same way, B; and
By are two states of substance B and € and C5 of substance C. A is a sen-
sor activated by an external physical effect. Non-catalysed reactions occur
between all states. There are also three catalysed reactions: Ag catalyses
the transition of By to Bg, By catalyses the transition of C; to Cy and Cs
catalyses the transition of Ay to A;. Test model II is an extended version
of Test model I. Tt is composed of five substances (A, B, C, D and E) and
16 reactions. D is a sensor just like A. Dy catalyses the transition of E; to
FEy. By catalyses the transition of Fs to Fq. Note that there is no reaction
of type 2 from F; to E,.

All substances in Test models T and IT have a total concentration of 1 (arbi-
trary unit).

From the defined set of reactions, the system of differential equations for

16



Type | Substances Parameter
1 Al — A2 kpe = 0.04
2 Al — A2 k1 = 0.02
2 A2 — Al k2 = 0.02
2 B1 — B2 k3 = 0.02
2 B2 — BI k4 = 0.06
2 Cl1— C2 ks = 0.02
2 c2—C1 ke = 0.06
3 Bl — B2 (A2) | k7 =0.10
3 Cl1 — C2(B2) | ks =0.06
3 A2 — A1 (C2) | kg =0.20

Table 3.1: Reactions in

Test model I can be obtained as

Ay

d
dt

d
dt

Type | Substances Parameter
1 Al — A2 kpe_1 = 0.04
1 D1 — D2 kpe_2 = 0.08
2 Al — A2 k1 =0.02
2 A2 —— Al ks = 0.02
2 Bl — B2 k3 = 0.02
2 B2 — B1 ka = 0.06
2 C1— C2 ks = 0.02
2 c2 — C1 ke = 0.06
2 D1 — D2 k7 = 0.04
2 D2 — D1 ks = 0.08
2 E2 — E1 ko = 0.06
3 B1 — B2 (A2) | kig = 0.10
4 Cl1— C2(B2) | ki1 =0.06

Ky = 0.2
3 A2 — A1 (C2) | kiz = 0.20
3 El1 — E2(D2) | ki3 = 0.08
3 E2 — E1(B2) | kia=0.14

— By(t) = k3 Bi(t) — kaBa(t) 4 k7 B1(t) As(t)

d
ECQ(TS) = k5C1(t) — keCo(t) + ksC1(t)Ba(t).

Test models I (left) and II (right)

(t) = kpe A1 (1) f () + k1 A1 (1) — k2 Aa(t) — ko A2(2)Ca(2) (3.8)

(3.9)

(3.10)

The differential equations for Ay, By and C; are not needed to integrate the
system, since only two states of each substance exist (A1 (t) = Ay — Aa(t)
etc.). The system of differential equations for Test model I can be derived
in the same way and are left out here.
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Chapter 4

Specification and simulation
of experiments

In order to analyse models of biological systems, we must consider experi-
mental data. There are a lot of different laboratory techniques in this field
of biology and for that reason it is important to find a way of specifying
experiments. In the first part of this chapter we focus on these questions.
We end this chapter with simulation of experimental data and some other
data related issues.

4.1 Specification of experiments

We define an experiment to be a measurement of a single variable from a
model or biological system over time. For example, the variable may be
the concentration of a substance in a given state. As mentioned in chapter
1, experiments measure models or systems that may have different genetic
background and input stimuli, but there are also other attributes that have
to be specified in order to fully describe an experiment. In table 4.1, we
propose a template of the information needed. In this thesis we mainly
consider four of the attributes from the table: genetic background, physical
effect, measured variable and time series data. All other attributes are
considered constant. They play a role in real experiments, but are hard to
introduce in a model. Thus, at this stage we do not include them.

Based on the attributes in table 4.1, we define an experiment category to be a
set of experiments that have the same genomic background, physical effects,
experimental technique, species, strain, experimental set-up, cell state and
time series start and stop time. Consequently, the only difference between
experiments in a category is the measured variable and the time series data
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(the unit could differ, but that is not considered in this work). Thus, an
experiment category is a set of experiments that measure the same system.
The use of different experiment categories is very common, when studying
biological systems. For instance, by deleting a particular gene affecting a
feedback loop, it is possible to cut off the loop in order to better understand
the system. Grouping into experiment categories is important for the model
identification algorithm, since all experiments in a category can be generated
in a single simulation.

In table 4.2 we specify the experiments for Test models I and II that are
used in this work. Two physical effects are used: step(20) and stairs(20, 50)
(equations 3.3 and 3.4 in section 3.1). In Test model I there are three exper-
iment categories, namely [wild-type, step(20)], [Gene deletion B, step(20)]
and [Gene deletion C, step(20)]. In Test model II there are five experiment
categories, namely [wild-type, step(20)], [wild-type, stairs(20,50)], [Gene
deletion B, step(20)], [Gene deletion C, step(20)] and [Gene deletion D,
step(20)].
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Attribute Explanation and/or examples Consideration in
this thesis
Genomic Wild-type, gene deletion, functional mutant or over | Wild-type and gene
background expression. deletion.
Physical ef- | Time-dependent input to the experiment. Note that | The functions Step
fects there might be several physical effects belonging to | and stairs, defined in
the same experiment. Each effect must define a vari- | section 3.1.
able (e.g. temperature or external osmotic pressure),
a unit and a function of time.
Measured A substance in a given state, reaction parameter | The concentration or
variable or physical parameter (volume for instance) that is | number of molecules
measured. The variable must exist in the model. of a substance state.
Unit Relative or absolute (e.g. Molar and number of | Absolute values as-
molecules). sumed.
Time series | The experiment may also consider location scale (the | Time series data for
data location is in its most general form x,y,z-coordinates, | 8-201 data points.
but may be simplified to different compartments in
the cell). However, each location may be viewed as
one experiment and then only time series data need
to be considered.
Experimental | E.g. northern blot, western blot, protein phosphory- | Constant.
technique lation and microarray.
Species E.g. S. cerevisiae. Constant.
Strain E.g. S288C. Constant.
Experimental | E.g. size of cultivation wells, stirring, cell medium, | Constant.
set-up batch/chemostate.
Cell state Lag phase, exponential phase or stationary phase. | Constant.
Time-dependent if the experiment is run over long
time.

Table 4.1: Ezperimental attribute template. Additional minor attributes
might be included as well: experimentalist, date of experiment, references

and comments. Those attributes need no further explanation.
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Measured Genomic Physical
Measured | Genomic Physical variable background | effect
variable background | effect A2 Wild-type step(20)
A2 Wild-type step(20) B2 Wild-type step(20)
B2 Wild-type step(20) C2 Wild-type step(20)
C2 Wild-type step(20) D2 Wild-type step(20)
A2 Gene del. B step(20) 12 Wild-type step(20)
C2 Gene del. B | step(20) | | A2...E2 | Wildtype | stairs(20,50) |
A2 Gene del. C step(20) ‘ A2, C2 ... E2 ‘ Gene del. B ‘ step(20) ‘
B2 Gene del. C step(20) ‘ A2,B2,D2,E2 ‘ Gene del. C ‘ step(20) ‘
| A2...c2,F2 | Genedel. D | step(20) |

Table 4.2: Specification of experimental data for Test models I (left) and
IT (right). The physical effects step(20) and stairs(20,50) are explained in
section 3.1. Time series data are specified to go between 0 and 100 (arbitrary
unit). The experiments are divided into different categories. Experiments
within the same category belong to the same box in the table. Note that the
four last categories of Test model II are condensed to one row each in the

table.
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4.2 Simulation of experiments

In order to simulate a particular experiment, all attributes of the experiment
and the parameters of the model must be specified. For example, assume
experiments of the category [Gene deletion B, step(20)] are to be simulated
from Test model I. Thus, the system of differential equations 3.8-3.10 is
simulated. The initial concentrations are taken from steady state, but since
B is deleted, its initial concentration is set to zero. Thus, the concentrations
of By and By will remain zero for the whole simulation. The physical effect
function (step(20)) specified by the experiment category is used and the final
result is simulated time series data for all substance states.

Deterministically simulated experimental time series data were produced
from the two test models by integrating the system of differential equations
with Fuler’s method. An overview of the different experiments produced for
Test model I and II is shown in table 4.2. Time series data goes from 0 to
100 (arbitrary unit) with a step-size of 0.5, giving rise to 201 measurement
points. In order to create a smaller set of measurement points, we sample
from the 201 measurement points. Plots of the experiments are found in
Appendix A.

The same experiments were stochastically simulated using the Direct method
[31] that is briefly presented below.

In a given state, the number of molecules of each substance state is known.
The algorithm calculates probabilistically, which reaction occurs next and
when it occurs. For each reaction a probability (propensity) is computed by
multiplying the rate constant of the reaction with the concentration of its
substrates. Then a random number is used to perform a selection according
to the relative probabilities of all reactions, and a second random number
determines the execution time used for this reaction. The execution time is
taken from an exponential distribution, where the parameter is the sum of
all propensities. The chosen reaction is executed. For example, assume the
reaction X; — Xy catalysed by FE is chosen. Then X; is decreased by one
molecule and X5 increased by one molecule. The algorithm is summarized
as

Initialise (set initial numbers of molecules and set time = 0).
Calculate the propensity function A; for all reactions i.

Choose one reaction according to the relative propensities.
Choose At from the distribution Exzp(}", A;).

Update number of molecules to reflect execution of the reaction.
Set time = time + At.

Go to step 2.

N Ok W
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As mentioned in section 2.3, reactions represented as differential equations
can easily be adapted to the discrete case. The volume was set to one
and the total number of molecules of each substance was set to 1000. In
order to change from macroscopic to the mesoscopic scale, the parameters
in the catalysed reactions are scaled to new values. In reaction type 3, the
parameter k is divided by 1000 and in reaction type 4, the K, is multiplied
by 1000. Since a real experiment usually is not a single-cell experiment,
several cells were simulated and the average value was considered in some
test cases.

Noise from different sources in the measurement process disturbs a real
biological experiment. In this work all sources is treated as one, called mea-
surement noise. The variance of the measurement noise at a measurement
point #; is assumed to be

var(t;) = cx* e(t;) (4.1)

where ¢ is a constant and e(¢;) is the experimental value at time ¢;. Normal
distribution is assumed. The different simulations are presented in table 4.3
and plots of the experimental data are found in Appendix B.

Simulation | Number Measurement
of cells noise constant

1 1 0

2 50 0

3 50 0.2

4 50 0.5

5 50 1.0

Table 4.3: Stochastic simulations of Test Models I and II.

4.3 Interpolation of experimental data

In the model identification algorithm it is necessary to estimate concen-
trations and derivatives of concentrations at arbitrary time points, within
the time range of an experiment. The most basic approach is to use linear
interpolation. For the derivative, it is natural to use the forward difference

o X(t) - X(t
X(t) — (J+1) (])
dt P

(4.2)

for an estimation on the interval between ¢; and #;4.
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The above methods are rough estimates. In order to improve the estima-
tion we use cubic spline interpolation [32], which is a standard method in
numerical analysis. The method is built on the same principle as the linear
interpolation, but a cubic polynomial is used instead of the linear.

4.4 Model ambiguity of experimental data

It can happen that two different biological models create the same experi-
mental data. We illustrate this point by an example.

Sensor Sensor

Il | c1 s c2 |

Figure 4.1: Experimental data of models I and II are identical. Curved reac-
tions with ”Sensor” label correspond to sensor reactions (type 1), straight-
line reactions correspond to non-catalysed reactions (type 2) and curved re-
actions without label correspond to catalysed reactions (type 3).

Consider the biological models presented in figure 4.1. In model I, two
sensors (A and B) both activate substance C, while only sensor B activate
C' in model TI. As indicated in the figure, the rate parameter (k) of the
catalysed reaction from C'1 to C2 in model I is the sum of the corresponding
rate parameters (k3 and k4) in model I. All other rate parameters are the
same in both models. Furthermore, reactions on A and B share the same
parameters (k1 and £2), that is, the activation kinetics of the two sensors
are identical. If we consider a wild-type experiment, the two models will
produce the same experimental data for all the substances. That is, the
data does not unambiguously derive from one biological model.

It is important to note that if we add another experiment category where
one of the sensors is deleted, the set of all data will unambiguously derive
from either model I or model II. This technique was successfully used by
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Maeda, Takekawa and Saito [11] when revealing the basic structure of the
HOG signalling pathway.
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Chapter 5

The model identification
algorithm

In this chapter the algorithm for reconstructing signalling pathways from
experimental data is presented. The input to the algorithm is an initial
structure and a set of experiments. The initial structure contains all sub-
stances, the sensor reactions (type 1) and any number of other reactions
of the model. It corresponds to the established knowledge of the system.
In this thesis we consider only the worst-case examples, where the initial
structures lack all reactions of type 2-4, see figure 5.1. All parameters are
assumed unknown.

Sensor Sensor Sen

ISOr

lca| [c2| lca| [c2]

Initial structure of Test mode | Initial structure of Test mode! |1

Figure 5.1:  Initial structure of Test model I and II. Curved reactions with
"Sensor” label correspond to sensor reactions (type 1).

The output of the algorithm is the best structure found, its parameters and
a measure of the error of that model. The goal of the algorithm is to find a
model that minimizes a function, representing the error between the model
and the experimental data. The error of the model for a single experiment is
calculated by summing the square of the difference between simulated data
from the model and the experimental data for each data point. The total
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error of the model is calculated by summing the errors for all experiments.
Thus, the objective of the algorithm is expressed as

min Y Y (e(t;) — esim(ti))? (5.1)

where FE is the set of all experiments, e(¢;) is the measured concentration in
experiment e at time point ¢; and eg;, (£;) is the simulated value of e at time
t; using the model. The search for a better structure ends when a certain
termination criterion is satisfied.

The present version of the algorithm has the following data requirements:

e [t is only possible to have two states of each substance.
e Experimental data points are given with correct units (non-normalized).
e The total concentration Xy, of each substance is known.

e Experimental data for at least one state of every substance must be
given. This is usually not the case in reality. In section 5.8, we demon-
strate that this restriction can probably be relaxed in the future.

The requirements are analysed further in the discussion of chapter 7.

5.1 Top level algorithm

To explain the algorithm we first consider only one experiment category as
input. For example, for Test model I only the experiments of category [wild-
type, step(20)] are present, i.e. we consider the three experiments where Ag,
By and (9 are measured in a wild-type genetic background and with a step
function as input.

The main principle of the algorithm is a heuristic that reconstructs the
model structure incrementally. A best structure and a best set of parameters
are always maintained. In a pre-processing step, all possible non-catalysed
reactions (type 2) are added to the initial model and the error is calculated.
Then, every possible catalysed reaction (type 3 and type 4) is temporarily
added to the model one by one. For each reaction that is tried, the error
of the resulting model is calculated. The best reaction is added and the
process is repeated until a termination criterion is fulfilled. At the end of
each iteration, reactions of type 2-4 that have a small rate parameter are
removed.
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The evaluation of a particular model structure can be divided into three
steps: parameter estimation, simulation and error calculation. First the
parameters are estimated, then the model is simulated and finally the error
is calculated by equation 5.1. When simulating, a deterministic method is
always used. The initial concentration is taken from the first experimental
data point of the substance.

The algorithm in pseudo-code is presented below.

INPUT:
S - initial structure
E - set of experiments

OUTPUT:
S - structure of estimated model
P - parameters in estimated model

// PRE-PROCESSING

R2 := allPossibleReactionsType2(S)
R3 := allPossibleReactionsType3(S)
R4 := allPossibleReactionsType4(S)
R3UR4 := R3U R4

S :=SUR2
P:=estimateParameters(S, E)
Egim:=simulate(S, P, E)
€min:=calculateError(FEg;p,, F)

// TEST CATALYSED REACTIONS
LOOP
FOR ALL testReaction € R3UR4 DO
S := S + testReaction
Py,cqr:=estimateParameters(S, E)
Egim:=simulate(S, Pjocar, )
etestheaction. —calculateError (Egim, F)
S := 8§ — testReaction
END
r :=bestReaction(R3UR4, ¢)
IF (terminationCriterion(€min, €”, P,r)) THEN
BREAK
ELSE BEGIN
S:=5+r
removeReactionsWithSmallRates(S,P)
P:=estimateParameters(S, E)
Egim:=simulate(S, P, E)
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€min:=calculateError (Egm, E)
END
END

RETURN S, P, €min

The parameter estimation and the termination criterion are covered more
in detail in the following sections.

5.2 Parameter estimation

We continue to consider only one experiment category as input. In order
to obtain a low error, we want to find the best parameters for a particular
structure. For any experiment, the substance concentration for a couple of
measurement points are given. The derivative of the concentration can be
estimated. With these data, the set of differential equations corresponding
to the structure is reduced to an overdetermined set of equations in the
unknown parameters. Each measurement point gives one equation. The
overdetermined system of equations is solved with the least-square method
if it is linear. If a catalysed reaction of type 4 is involved in the equation
it becomes non-linear, and Marquardt’s method [32, 33] is used instead. In
practice, every differential equation is considered separately, and the dif-
ferential equations are handled in turn. The parameter estimation is now
described by an example.

Consider Test model T and the differential equation of As, see equation
3.8. Each term on the right hand side corresponds to one reaction. The
parameters to estimate are k,., k1, k2 and k1. By estimating %Ag(t) and
all concentrations on the right hand side from experimental data, equation
3.8 gives us a linear equation. Each data point in the experiment where
As is measured gives one such equation. The notation X;(¢) will denote
a concentration estimation of substance X; given data from the considered
experiment category. The full system can be written

MEk =10 (5.2)
where
Ai(t)f(h) Ai(t) —Ag(t)  —Ag(t1)Ca(h)
M= Al(tQ?f(tQ) AlFtZ) —Ay(ta) —As(t2)Ca(ta) ’ (5.3)



ks

k= o (5.4)
kg
and
%z@(ﬁ)
h— : ) (5.5)
4 Ay (tn)

In equation 5.3, ¢; and ¢, refer to the first and last experimental time point
respectively. The system of equations is overdetermined and is solved by
the least-square method, which minimizes the Euclidean norm between Mk
and b [34], that is

min || b— Mk | - (5.6)

If the column vectors are linearly independent (M ™ M positive definite), the
solution to the least-square problem is obtained from the linear system

MTME = M"b. (5.7)

It is important to note that the minimization function 5.6 coincides with the
original minimization function 5.1 only if the model structure is correct. This
is because experimental data are used in order to estimate the concentrations
and the derivatives. Thus, the best parameters in terms of the original
minimization function are obtained only in this case. This is an algorithmic
short-cut in order to speed up the algorithm and it works because we have
a complete data set. This is also why we need a subsequent simulation step
in the algorithm to determine the true error of the current model.

If there is a catalysed reaction (type 4) in the differential equation, the or-
dinary least-square method will not do. Instead we employ Marquardt’s
method for least-squares estimation of non-linear parameters [32, 33]. Mar-
quardt’s method works well in practice and has become a standard for non-
linear least-squares. Briefly, the method varies smoothly between two meth-
ods, the inverse-Hessian method and the steepest descent method. The
latter method is used far from the minimum, switching continuously to the
former as the minimum is approached. The method is not covered more
thoroughly here.
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5.3 Termination criterion and thresholds

The search for new reactions of type 3 and 4 is terminated when:

e > €min ¥ ﬁ OR ky < 0; (5.8)

where € is the lowest error found when testing new catalysed reactions,
€min 18 the presently best (lowest) error, § < 1, k, is the rate constant of
the reaction proposed to be added to the model, §; > 0 and 7 € 3,4. The
constants, 8 and §; are specified by the user of the algorithm. d3 and d,4
are used when the added reaction is of type 3 or 4, respectively. Thus, the
search ends when either the decrease of the error is too small or when the
reaction to add has to small rate constant.

In a final step of the loop in the algorithm, reactions of type 2-4 might
be removed from the model (removeReactionsWithSmallRates(S,P) in the
pseudo-code), the criterion being

k< 6 (5.9)

where k belongs to a reaction of type 7 € 2,3,4 and, as previously, §; > 0.

In general, a model with a complex structure is more likely to have low error,
because the parameter space is large and the model can be fine-tuned to fit
experimental data. Presently, the complexity of the model is not explicitly
considered in the minimization function and is only implicitly considered in
the termination criterion, which is necessary to avoid overfitting. There are
several ways to punish high complexity, but this is a complex issue and will
be considered in the future.

5.4 Extension to several experiment categories

We now generalize the algorithm to handle several experiment categories.
Again, consider Test model I, but let all experiment categories presented
in table 4.2 be included. The parameter estimation and the top level algo-
rithm are both affected by the change. In the parameter estimation, each
differential equation is still considered separately, but the experiments from
all experiment categories are merged and considered simultaneously. In the
main algorithm, simulation is then performed for each experimental cate-
gory. The simulation itself and the error calculation are not affected.

As an example, consider Test model I and the differential equation of Ao,
see equation 3.8. In order to take all experiments where As is measured into
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account, all such experiments are merged in matrix M (equation 5.3). The
experiments are [Ag, wild-type, step(20)], [A2, Gene deletion B, step(20)]
and [Ay, Gene deletion C, step(20)]. Each data point in each experiment
where A, is measured gives one row in M. The number of columns in
the matrix is not affected, since the number of unknown parameters is the
same. The number of rows corresponds to the total number of experimental
measurement points of A, in all experiment categories. As before, the system
of equations is overdetermined and is solved by the least-square method. The
same approach holds for the non-linear case with Marquardt’s method.

5.5 Methods for increasing the speed

The short-cut of not minimizing the original error function 5.1 significantly
reduces the computational time of the algorithm. This simplification also
gives us the opportunity to further increase the speed of the algorithm. We
make one observation:

When adding (testing) a catalysed reaction (type 3 or /) affecting substance
X, only parameters in the differential equation for X need to be re-estimated.

All other parameters are unaffected by the change of the model. From this
follows that only the differential equation of X needs to be simulated and that
only experiments measuring X need to have their errors re-calculated. As
an example, consider Test model T (section 3.2). Assume we want to add the
reaction Ay — As catalysed by Bj to the model. Only the parameters in
the differential equation of Ay (equation 3.8) need to be considered. All other
parameters remain the same. Furthermore, only the differential equation of
Ay must be simulated, and consequently, only those experiments measuring
Ao must have their errors re-calculated.

The basic procedure of estimating parameters remains the same. The differ-
ence is that each differential equation is not considered when re-calculating
the new set of parameters. Only the differential equation for the substance
that is changing state is considered.

The simulation is affected too: instead of simulating the full set of differ-
ential equations, we only simulate one differential equation. As before, the
initial concentration is taken from the first experimental data point of the
substance. Concentrations of other substances occurring in the differential
equation are estimated from experimental data. For example, assume that
time series data for the substance As are simulated given Test model I and
the experimental attributes of experiment e. Thus, the differential equation
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3.8 is simulated. The initial concentration value of As is taken from exper-
imental data, while all other data points are simulated. Concentrations of
other substances (Cy in this case) occurring in the differential equation are
estimated from experimental data, they are not simulated. As before, the
parameters ki, ko and kio must have been estimated in advance. The result
is simulated time series data for substance As. Since only parts of the model
is simulated and the other parts estimated from data, the result may not
be the same as if the whole model was simulated. Again, we note that we
depend on a complete data set in order to use this short-cut.

In the top level algorithm, the error of each individual experiment (denoted
€.) must be monitored. The abbreviation cat is used for category. The
algorithm in pseudo-code is given below.

INPUT:
S - initial structure
FE - set of experiments

OUTPUT:
S - structure of estimated model
P - parameters in estimated model

// PRE-PROCESSING

R2 := allPossibleReactionsType2(S)
R3 := allPossibleReactionsType3(S)
R4 := allPossibleReactionsType4(S)
R3UR4 := R3U R4

S:=SUR2

P:=estimateParameters(S, E)
FOR ALL cat € E DO
Ectt :=simulate(S, P, E, cat)
END
FOR ALL e € E DO
e®:=calculateError(Fgn, €)
END
€min = Dqll ccE €
LOOP
FOR ALL e € E DO
€o1d =€
END
FOR ALL testReaction € R3UR4 DO
FOR ALL e € E DO

e, test Reaction.__ e
€’ .—Cold
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END
S := S + testReaction
s:=substanceChangingState(test Reaction,)
Ed:={e € E | e.measured_variable € s}
plestReaction. —ogtimateParametersSingle(S, P, E, s)
FOR ALL e € Ed DO

€sim :=simulateSingle(S, Ptestieaction o [ e)

€ testReaction. —calculateErrorSingle(esim, €)

END

test Reaction .__ e, test Reaction
€E =D all ecn €

S := 8§ — testReaction

END
r :=bestReaction(R3UR4, €f)
IF (terminationCriterion(€emin, €, P,r)) THEN
BREAK
ELSE BEGIN
S=8+r
removeReactionsWithSmallRates(S,P)
P:=estimateParameters(S, E)
FOR ALL cat € E DO
E¢tt :=simulate(S, P, E, cat)
END
FOR ALL e € E DO
e®:=calculateError(Fginm, €)
END
€min i= Dl ccE €
END
END
RETURN S, P, €in

There are other possible short-cuts. We note that reactions of type 3 and
4 are similar in the sense that they are both catalysed reactions. If a low
error is obtained by adding a particular reaction of type 3, the corresponding
reaction of type 4 will probably also give a low error when added, and vice
versa. Since the non-linear parameter estimation demands more computa-
tional time, we first test the reaction of type 3. If the error of that model is
sufficiently bad, no test of the corresponding reaction of type 4 occurs. We
formulate the following rule

IF (€™ > 7 * €in) THEN
skip test of corresponding r4

where v > 1 is a constant. The above code-fragment can easily be included
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in the main loop of the top-level algorithm. This short-cut has been used in
this thesis with v = 1.2.

5.6 Computational time of the algorithm

The computational time of the algorithm is difficult to exactly formulate,
since the choice of parameter estimation method depends on the specific
model. Without reactions of type 4 the least-square method is applied,
otherwise the computational much more expensive Marquardt’s method is
used. In this section we consider a base case where reactions of type 4 are
not included at all. This simplification can partly be justified by the quite
sparse use of Marquardt’s method when the short-cut of skipping some tests
of reactions of type 4 is employed (section 5.5).

We consider the computational time as a function of the variables presented
in table 5.1.

Variable | Description

g Number of substances in the model.

Nec Number of experiment categories.

Np Total number of experimental data points,
measuring a particular substance.

At Step size in simulation.

tsim Simulation time.

Table 5.1: Variables used in calculation of computational time. For simpli-
fication, we assume that ng, is equal for all substances and that iy, is equal
for all experiments.

The time complexity of the algorithm, Ty, can be expressed as

Talg = NloopsNtests (Tpe + Tsim + Terr) (510)

where Nj,ops is the number of loops in the algorithm, Ny, is the number of
reaction tests within one loop and Ty, Tsim and T, are the time complex-
ity for one parameter estimation, one simulation and one error calculation,
respectively.

It is difficult to estimate Nj,ps, since it is dependent on the iterative be-
haviour of the algorithm. In particular, Nj,.,s is strongly affected by the
termination criterion. A typical value for Nj,,, involves the variable n,
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which is the number of catalysed reactions that are not included in the ini-
tial structure but belong to the correct structure of the model. Assuming
that we find the correct structure we obtain

Nloops =ne +1 (511)

which can be motivated by an example: In Test model I the number of
loops is ideally four, three loops for identifying each of the three catalysed
reactions and one loop for reaching the termination criterion.

If all possible reactions are added to the model, Nj,ops is dramatically in-
creased: one loop for each possible catalysed reaction is required. Since
every substance reacts in two directions (X; — X9 and X9 — X;) and
the enzyme can be any other substance, each existing in two different states,
(2(ns — 1)), we obtain the function

Nloops = 4”5(”5 - 1) € O(n%) (512)

There is also a possibility that the algorithm shows a cyclic behaviour. In
that case, Nj,0ps may potentially go to infinity, given the current termination
criterion.

One cycle of the loop contains tests of all possible catalysed reactions. The
same reasoning as for equation 5.12 gives us

Ntests = 4”5(”5 - 1) € O("%) (5'13)

For each reaction that is tested, the resulting model is subjected to param-
eter estimation, simulation and error calculation. Before analysing them
in turn, we define n, to be the number of reactions affecting a particular
substance. We obtain an upper bound for n, by observing that n, equals
4(ng — 1) reactions of type 1 and 3 respectively (compare to equation 5.13)
and two reactions of type 2 in worst case. Thus,

ny =8(ns —1) +2 € O(ny). (5.14)

The parameter estimation is performed by the least square method, where
the matrix is of size ngy X n, (equation 5.3). The method runs in polynomial
time, since it requires n?ng, — n/3 multiplications and a similar number
of additions (QR factorisation) [35]. Substituting n, for ns according to
equation 5.14, an upper bound for T}, is obtained as

Tpe € O(n?ngp). (5.15)
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One simulation is performed for each experiment category and the running
time of each simulation depends on At, ty,, and n,. Substituting n, for n,,
Tsim 1s obtained as

tsim
Tsim € O(nec——ns). 5.16
stm ( ec At S) ( )
The time complexity of the error calculation is linear in time w.r.t. ngy,
giving

Terr € O(ndp). (5.17)

Inserting equation 5.15, 5.16 and 5.17 into equation 5.10, we obtain the time
complexity of the algorithm as

to:
Tty = NioopsNiests <O(n3ndp) + O(nec%ns) + O(ndp)> . (5.18)

Most computational time of the algorithm is spent evaluating different re-
actions added to the model. Test runs indicate that T,,, always can be
neglected in comparison to Tp. and Tj;,,. However, the relationship be-
tween Tj, and Ty, is not straightforward. For large ng,, Tpe > Tgim, while
for small ngy, Tpe < Tsim. For example, given Test model I and experiments
with 201 data points, the parameter estimation takes about 4 times longer
time as the simulation. For 8 or 16 data points per experiment the simula-
tion takes about 9 times longer time as the parameter estimation. Thus, for
small n4,, an approximation to equation 5.18 can be obtained as

lsi
Talg ~ NloopsNtestso(nec%ns) (519)

and for large ngy,, a similar approximation is obtained as

Talg ~ NloopsNtestsO(ngndp)- (5'20)

We would also like to emphasize that for non-linear models usually T}, >
Tsim-

Based on the analysis of the computational time above, we can give a rough
estimate of the difference in running time between Test model I and II.
In those cases we assume that Nj,,,s equals its typical value according to
equation 5.11. This actually turns out to be true for our test cases. For
Test model I, n. = 3, nys = 3 and ne. = 3, and for Test model II, n.. = 5,
ng = 5 and ne. = 5. ngp is proportional to ne., since the number of data
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points in each experiment is constant. Using equation 5.19, the difference in
computational time would approximately be a factor of 13 when the number
of data points per experiment is 8 or 16. Using equation 5.20 and considering
201 data points per experiment, the same factor would approximately be 21.
The running time of the algorithm on Test models I and II are given in the
results section (5.7).

Since we use an heuristic approach and the increase of computational effort
is typically polynomial w.r.t. number of substances and amount of exper-
imental data, we argue that significantly larger models than Test model 11
are possible to identify with reasonable computational effort using this or a
similar algorithm.

5.7 Test results

The algorithm has been implemented in Java as a part of the integrated
environment (chapter 6). A linear algebra package for Java, JAMA [36],
was used for basic linear algebra manipulations. As mentioned before, Fu-
ler’s method has been used for simulations. A more accurate method, the
fifth order Runge-Kutta Method with adaptive step-size [32] has also been
employed, both to produce experimental data and to run the simulations in
the algorithm. However, for our present purposes the choice of integration
method did not give an evident effect of the performance of the algorithm.
For that reason, only FEuler’s method is used to produce the test results.
The performance of the algorithm is presented in terms of test runs of Test
models I and II. All tests were run on a Sun Enterprise 450, Dual UltraSparc
300 MHz, 512 MB RAM.

Results with deterministically simulated data

We first consider experimental data simulated deterministically and without
any noise (see section 4.2). In order to test the algorithm under best possible
conditions, all (201) simulated data points of each experiment served as
input. In this case the trivial linear interpolation was used, instead of the
cubic spline interpolation. This is because the data is simulated using Fuler’s
method and therefore the forward difference (equation 4.2) is the exact one.
The algorithm was able to correctly reconstruct both the structure and the
parameters of Test model I and II from the initial structures (figure 5.1) and
the experimental data given.

In order to test the algorithm under more realistic conditions, the number of
experimental data points per experiment was reduced. In this case, the cubic
spline interpolation was used. For both Test model I and II the number of
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data points per experiment could be reduced down to eight before the correct
structure was not found any more. See table 5.2 and 5.3 for detailed results.

The running time of the algorithm is also presented in the tables. The
running times of Test model I and II differ by a factor of 16, 10, and 15
for the three different test runs with different number of data points. Those
factors are reasonable considering the theoretical calculation in section 5.6,
where the factors were roughly calculated to 21, 13 and 13 respectively.

Type Substances Correct Estimated | Estimated | Estimated
parameter | parameter | parameter | parameter
n=201" n=16 n==8
1 A — As 0.04 0.040 0.026 0.019
2 A — As 0.02 0.020 0.013 0.011
2 Ay — Ay 0.02 0.020 0.012 0.0088
2 B1 — B> 0.02 0.020 0.020 0.017
2 By — B1 0.06 0.060 0.061 0.053
2 C1 — Cs 0.02 0.020 0.020 0.019
2 Cy — C1 0.06 0.060 0.059 0.058
3 Bi1 — Ba (A2) | 0.10 0.10 0.10 0.089
3 Ci1 — C2 (B2) | 0.06 0.060 0.059 0.058
3 Ay — A1 (C2) | 0.20 0.20 0.13 0.10
‘ Running time (s) ‘ 16 ‘ 4.4 ‘ 1.9 ‘

Table 5.2:  Results from reconstruction of Test model I, n is the number of
data points per experiment. Parameters do = 0.002, 63 = 0.001, §4 = 0.001
and 8 = 0.85. 1) Linear interpolation.
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Type Substances Correct Estimated | Estimated | Estimated
parameter | parameter | parameter | parameter

n=201! n=16 n=8

1 A — Ay 0.04 0.040 0.022 0.037

1 Dy — D» 0.08 0.080 0.036 0.092

2 A — Ao 0.02 0.020 0.0092 0.023

2 Ay — Ay 0.02 0.020 0.0088 0.020

2 By — B> 0.02 0.020 0.019 0.014

2 By — B; 0.06 0.060 0.056 0.041

2 C; — Co 0.02 0.020 0.018 0.016

2 Cy — C1 0.06 0.060 0.056 0.050

2 Dy — D> 0.04 0.040 0.015 0.054

2 Dy — Dy 0.08 0.080 0.032 0.098

2 Ey — Eq 0.06 0.060 0.056 0.037

3 Bi — Ba (A2) 0.10 0.10 0.094 0.068

4 Ci1 — Cy (B2) k=0.06 k=0.060 k=0.066 k=0.071

Kpr=0.20 Kp=0.20 Kpr=0.34 Kr=0.50

3 Ay — Ay (C2) 0.20 0.20 0.10 0.20

3 E1 — E> (D2) 0.08 0.080 0.075 0.051

3 Ey — E1 (B2) 0.14 0.140 0.13 0.089

‘ Running time (s) ‘ 260 ‘ 44 ‘ 28 ‘

Table 5.3: Results from reconstruction of Test model II, n is the number of
data points per experiment. Parameters 09 = 0.002, 63 = 0.001, d4 = 0.001

and B = 0.85. 1) Linear interpolation.
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Results with stochastically simulated data with added noise

We now consider data simulated by the stochastic method and with mea-
surement noise added. Again, we refer to Appendix B where plots of the
data are shown.

To get an idea about to what extent data are disturbed, we first ran the
parameter estimation by itself given the correct structures of Test models
I and II. Note that we are not running the model identification algorithm.
The results are presented in Appendix C, table C.1 and C.2. They show
that parameters estimated from stochastically simulated data differ from
the original parameters, but that the difference gets smaller, with data that
were averaged over several simulations, which is to be expected. Data with
a higher level of added noise, naturally, make the result worse.

We now consider model identification from stochastically simulated data.
Note that it is only the data that are simulated in a stochastic manner,
the simulations within the algorithm are still deterministic. The results
obtained for Test models I and IT are summarized in table 5.4 and 5.5. Both
the structure of Test model I and II were identified using data averaged from
several stochastic simulations. The models were almost fully identified using
data with moderate levels of added noise. For some of the non-identified
reactions, the corresponding reaction of type 4 was found instead of the
correct reaction. Thus, the principal structure of the pathway, but not the
correct kinetic behaviour was identified.

The reason why the correct structure is not found in some cases is because of
the noisy data. The structure found gives an error (according to our current
error function 5.1) that is lower than the error of the correct structure. We
note that adjustment of the error function may improve the ability of the
algorithm to find the correct structure. We also note that the reactions that
are not found by the algorithm generally have small rate constants.

The running times of the algorithm are similar to those presented in table
5.2 and 5.3.
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Type Substances Correct cells=50 | cells=50 | cells=50 | cells=50
parameter c=0 c=0.2 c=0.5 c=1.0
1 A — Ay 0.04 0.027 0.025 0.021 0.032
2 A — Ay 0.02 0.012 0.011 0.0093 0.020
2 Ay — Ay 0.02 0.012 0.011 0.0086 0.017
2 By — By 0.02 0.018 0.031 0.036 0.045
2 By — Bi 0.06 0.054 0.080 0.088 0.016
2 C; — C2 0.02 0.012 0.019 0.029 -
2 Cy — C1 0.06 0.036 0.058 0.090 -
3 Bi — Ba (A2) 0.10E-3 0.093E-3 - - -
3 Ci1 — Ca (B2) 0.06E-3 0.038E-3 - - -
3 Ay — A (C3) 0.20E-3 0.13E-3 0.12E-3 0.10E-3 -
4 B1 — B> (Ag) - - k=0.13 k=0.17 -
- - Kpr=580 | Kp=810 -
4 C1 — C2 (B2) - - k=0.062 k=0.13 -
- - Kpr=480 | Kp=810 -
4 As — Ay (C9) - - - - k=0.25
_ _ - - Kar=990
4 By — B1 (A1) - - - - k=0.041
- - - - Kpr=290

Table 5.4: Typical results from model identification of Test model I given

stochastic data. cells = number of cells (simulations) from which the average

value is calculated.

four last reactions are not included in the correct structure.

of experimental data points per experiment is 25 in all runs. Parameters

d2 = 0.002, 93 = 0.001E — 3, 64 = 0.001E — 3 and B = 0.9.
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Type Substances Correct cells=50 | cells=50 cells=50 cells=50
parameter c=0 c=0.2 c=0.5 c=1.0
1 Ar — As 0.04 0.028 0.027 0.021 0.021
1 Dy — Do 0.08 0.050 0.049 0.045 0.039
2 A — Ag 0.02 0.014 0.013 0.011 0.021
2 Ay — Ay 0.02 0.013 0.013 0.0093 0.014
2 B1 — B3> 0.02 0.020 0.027 0.040 0.0060
2 By — B1 0.06 0.061 0.065 0.10 0.016
2 C1 — Cs 0.02 0.018 0.014 0.040 -
2 Cy — C1 0.06 0.054 0.042 0.12 0.0018
2 Dy — Do 0.04 0.025 0.025 0.023 0.021
2 Dy — Dy 0.08 0.049 0.048 0.044 0.038
2 Fy — F1 0.06 0.060 0.034 - -
3 B1 — B> (A») 0.10E-3 0.10E-3 - - 0.026E-3
4 C1 — C2 (Ba2) k=0.06 k=0.064 k=0.047 k=0.19 -
Kar=200 Kpa=340 | Kp=270 Kpr=630 -
3 Ay — A1 (C2) 0.20E-3 0.14E-3 0.13E-3 0.11E-3 -
3 Ei1 — E» (D2) 0.08E-3 0.080E-3 0.048E-3 - -
3 Ey — E1 (B2) 0.14E-3 0.14E-3 0.083E-3 - -
4 B1 — B> (A») - - k=0.12 k=0.22 -
- - Kp=780 | Kpr=1000 -
4 Ay — A1 (C3) - - - - k=0.095
- - - - Kpr=320
3 Ci1 — Ca (B2) - - - - 0.0053E-3
3 E1 — E» (D1) - - - - 0.0048E-3
3 Ey — E1 (B1) - - - - 0.0064E-3

Table 5.5: Typical results from model
stochastic data. cells = number of cells (simulations) from which the average
value is calculated.

identification of Test model II given

¢ = measurement noise constant (see equation 4.1).

The symbol - indicates that a reaction is not present in the structure. The

five last reactions are not included in the correct structure.

The number

of experimental data points per experiment is 25 in all runs. Parameters
d9 = 0.002, 3 = 0.001E — 3, 04 = 0.001E — 3 and = 0.9.
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5.8 Extension to handle an incomplete dataset

The parameter estimation presented in section 5.2 will not do for an in-
complete experimental dataset, where data from at least one substance is
missing. In an first attempt to show the feasibility of methods of this kind
when some of the data is missing we apply a more general method, Powell’s
method [32]. Tt minimizes the error function by searching the full parameter
space for a given model structure. In general, Powell’s method is used to
find a parameter set that minimizes a function, for which the gradient can
not be calculated. The search starts at a point P in the N-dimensional pa-
rameter space, and proceeds from there in some vector direction. In order to
calculate the length of the step, a line minimization sub-algorithm is called.
The method consists of sequences of such line minimizations. At each step,
the next direction to try is chosen. This is done by testing several (N) di-
rections and calculate the best possible direction (by an heuristic function
of the test results). For a more thoroughly description of Powell’s method,
we refer to [32].

This approach is more accurate than the former parameter estimation method
(section 5.2), because the correct error function is minimized. However, the
drawback is a dramatically extended computational time. The algorithm
makes several function evaluations. In order to evaluate the error function,
the model must be simulated and the error calculated. Thus, most of the
computational time is spent on simulation and error calculation. The prin-
ciple of the model identification algorithm is not affected by the change of
parameter estimation method.

An incomplete dataset was created by removing the experiments [Bo, wild-
type, step(20)] and [By, Gene deletion C, step(20)] from the set of experi-
ments belonging to Test model I. The algorithm successfully identified the
parameters given the correct structure.

It was also possible to reconstruct the structure of Test model I from the
reduced dataset. In this case, the steady-state concentrations of B; and B,
were assumed known. Furthermore, the input structure presented in figure
5.1 was slightly modified. The reaction C; — Cy (B3) was added. Without
this change substance B would have no connection to the other substances in
the model. We would also like to emphasize that it is impossible to predict
both structure and parameters of a model, if a substance that misses data
has no structural connection to other substances. The running time was
about 8 hours. Test model IT was not tested with an incomplete dataset,
since the present algorithm is not fast enough.

To summarize, we have demonstrated that it is possible to run the model
identification algorithm with a reduced data set. The computational time is
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dramatically increased, but this was not our main focus at this stage. It is
probably possible to significantly reduce the computational time of similar
algorithms in the future.
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Chapter 6

The prototype software tool

The prototype software tool realizes the integrated data simulation and
model identification environment presented in figure 1.2 in chapter 1. It
is possible to work with models of biological systems and experimental data
within the same application. These two components are combined by the
possibility to run simulations and use the model identification algorithm to
go backwards from experiment to model. The software tool is not built
for a specific biological type of system, but is intended to be as general as

possible.
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Figure 6.1: Snapshot of the model panel.

There are two main panels within the application: the model panel and the
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Figure 6.2: Snapshot of the experiment panel.

experiment panel. In the model panel, a model can be built by defining a
set of substances and by connecting them with reactions. In figure 6.1, Test
model II is shown. All substances and reactions are represented as boxes
in the graphical user interface. When a substance box or a reaction box is
double-clicked, a dialog for setting the attributes (parameters etc.) appears.
To create and remove objects, Add and Remowve in the main menu are used.
In the experiment panel, experiments are specified and visualised. In figure
6.2, the specification of the experiments for Test model IT is shown. All
attributes of an experiment are easily set within the application.

From the model panel, it is possible to simulate the model. Two simulation
algorithms are implemented, FEuler’s method and fifth order Runge-Kutta
Method with adaptive step-size. In figure 6.3 a plot frame of the experimental
data of Test model II is shown. The plot frame shows up at the end of
a simulation. The analysis algorithm is started and monitored from an
analysis panel, which is also shown in figure 6.3.

The main target group of the software tool are biologists and bioinformati-
cians. In the future development the usability of the software system is
of great importance. That involves improvements of the graphical user in-
terface, but also to carefully decide which mathematical and algorithmic
details, that should be presented for the user and which should be hidden.
To fully make use of the expertise of the biologists, they should be forced
to translate their knowledge into mathematical expressions valuable for a
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Figure 6.3: Snapshot from the software tool showing a plot frame (upper)
and the control frame for the analysis algorithm (lower).

model. Partly, that can be done by letting the software tool ask relevant
question in a non-mathematical language.

Another important issue in the future development of the software is to
improve the educational use of the program, for biologists and bioinformati-
cians, but also for mathematicians and computer scientists. A software tool
could help people from these disciplines to learn more about the other sub-
jects. The tool could also facilitate communication between these groups

when exchanging ideas.

The prototype software tool is implemented in Java and is thus portable
between different operating systems.
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Chapter 7

Discussion

The main result of this thesis is an algorithm for reconstructing signalling
pathways from time series data. The algorithm reconstructs both the struc-
ture and the parameters of two test models given deterministically simulated
data. The algorithm takes advantage of data from several different experi-
ment categories at the same time. It is possible to include non-linear reac-
tions w.r.t. the parameters by applying a non-linear parameter estimation
algorithm.

The test results indicate that the algorithm can potentially handle biologi-
cally realistic situations. First of all, the number of measurement points can
be reduced to acceptable levels. Secondly, the algorithm can handle data
that are simulated stochastically and that have measurement noise added
to them. Finally, we have demonstrated that it is possible to use an incom-
plete dataset in order to identify a model. We would like to emphasize that
the worst-case model identification scenarios have been tested, since only a
basic initial structure has been assumed. In reality, parts of the structure
are usually known.

The main effort in the development of the model identification algorithm has
been to increase its speed, both in order to make it attractive to users and
to enable us to study its behaviour conveniently. The running time of the
algorithm is considerably lower than other model identification algorithms
in the literature.

7.1 Modelling of signalling pathways

In this work only four different types of reactions are used. As mentioned
in chapter 3, this is a too small set to fully model a signalling pathway.
However, it is straightforward to include additional reaction types. For
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instance, a two-substrate and two-product reaction could be added. It is also
possible to have different reaction types with the same variables, something
that was demonstrated by the two catalysed reactions (reaction types 3 and
4).

It is not only the available number of reaction types that limits the possi-
bility to create realistic models. Also the response of the pathway must be
taken into consideration in order to properly model the HOG pathway. The
pathway stimulates glycerol production in order to increase the intracellular
turgor pressure, and a model must probably include parts of the metabolism
to be realistic. Thus, the set of available reactions has to be extended in
order to handle transmembrane transport (cytosol to nucleus), transcrip-
tion (DNA to mRNA) and translation (mRNA to protein). Furthermore, a
thermodynamic model of osmoregulation including variables such as turgor
pressure and volume must probably also be included.

7.2 Analysis of real experimental data

At this stage the algorithm has not been tested on real experimental data
from the HOG pathway. As mentioned in section 7.1, the modelling itself
demands additional components in order to be realistic. Besides, there is a
gap between the structure and data requirements of the algorithm on one
side and the available experimental data on the other side. The gap is due to
several different causes, which indicate the limitations of the present version
of the algorithm, as well as the limitations of available experimental data.
The limitations discussed below are divided into two groups: minor and
major limitations.

Minor limitations

e The algorithm allows at most two states of each substance. In biolog-
ical systems several states may be present. For instance, in the HOG
signalling pathway there are at least three different states of Hogl;
Hogl, Hogl? and Hogl??. 1t is easy to allow for several states in
the algorithm, but the demand for data would increase. In the above
example, data for at least two of the three states would be necessary.
In general, data from (n-1) out of n states are required.

e The algorithm requires experimental data points given with correct
units (non-normalised). In reality, time series data are normalised
between 0 and 1. Although the data is normalised, the structure is
not dependent of the scaling. Thus, the structure will be correct but
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the parameters will not. Rescaling of the parameters might adjust
for that, if partial knowledge of the correct model is known. Such
knowledge include steady-state distribution of the states, that is, what
fraction of the molecules is in state 7 at steady state. In principle, it
is easy to construct such an algorithm.

e The total concentration X;, of each substance is assumed known in
the algorithm. The real concentrations are not known but can be
estimated from the literature, see section 2.4.

e The principle of incrementally adding one reaction to the model, may
not be sufficient in all situations. It is possible to come up with sit-
uations where it is necessary to test all different combinations of two
reactions in order to get the correct result. It is simple to change the
top level algorithm to do this. The cost is an increase in computing
time.

Major limitations

e The algorithm requires time series data for all substances in the model
in order to be fast in practice. Presently, experimental time series
data is only available for a couple of the substances involved in the
HOG signalling pathway. Missing data is a fundamental algorithmic
difficulty, which can be tackled in several different ways. In general,
algorithms that can handle this are considerably slower, compared
to the first algorithm presented (based on the least-square method
parameter estimation).

Using Powell’s method for parameter estimation, we demonstrate that
it is possible to run the algorithm with an incomplete dataset, but it is
presently too slow to be attractive. However, there are ways of speed-
ing up the method. It might also be possible to use the least-square
approach for all possible situations and then automatically switch to
methods like Powell’s method for unresolved sub-problems.

We would also like to emphasize that there are other ways to decrease
the complexity of the analysis. For example, it could be possible to
include constraints on the full model in order to limit the space of possi-
ble models. Such constraints could be extracted from public databases
of the yeast proteins. The main difficulty is that the information is
given in textual format. Thus, one has to translate the information
into mathematical or logical form.

e Due to limited resources, time series data from biological experiments
are usually collected from less than ten measurement points. Besides,
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there are several sources of measurement error as discussed in section
4.2. This further restricts the capacity of the algorithm working on
real data. The solution to these problems is not easy. Further develop-
ment of the used error function (and/or the termination criterion), a
good model of the measurement errors, proper filter and interpolation
methods etc. help to extract the information. From the experimental
side, new techniques such as protein chips, may lead to larger datasets
with higher quality.

e As mentioned, the number of signalling proteins in a cell is not very
high. Therefore, stochastic fluctuations may be large enough to affect
the system. To measure the average value of several cells lead to a more
deterministic shape of the experimental time series, but a systematic
error may be present. This is especially true, if there are non-linear
reactions in the model. As an example, the effects of stochastic fluc-
tuations of proteins in F. coli cells have been studied by Bray and
co-workers [28, 37, 38, 39]. They have built a differential equation
model of the biochemical reaction steps behind the way the swimming
behaviour of the cells. By introducing stochasticity into the model,
they found that the model can predict the distribution of individual
cells with different swimming behaviours. This example highlights the
need to consider stochastic fluctuations in signalling systems. In order
to include stochastic aspects in the model identification algorithm, es-
timates of the variances must be considered. One way of doing this
is to perform series of stochastic simulations. However, that would be
a very time-consuming strategy, since stochastic simulation requires
more computing time than deterministic simulation do.

The result presented in this thesis is an important first step in order to
realize the future plans, where real biological systems and real experimental
data will be considered.
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Appendix A

Plots of deterministic data
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Figure A.1: Test model 1, deterministic simulation of wild-type experiments,
step(20) as physical effect.
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Figure A.2: Test model 2, deterministic simulation of wild-type experiments,
step(20) as physical effect.

0.6

0.5

Concentration
I
~

o
w

0.2

0.1 - -

0 10 20 30 40 50 60 70 80 90 100
Time

Figure A.3: Test model 2, deterministic simulation of wild-type experiments,
stairs(20,50) as physical effect.
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Appendix B

Plots of stochastic data
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Figure B.1: Test model 1, stochastic simulation of wild-type experiments,
step(20) as physical effect. 25 measurement points for each experiment, 1
cell, no measurement noise (measurement noise constant=0).
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Test model 1, stochastic simulation of wild-type experiments,

25 measurement points for each experiment,

average values of 50 cells, no measurement noise (measurement noise con-
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stochastic simulation of wild-type experiments,
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constant=0.2).
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Figure B.4: Test model 1, stochastic simulation of wild-type experiments,
step(20) as physical effect. 25 measurement points for each experiment,

average values of 50 cells, measurement noise is added (measurement noise
constant=0.5).
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Figure B.5: Test model 1, stochastic simulation of wild-type experiments,
step(20) as physical effect. 25 measurement points for each experiment,
average values of 50 cells, measurement noise is added (measurement noise
constant=1).
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Figure B.6: Test model 2, stochastic simulation of wild-type experiments,
step(20) as physical effect. 25 measurement points for each experiment, 1
cell, no measurement noise (measurement noise constant=0).
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Figure B.7: Test model 2, stochastic simulation of wild-type experiments,
step(20) as physical effect. 25 measurement points for each experiment,
average values of 50 cells, no measurement noise (measurement noise con-
stant=0).
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Figure B.8: Test model 2, stochastic simulation of wild-type experiments,
step(20) as physical effect. 25 measurement points for each experiment,
average values of 50 cells, measurement noise is added (measurement noise
constant=0.2).
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Figure B.9: Test model 2, stochastic simulation of wild-type experiments,
step(20) as physical effect. 25 measurement points for each experiment,
average values of 50 cells, measurement noise is added (measurement noise
constant=0.5).
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Figure B.10: Test model 2, stochastic simulation of wild-type experiments,
step(20) as physical effect. 25 measurement points for each experiment,
average values of 50 cells, measurement noise is added (measurement noise
constant=1.0).
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Appendix C

Parameter estimation from
stochastic data

Type Substances Correct Estimated | Estimated | Estimated
parameter | parameter | parameter | parameter
cells=1 cells=50 cells=50
c=0 c=0 c=0.5
1 A — Ay 0.04 0.026 0.026 0.029
2 A — Ay 0.02 0.012 0.012 0.013
2 Ay — A 0.02 0.012 0.012 0.013
2 By — B> 0.02 0.0083 0.019 0.0053
2 By — Bi 0.06 0.021 0.060 0.010
2 C; — C2 0.02 0.0012 0.013 0.00051
2 Cy — C1 0.06 0.0034 0.039 0.0014
3 B1 — B2 (A2) | 0.10E-3 0.0037E-3 0.040E-3 0.0034E-3
3 Cy — C2 (B2) | 0.06E-3 0.13E-3 0.13E-3 0.14E-3
3 Ay — A (C2) | 0.20E-3 0.036E-3 0.10E-3 0.016E-3

Table C.1: Results from parameter estimation of Test model I given the
correct structure and stochastic data, the number of experimental data points
per experiment is 25 in all runs. cells = number of cells (simulations) from
which the average value is calculated. ¢ = measurement noise constant (see

equation 4.1).
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Type Substances Correct Estimated | Estimated | Estimated
parameter | parameter | parameter | parameter

cells=1 cells=50 cells=50
c=0 c=0 c=0.5

1 A — Ay 0.04 0.025 0.028 0.021

1 Dy — D 0.08 0.044 0.050 0.045

2 A — As 0.02 0.013 0.014 0.011

2 Ay — Aq 0.02 0.012 0.013 0.0093

2 B1 — B> 0.02 0.0073 0.020 0.0080

2 By — Bj 0.06 0.018 0.061 0.022

2 C1 — Cs 0.02 0.014 0.018 0.040

2 Cy — C1 0.06 0.041 0.054 0.12

2 Dy — D> 0.04 0.022 0.025 0.023

2 Dy — D 0.08 0.043 0.049 0.044

2 Ey — Eq 0.06 0.025 0.060 0.020

3 Bi — By (A2) 0.10E-3 0.029E-3 0.10E-3 0.036E-3

4 Ci1 — Cy (B2) k=0.06 k=0.036 k=0.065 k=0.19

K =200 Kpr=120 Kpr=340 Kpr=630

3 Ay — A1 (C2) 0.20E-3 0.13E-3 0.14-3 0.11E-3

3 E1 — E> (D2) 0.08E-3 0.039E-3 0.080E-5 0.029E-3

3 Ey — E1 (B2) 0.14E-3 0.070E-3 0.14E-3 0.051E-3

Table C.2: Results from parameter estimation of Test model Il given the
correct structure and stochastic data, the number of experimental data points
per experiment is 25 in all runs. cells = number of cells (simulations) from
which the average value is calculated. ¢ = measurement noise constant (see
equation 4.1).
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