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Abstra
tThe dynami
 behaviour of 
ell signalling pathways is usually studied bydi�erential equation models. In order to build su
h models we have 
lassi�ed
ommon bio
hemi
al rea
tions into di�erent types that are used as stru
turalbuilding blo
ks. To 
ompare data from di�erent experiments we have also
lassi�ed experiments into di�erent 
ategories.Usually, models are manually inferred from experimental data. As the mainresult of this thesis we present a model identi�
ation algorithm that au-tomati
ally identi�es both the stru
ture and the parameters of a modelfrom experimental data, provided that this data is suÆ
iently extensive.The algorithm is a 
arefully designed heuristi
 algorithm that is eÆ
ient forpathways of realisti
 size.Presently, arti�
ial, but biologi
ally plausible, models and simulated datafrom these models have been used to test the algorithm. The algorithm 
anpotentially handle real biologi
al experiments: the number of measurementpoints 
an be redu
ed to a

eptable levels and the algorithm 
an handlenoisy data.As a se
ondary result of this thesis we present a prototype software tool,where data simulation and model identi�
ation are integrated into a singlevirtual laboratory environment.Keywords: model identi�
ation, signalling pathways, biologi
al modelling,parameter estimation.
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Chapter 1Introdu
tion
Signalling pathways are found in all 
ells and are involved in a 
omplexnetwork of information transfer inside the 
ell. The stru
ture of a pathway
an be des
ribed by a graph, where the substan
es (verti
es) are 
onne
tedby intera
tions (edges). A dire
ted edge indi
ates that a given substan
ea�e
ts another substan
e, see �gure 1.1 for an example. This gives a usefuloverview of the pathway, but it is not a 
omplete des
ription, sin
e thestrength of the intera
tions, the speed of the rea
tions, the 
on
entrationsof the substan
es et
. are not des
ribed. Despite this fa
t, this is the level ofdetail at whi
h biologists traditionally model the pathways. In part this isdue to la
k of quantitative experimental data and the diÆ
ulty to manuallyinfer the model from su
h data.To 
reate more powerful des
riptions of signalling pathways, mathemati
almodels 
an be 
onsidered. One of several basi
 motives for 
reating a more
omplete model is to simulate the system. In order to be simulated, amodel must 
ontain both the stru
ture and the parameters, su
h as rate
onstants. A suÆ
iently exa
t model may then be able to predi
t data fromthe 
orresponding real system.Ideally, it would be possible not only to simulate experimental data from amodel, but also to automati
ally identify a model from experimental data.Those two issues, data simulation and model identi�
ation, 
omplement ea
hother as illustrated in �gure 1.2, and 
lose a loop between model and data.The main result of this thesis is a model identi�
ation algorithm, that re
on-stru
ts both the stru
ture and the parameters of a model from experimentaldata. The output of the algorithm is the model that best �ts the data.The algorithm simultaneously takes advantage of all experimental data in aset of experiments. This is espe
ially important when experiments are notdire
tly 
omparable, whi
h is usually the 
ase in reality. For example, ex-1



Figure 1.1: A simpli�ed overview of the main 
omponents in the High Os-molarity Gly
erol (HOG) signalling pathway in yeast. The details of thepathway are 
overed in se
tion 2.1.periments might have di�erent input stimuli and geneti
 ba
kground (genes
an be deleted and the 
orresponding protein has zero 
on
entration).Presently, only arti�
ial, but biologi
ally plausible, models and experimentaldata from these models have been used. There are several advantages ofusing arti�
ial data. It is mu
h easier to improve and test the details ofthe algorithm. This is mainly be
ause experimental te
hni
al obsta
les areremoved and be
ause it takes short time to simulate an experiment. It isalso easier to develop the methodology of the work pro
ess. A future goal isto apply the algorithm to real experimental data. This is further dis
ussedin 
hapter 7.In order to evaluate the performan
e of the algorithm, simulated data havebeen produ
ed and pro
essed in di�erent ways. As a base 
ase, data havebeen simulated deterministi
ally. In an attempt to resemble real experimen-tal data, a sto
hasti
 simulation method has been employed and the datahave also been exposed to measurement noise.As a se
ondary result of this thesis, the fun
tionalities presented in �gure1.2 have been implemented in a prototype software tool. The model iden-ti�
ation algorithm re
onstru
ts the model stru
ture and parameters based2



Simulation
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Manual input of
specification
and/or data

Manual input of

algorithm
Model identificationFigure 1.2: The desired relationship between a biologi
al model and exper-imental data involves two main fun
tionalities: data simulation and modelidenti�
ation.on experimental data. In order to de
rease the 
omplexity of the analysis,known parts of the biologi
al model 
an be added manually. Experimentaldata 
an be added manually or simulated from a model. In the latter 
ase,the experiments are spe
i�ed by manual input.The intention of the prototype software tool is to show the prin
iple of themodel identi�
ation algorithm, as well as its 
ru
ial role in an integratedenvironment. Several bene�ts arise if a well fun
tioning integrated environ-ment 
an be established. For example, in experimental planning, the tool
ould be used to propose the best experimental strategy.The main target group of this thesis is bioinformati
ians. In order to let peo-ple without previous knowledge of biology read the thesis, an introdu
tionto the biology of signalling pathways and to biologi
al modelling is in
luded.1.1 Related workTo infer a model from experimental data is a fundamental question 
on-sidered in many s
ienti�
 dis
iplines. In biology, the rapid development oflarge-s
ale experimental te
hniques, su
h as mi
roarrays, has highlighted thedemand for proper model identi�
ation algorithms. A general arti
le 
ov-ering reverse engineering of biologi
al 
omplexity is written by Csete andDoyle [1℄.Other e�orts in this dire
tion have been made by Koza et al. [2℄, whohave used geneti
 programming to re
onstru
t networks of 
hemi
al rea
-tions from observed time domain data. Both the stru
ture of the networksand the rates of ea
h rea
tion within the network for two models, the phos-3



pholipid 
y
le and the synthesis and degradation of ketone bodies, werere
onstru
ted. The phospholipid 
y
le is the larger of the two models. It is
omposed of four enzymati
 rea
tions, similar to rea
tions that will be usedin this work. The di�eren
e is that Koza et al. are modelling metaboli
pathways and therefore need rea
tion types having several substrates and/orprodu
ts. The 
on
entration of ea
h enzymes as a fun
tion of time was 
on-sidered known and served as input to the model. For instan
e, an enzyme
ould have a linear in
rease in 
on
entration over time. Data was arti�
iallyprodu
ed from the model and taken from one out of six metabolites. Thestrength of this method is that output data is not needed from all of themetabolites. The drawba
k is the high demand of 
omputational power andit is also un
lear how the method 
an handle noisy data. Therefore, thereis a need for more eÆ
ient ways of re
onstru
ting biologi
al models.A related area is re
onstru
tion of gene regulatory networks, where the ef-fe
ts of genes on the trans
ription of other genes are 
onsidered. This ap-proa
h is mainly fo
used on large-s
ale systems. Morohashi and Kitano haveapplied geneti
 algorithms in order to identify gene regulatory networks fromtime series data [3℄. Liang et al. [4℄ have 
reated a reverse engineering al-gorithm (REVEAL) for re
onstru
ting geneti
 networks. In this approa
h,genes are idealised as being either on or o�.The prin
iple of the algorithm presented in this thesis is to determine thestru
ture in
rementally. This approa
h is taken from Wedelin [5℄, who re-
onstru
ts the statisti
al intera
tion stru
ture and parameters in multidi-mensional binary samples.
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Chapter 2Ba
kground
2.1 Signalling pathwaysSignalling pathways are the means by whi
h 
ells 
ommuni
ate with theirenvironment and with ea
h other. They sense 
hanges in the environmentoutside the 
ell or inside the 
ell. In general, a protein or a 
omplex ofproteins lo
ated in the 
ell membrane (transmembrane proteins) works asa sensor. A 
as
ade of proteins in the 
ell transmits the signal and �nallyinitiate a trans
riptional response, that is, genes are expressed. The transla-tional response involves protein synthesis of the expressed genes. See �gure2.1 for an overview. Typi
ally, a signalling pathway 
onsists of several pro-teins a
tivating/dea
tivating ea
h other.

Input stimuliTranslational response

Nucleus with DNA

Signallin
g pathway

Transcriptional response

Cytoplasm

Figure 2.1: The information 
ow of a signalling pathway in a yeast 
ell.5



The prin
iples of a signalling pathway might best be understood by studyingan example. Therefore, we fo
us on the High Osmolarity Gly
erol (HOG)pathway [6, 7℄ of Sa

haromy
es 
erevisiae. The HOG pathway is a
tivatedby external osmoti
 stress (an in
rease in extra
ellular osmoti
 pressure dueto e.g. in
reased salt 
on
entration). Like any other 
ell, the yeast 
ellhas to adjust to altered osmoti
 pressure to maintain a turgor pressure1that is needed for growth and morphogenesis2, and a relative internal water
on
entration for optimal eÆ
ien
y of bio
hemi
al rea
tions. When thesolute 
on
entration of the extra
ellular medium in
reases, water 
ows outof the 
ell and 
onsequently turgor pressure and 
ell volume drop. Oneresponse, followed by the rapid a
tivation of the HOG pathway by osmoti
sho
k, is in
reased gly
erol produ
tion. Gly
erol works as an osmolyte anddrives water into the 
ell to regain volume and turgor. With that, essentialintra
ellular pro
esses are re-established.A simpli�ed overview of the main 
omponents in the HOG signalling path-way is shown in �gure 1.1 in the Introdu
tion. The response is mediatedby two independent upstream bran
hes that 
onverge on the protein Pbs2,leading to the a
tivation of Hog1. One bran
h is dependent on the Sho1transmembrane protein [8, 9, 10℄. Sho1 is not the a
tual sensor, but plays a
ru
ial role in the pathway. The sensor is not yet dis
overed. In the otherbran
h, the transmembrane protein Sln1 works as an osmosensor [11℄. Twoindependent pathways 
arry the signal down to Pbs2, whi
h is phosphory-lated (a
tivated) by Ssk2 and Ssk22 [12, 13℄ and asso
iated to the 
omplexSte11:Ste50 [14℄. Furthermore Pbs2 phosphorylates Hog1, whi
h upon a
-tivation is entering the nu
leus [13, 15℄ and, in turn, a
tivates several tran-s
ription fa
tors3. Feedba
k rea
tions are believed to take pla
e on severallevels in the pathway and a general de-phosphatase (de-a
tivation) a
tivityis also present. The genes GPD1 and GPP2 are involved in the metabolismof gly
erol, and they are both strongly up-regulated by an osmoti
 sho
k.The HOG pathway in yeast is an example of a signalling pathway 
ontain-ing a mitogen a
tivated protein kinase4 (MAPK) module, see �gure 2.2. AMAPK module 
onsists of three protein kinases: a MAPK kinase kinasethat a
tivates a MAPK kinase, whi
h, in turn, a
tivates a MAPK enzyme[16℄. Spe
i�
 phosphorylation and a
tivation of enzymes in the MAPK mod-ule transmits the signal down the 
as
ade, resulting in phosphorylation of1Turgor pressure - hydrostati
 pressure that develops within a walled 
ell, su
h asa yeast 
ell, when the osmoti
 pressure of the 
ell 
ontents is greater than the osmoti
pressure of the surrounding 
uid.2Morphogenesis - the evolutionary or embryologi
al development of the physi
al formof an organism.3Trans
ription fa
tor - any protein other than RNA Polymerase that is required fortrans
ription.4Kinase - an enzyme that transfers a phosphate group from another mole
ule to thesubstrate. 6



MAPKKK MAPKKK

MAPKK MAPKK

MAPK MAPK

Pho

Pho

PhoFigure 2.2: The a
tivation 
as
ade of a MAPK pathway. All boxes repre-sent proteins. Ea
h protein exists in two states, one ina
tive and one a
tive(denoted pho for phosphorylated). In this 
ase MAPK kinase kinase is a
-tivated by a sensor transmembrane protein and the a
tivated MAPK a�e
tstrans
ription fa
tors in the 
ell nu
leus.many proteins with regulatory fun
tions throughout the 
ell, in
luding otherprotein kinases, gene trans
ription fa
tors and other enzymes.Proteins that are able to bind several (di�erent) other proteins, are 
alleds
a�old proteins. They might fa
ilitate signal transdu
tion by formingmulti-mole
ular 
omplexes that 
an be rapidly a
tivated by an in
omingsignal. In the HOG pathway, Pbs2 is believed to a
t as a s
a�old protein[16, 17℄. In many 
ases, s
a�old proteins are ne
essary for full a
tivation ofa signalling pathway [18, 19℄.To analyse the di�erent events in the HOG signalling pathway, geneti
s andmole
ular biology are used in numerous ways. Cells are exposed to highosmolarity medium and the response to the hyperosmoti
 stress is analysed.The phosphorylation (a
tivation) state of Hog1 is measured to elu
idatethe kineti
s and the duration of the response. mRNA expression patternsof a few genes, dependent on a
tivated Hog1, are also studied. In orderto understand the physiologi
al response to the stress, the rate of gly
erolprodu
tion and intra
ellular levels of gly
erol are measured.2.2 Mathemati
al modelling of biologi
al systemsIn a biologi
al system, a substan
e X 
an have several states, X1;X2; ::Xn.Di�erent states usually 
orrespond to di�erent levels of a
tivity within thesystem. From now on, the short notation Xi(t) will be used (instead ofthe ordinary [Xi(t)℄) for denoting the 
on
entration of Xi at time t. The7



total 
on
entration of all states of X, Xtot, 
an be assumed 
onstant duringshort time periods (minutes). The assumption being that produ
tion anddegradation are both zero (or that their sum is zero).Signal transmission in biologi
al systems o

urs mostly through two me
h-anisms [20℄: (1) protein-protein intera
tions (two substan
es bind to ea
hother) and (2) enzymati
 rea
tions su
h as protein phosphorylation and de-phosphorylation. The Mi
haelis-Menten model 
ombines those two me
ha-nisms and a

ounts for the kineti
 properties of many enzymes [21℄. As anexample, we 
onsider this model more in detail, sin
e it illustrates funda-mental prin
iples of biologi
al modelling.A substan
e state X1 is turned into another state X2 by an enzyme Ea

ording to the following rea
tionE +X1 k1 !k2 EX1 k3�! E +X2where EX1 = transition state 
omplex, k1 = rea
tion 
onstant of E+X1 �!EX1, k2 = rea
tion 
onstant of EX1 �! E+X1 and k3 = rea
tion 
onstantof EX1 �! E +X2. It is assumed that the rea
tion E +X2 �! EX1 doesnot o

ur. An impli
it assumption is that X1 >> E. This assumptionis usually valid for metaboli
 systems, but may not be valid for signallingpathways.We want to obtain an expression for the rate of produ
t formation in thevariables X1, E and rate 
onstants. Initially, we haveddtX2(t) = k3EX1(t): (2.1)The 
on
entration of E 
an be expressed asE(t) = Etot �EX1(t): (2.2)A relationship between E, X1 and EX1 
an be identi�ed. First note thatthe rate of formation of EX1 equals k1EX1 and that the rate of breakdownof EX1 equals (k2 + k3)EX1. At 
atalyti
 steady-state we obtainEX1(t) = E(t)X1(t)KM (2.3)where KM = k2+k3k1 . Substitute equation 2.2 into equation 2.38



EX1(t) = (Etot �EX1(t))X1(t)KM : (2.4)We rearrange and solve for EX1EX1(t) = EtotX1(t)X1(t) +KM : (2.5)Finally, equation 2.5 is substituted into equation 2.1ddtX2(t) = k3EtotX1(t)X1(t) +KM : (2.6)Equation (2.6) gives the sought expression: the produ
t formation in termsof X1, E and rate 
onstants. By assuming KM � X1 in equation 2.6, alinear approximation is obtained. We want to point out that there are otherways of modelling the enzymati
 rea
tion 
onsidered above. There alsoexist other kinds of rea
tions in a 
ell, whi
h must be 
onsidered in orderto model 
ellular systems. One example of this 
ould be rea
tions havingseveral substrates and/or produ
ts. We would also like to emphasize thathigher order derivatives are usually not 
onsidered in this kind of modelling.By 
ombining a set of substan
es with rea
tions (like the rea
tion presentedabove), a full di�erential equation model of biologi
al system 
an be 
reated.For instan
e, several models of MAPK pathways 
an be found in the litera-ture. Huang and Ferrell [22℄ developed a model to des
ribe MAPK a
tivationin Xenopus oo
ytes. Within a large model of se
ond messenger 
as
ades inneurons, Bhalla and Iyengar [20℄ also 
onsider the MAPK module. Anothermodel, des
ribed by Asthagiri and Laufenburger [23℄, illustrates adaptationof a MAPK 
as
ade. Other referen
es 
overing biologi
al modelling of sig-nalling pathways are found in [16, 18, 19, 24, 25, 26, 27, 28℄.2.3 Simulation of biologi
al modelsSystems of di�erential equations are often diÆ
ult to solve analyti
ally, but
an be simulated by numeri
al methods. The simplest method is Euler'smethod, whi
h will be used within the s
ope of this thesis. The formula forthe method is X(t+�t) = X(t) + �tX 0(t) (2.7)9



This pro
edure is repeated for all substan
es and for the desired number ofiterations (time). We note that the formula is asymmetri
al: it advan
esthe solution through an interval �t, but uses derivative information only atthe beginning of that interval. Several better integration methods exist, butthe basi
 prin
iple for them is the same as in Euler's method.In signalling pathways, the number of mole
ules of ea
h substan
e is onlyin the order of 1000 per 
ell. For that reason, it may be useful to 
on-sider ea
h mole
ule individually. In that 
ase, we shift from 
ontinuousmodels represented by di�erential equations whose variables are 
on
entra-tions, to dis
rete models, represented by sto
hasti
 pro
esses whose variablesare numbers of mole
ules. In the real world, the 
on
entrations undergosto
hasti
 
u
tuations. When the 
on
entrations are low, as they might bein signalling pathways, the 
u
tuations should not be negle
ted. In order tosimulate su
h systems in a more realisti
 way, sto
hasti
 simulation 
an beapplied.A rea
tion based on di�erential equations (like the Mi
haelis-Menten rea
-tion), 
an easily be adapted to the dis
rete 
ase. Instead of 
onsidering Xas 
on
entration of a substan
e, we let it re
e
t the number of mole
ules ofthat substan
e. In the di�erential equation model, the rea
tion 
onstants are
alled ma
ros
opi
 or deterministi
 rate 
onstants. In the dis
rete model,we instead 
onsider mesos
opi
 rate 
onstants, whi
h are related to, butnot identi
al to, ma
ros
opi
 rate 
onstants [29℄. When 
onverting fromma
ros
opi
 to mesos
opi
 rate 
onstants we must take into a

ount thatthe number of mole
ules are absolute values and not 
on
entrations. Thereare standard methods to perform sto
hasti
 simulation on biologi
al models.2.4 Literature dataAn ordinary signalling pathway in
ludes a number of rea
tions and therebya number of parameters. It is diÆ
ult to experimentally measure 
on
en-trations and values of parameters, but there are some values given in theliterature. The origin of those values are usually in vitro5 experiments andit is not obvious that the 
orresponding parameter values in vivo6 are thesame. In table 2.4 values of total 
on
entration of MAPK:s are presented.The values are 
olle
ted from the literature [19, 20, 22, 26, 27, 30℄. Thedi�eren
es of the values in table 2.4 have two main origins: (1) the valuesare low and diÆ
ult to measure, and (2) di�erent 
ell types and di�erentMAPK pathways have been studied.5Latin, literally "in glass." Refers to tests or rea
tions taking pla
e outside a livingorganism, on a mi
ros
ope slide, in a test tube, et
.6Latin, literally "in life." Refers to tests or rea
tions taking pla
e in a living organism.10



Ref. Ref. Ref. Ref. Ref. Ref.[19℄ [20℄ [22℄ [26℄ [27℄ [30℄Protein �M �M �M �M �M �MMAPKKK 0.3 < 0:0151 0.1MAPKK 0.2 0.18 > 0:242 > 0:66 0.3 < 0:0354MAPK 0.4 0.36 0:243 > 0:37 0.3 0:15Table 2.1: Total 
on
entration given in the literature of di�erent MAPK:s.Notes: 1. The MAPKKK Mos modelled between 0.6nM -0.015�M 2. TheMAPKK Mek-1 modelled between 0.24-6�M 3. The MAPK p42 modelledbetween 0.24-6�M 4. Ste7p 5. Kss1p and Fus3p 6. MAPKK modelledbetween 0.6-1.3�M 7.The MAPK p4/p442 modelled between 0.3-2.8�M .It is even harder two �nd estimates of the rea
tion parameters. For Mi
haelis-Menten rea
tions, parameter k is proposed to be 0.01-0.1 s�1 [19, 27℄, pa-rameter d proposed to be 0.05-0.8 s�1 [19℄ and parameter a proposed to be0.5-20 �M�1s�1 [19℄. Values of KM = d+ka are also presented in the litera-ture and range from 0.01 to 1.5 �M [22, 27℄. An assumption that d = 4 � kis also mentioned [20℄.We 
on
lude that it is diÆ
ult to experimentally measure 
on
entrations andparameters of signalling pathways, but that the order of their magnitude 
anbe estimated from the literature.
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Chapter 3Modelling of signallingpathways
By studying the HOG pathway, and analysing the kineti
 equations for thatspe
i�
 pathway, we have identi�ed several di�erent general rea
tion types.By 
ombining su
h building blo
ks, also other pathways (in yeast and other
ell types) are possible to model. For the purposes of this work, four rea
tiontypes were sele
ted. They in
lude a sensor rea
tion, a non-
atalysed rea
tionand two di�erent 
atalysed rea
tions. This 
olle
tion is large enough to letus build interesting and non-trivial test models and was therefore sele
tedat this stage. However, we wish to point out that the four rea
tion typesare not suÆ
ient to fully model the HOG signalling pathway, why otherrea
tions must also be 
onsidered in the future.It is assumed that other rea
tants (ATP, water et
.) are present at 
on-stant 
on
entration and so 
an be in
luded in the rate 
onstants. Similarassumptions 
an be found for instan
e in referen
e [22℄.3.1 Rea
tion typesSensor rea
tion (rea
tion 1) is used when a physi
al e�e
t (pe) a�e
tsone substan
e X to 
hange state from X1 to X2.X1 pe�! X2As an example, the physi
al e�e
t might be osmoti
 stress, whi
h meansin
reased salt 
on
entration around the 
ell. The magnitude of the physi
al13



e�e
t (e.g. salt 
on
entration) over time is given by the fun
tion f(t). Therate of formation of the substan
e a

ording to this rea
tion is given byddtX1(t) = � ddtX2(t) = �kpeX1(t)f(t): (3.1)where kpe is a parameter for the e�e
t of pe on the rea
tion. The simplestform of f(t) is a step fun
tion being high after a given stimulation timepoint, that is f(t) = ( l1; t � tsl2; otherwise (3.2)where l1 and l2 are 
onstants and ts is the stimulation time point.Spe
i�
ally, we de�ne step(ts) to be a step fun
tion with l1 = 0 and l2 = 1a

ording to step(ts) = ( 1; t � ts0; otherwise (3.3)Furthermore, we de�ne stairs(t1; t2) to be a double step fun
tion a

ordingto stairs(t1; t2) = 8><>: 1; t � t20:5; t1 � t < t20; otherwise (3.4)The two fun
tions, step and stairs, will be used as examples when testingthe model identi�
ation algorithm.Non-
atalysed rea
tion (rea
tion 2) is used for the spontaneous tran-sition between two states, X1 and X2.X1 k�! X2where k is the rea
tion 
onstant. The rate of formation of the substan
ea

ording to this rea
tion is given by14



ddtX1(t) = � ddtX2(t) = �kX1(t): (3.5)Catalysed rea
tion (rea
tion 3) is used for a 
atalysed transition be-tween two states, X1 and X2.X1 +E k�! X2 +Ewhere k is the rea
tion 
onstant and E is a substan
e working as 
atalyst(E=Enzyme). The rates of formation of the substan
es a

ording to thisrea
tion are given byddtX1(t) = � ddtX2(t) = �kX1(t)E(t): (3.6)The enzyme is not a�e
ted by this rea
tion.Catalysed rea
tion of the Mi
haelis-Menten type (rea
tion 4) isused for a 
atalysed transition between two states, X1 and X2. Thus, rea
-tion 4 is the non-linear alternative to rea
tion 3.X1 +E k;KM�! X2 +Ewhere k is the rea
tion 
onstant, KM is the Mi
haelis-Menten 
onstant andE is a substan
e working as 
atalyst (E=Enzyme). The rates of formationof the substan
es a

ording to this rea
tion are given byddtX1(t) = � ddtX2(t) = � kE(t)X1(t):X1(t) +KM (3.7)The enzyme is not a�e
ted by this rea
tion.A simpli�ed model of a signalling pathway 
an be 
onstru
ted by de�ninga set of substan
es, their di�erent states and a set of rea
tions of type 1-4.In general, a model is de�ned by a stru
ture and a set of parameters. Thestru
ture is 
omposed of substan
es with rea
tions between them. Examplesare presented in the next se
tion. 15



3.2 Test modelsWe present two arti�
ial, but biologi
ally plausible models of signalling path-ways. Those will serve as test models when evaluating the algorithm. Theyalso exemplify the way of 
ombining several rea
tions to a model of a biolog-i
al system. The stru
ture of the test models are similar to the stru
ture ofa MAPK signalling pathway. However, a spe
i�
 model of the HOG path-way has presently not been 
onsidered. Instead, the main e�ort has beento develop the model identi�
ation algorithm in order to 
lose the loop be-tween model and data. The appli
ation of the HOG pathway on the modelidenti�
ation algorithm is dis
ussed in 
hapter 7.
A1 A2

B1 B2

C1 C2

Sensor

Test model I

A1 A2

B1 B2

C1 C2

Sensor

D2D1

E1 E2

Sensor

Test model IIFigure 3.1: Test model I and II. Curved rea
tions with "Sensor" label 
or-respond to sensor rea
tions (type 1), straight-line rea
tions 
orrespond tonon-
atalysed rea
tions (type 2) and 
urved rea
tions without label 
orre-spond to 
atalysed rea
tions (type 3 or 4).Test models I and II are presented in �gure 3.1 and detailed informationabout the rea
tions are listed in table 3.1. Test model I is 
omposed ofthree substan
es (A,B and C) and ten rea
tions. The substan
e states A1and A2 are two di�erent states of the substan
e A. In the same way, B1 andB2 are two states of substan
e B and C1 and C2 of substan
e C. A is a sen-sor a
tivated by an external physi
al e�e
t. Non-
atalysed rea
tions o

urbetween all states. There are also three 
atalysed rea
tions: A2 
atalysesthe transition of B1 to B2, B2 
atalyses the transition of C1 to C2 and C2
atalyses the transition of A2 to A1. Test model II is an extended versionof Test model I. It is 
omposed of �ve substan
es (A, B, C, D and E) and16 rea
tions. D is a sensor just like A. D2 
atalyses the transition of E1 toE2. B2 
atalyses the transition of E2 to E1. Note that there is no rea
tionof type 2 from E1 to E2.All substan
es in Test models I and II have a total 
on
entration of 1 (arbi-trary unit).From the de�ned set of rea
tions, the system of di�erential equations for16



Type Substan
es Parameter1 A1 �! A2 kpe = 0:042 A1 �! A2 k1 = 0:022 A2 �! A1 k2 = 0:022 B1 �! B2 k3 = 0:022 B2 �! B1 k4 = 0:062 C1 �! C2 k5 = 0:022 C2 �! C1 k6 = 0:063 B1 �! B2 (A2) k7 = 0:103 C1 �! C2 (B2) k8 = 0:063 A2 �! A1 (C2) k9 = 0:20

Type Substan
es Parameter1 A1 �! A2 kpe 1 = 0:041 D1 �! D2 kpe 2 = 0:082 A1 �! A2 k1 = 0:022 A2 �! A1 k2 = 0:022 B1 �! B2 k3 = 0:022 B2 �! B1 k4 = 0:062 C1 �! C2 k5 = 0:022 C2 �! C1 k6 = 0:062 D1 �! D2 k7 = 0:042 D2 �! D1 k8 = 0:082 E2 �! E1 k9 = 0:063 B1 �! B2 (A2) k10 = 0:104 C1 �! C2 (B2) k11 = 0:06KM = 0:23 A2 �! A1 (C2) k12 = 0:203 E1 �! E2 (D2) k13 = 0:083 E2 �! E1 (B2) k14 = 0:14Table 3.1: Rea
tions in Test models I (left) and II (right)Test model I 
an be obtained asddtA2(t) = kpeA1(t)f(t) + k1A1(t)� k2A2(t)� k9A2(t)C2(t) (3.8)ddtB2(t) = k3B1(t)� k4B2(t) + k7B1(t)A2(t) (3.9)ddtC2(t) = k5C1(t)� k6C2(t) + k8C1(t)B2(t): (3.10)The di�erential equations for A1, B1 and C1 are not needed to integrate thesystem, sin
e only two states of ea
h substan
e exist (A1(t) = Atot � A2(t)et
.). The system of di�erential equations for Test model II 
an be derivedin the same way and are left out here.
17
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Chapter 4Spe
i�
ation and simulationof experiments
In order to analyse models of biologi
al systems, we must 
onsider experi-mental data. There are a lot of di�erent laboratory te
hniques in this �eldof biology and for that reason it is important to �nd a way of spe
ifyingexperiments. In the �rst part of this 
hapter we fo
us on these questions.We end this 
hapter with simulation of experimental data and some otherdata related issues.4.1 Spe
i�
ation of experimentsWe de�ne an experiment to be a measurement of a single variable from amodel or biologi
al system over time. For example, the variable may bethe 
on
entration of a substan
e in a given state. As mentioned in 
hapter1, experiments measure models or systems that may have di�erent geneti
ba
kground and input stimuli, but there are also other attributes that haveto be spe
i�ed in order to fully des
ribe an experiment. In table 4.1, wepropose a template of the information needed. In this thesis we mainly
onsider four of the attributes from the table: geneti
 ba
kground, physi
ale�e
t, measured variable and time series data. All other attributes are
onsidered 
onstant. They play a role in real experiments, but are hard tointrodu
e in a model. Thus, at this stage we do not in
lude them.Based on the attributes in table 4.1, we de�ne an experiment 
ategory to be aset of experiments that have the same genomi
 ba
kground, physi
al e�e
ts,experimental te
hnique, spe
ies, strain, experimental set-up, 
ell state andtime series start and stop time. Consequently, the only di�eren
e betweenexperiments in a 
ategory is the measured variable and the time series data19



(the unit 
ould di�er, but that is not 
onsidered in this work). Thus, anexperiment 
ategory is a set of experiments that measure the same system.The use of di�erent experiment 
ategories is very 
ommon, when studyingbiologi
al systems. For instan
e, by deleting a parti
ular gene a�e
ting afeedba
k loop, it is possible to 
ut o� the loop in order to better understandthe system. Grouping into experiment 
ategories is important for the modelidenti�
ation algorithm, sin
e all experiments in a 
ategory 
an be generatedin a single simulation.In table 4.2 we spe
ify the experiments for Test models I and II that areused in this work. Two physi
al e�e
ts are used: step(20) and stairs(20; 50)(equations 3.3 and 3.4 in se
tion 3.1). In Test model I there are three exper-iment 
ategories, namely [wild-type, step(20)℄, [Gene deletion B, step(20)℄and [Gene deletion C, step(20)℄. In Test model II there are �ve experiment
ategories, namely [wild-type, step(20)℄, [wild-type, stairs(20; 50)℄, [Genedeletion B, step(20)℄, [Gene deletion C, step(20)℄ and [Gene deletion D,step(20)℄.

20



Attribute Explanation and/or examples Consideration inthis thesisGenomi
ba
kground Wild-type, gene deletion, fun
tional mutant or overexpression. Wild-type and genedeletion.Physi
al ef-fe
ts Time-dependent input to the experiment. Note thatthere might be several physi
al e�e
ts belonging tothe same experiment. Ea
h e�e
t must de�ne a vari-able (e.g. temperature or external osmoti
 pressure),a unit and a fun
tion of time. The fun
tions Stepand stairs, de�ned inse
tion 3.1.Measuredvariable A substan
e in a given state, rea
tion parameteror physi
al parameter (volume for instan
e) that ismeasured. The variable must exist in the model. The 
on
entration ornumber of mole
ulesof a substan
e state.Unit Relative or absolute (e.g. Molar and number ofmole
ules). Absolute values as-sumed.Time seriesdata The experiment may also 
onsider lo
ation s
ale (thelo
ation is in its most general form x,y,z-
oordinates,but may be simpli�ed to di�erent 
ompartments inthe 
ell). However, ea
h lo
ation may be viewed asone experiment and then only time series data needto be 
onsidered.
Time series data for8-201 data points.

Experimentalte
hnique E.g. northern blot, western blot, protein phosphory-lation and mi
roarray. Constant.Spe
ies E.g. S. 
erevisiae. Constant.Strain E.g. S288C. Constant.Experimentalset-up E.g. size of 
ultivation wells, stirring, 
ell medium,bat
h/
hemostate. Constant.Cell state Lag phase, exponential phase or stationary phase.Time-dependent if the experiment is run over longtime. Constant.Table 4.1: Experimental attribute template. Additional minor attributesmight be in
luded as well: experimentalist, date of experiment, referen
esand 
omments. Those attributes need no further explanation.
21



Measured Genomi
 Physi
alvariable ba
kground e�e
tA2 Wild-type step(20)B2 Wild-type step(20)C2 Wild-type step(20)A2 Gene del. B step(20)C2 Gene del. B step(20)A2 Gene del. C step(20)B2 Gene del. C step(20)
Measured Genomi
 Physi
alvariable ba
kground e�e
tA2 Wild-type step(20)B2 Wild-type step(20)C2 Wild-type step(20)D2 Wild-type step(20)E2 Wild-type step(20)A2 . . . E2 Wild-type stairs(20; 50)A2, C2 . . . E2 Gene del. B step(20)A2,B2,D2,E2 Gene del. C step(20)A2 . . . C2, E2 Gene del. D step(20)Table 4.2: Spe
i�
ation of experimental data for Test models I (left) andII (right). The physi
al e�e
ts step(20) and stairs(20,50) are explained inse
tion 3.1. Time series data are spe
i�ed to go between 0 and 100 (arbitraryunit). The experiments are divided into di�erent 
ategories. Experimentswithin the same 
ategory belong to the same box in the table. Note that thefour last 
ategories of Test model II are 
ondensed to one row ea
h in thetable.
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4.2 Simulation of experimentsIn order to simulate a parti
ular experiment, all attributes of the experimentand the parameters of the model must be spe
i�ed. For example, assumeexperiments of the 
ategory [Gene deletion B, step(20)℄ are to be simulatedfrom Test model I. Thus, the system of di�erential equations 3.8-3.10 issimulated. The initial 
on
entrations are taken from steady state, but sin
eB is deleted, its initial 
on
entration is set to zero. Thus, the 
on
entrationsof B1 and B2 will remain zero for the whole simulation. The physi
al e�e
tfun
tion (step(20)) spe
i�ed by the experiment 
ategory is used and the �nalresult is simulated time series data for all substan
e states.Deterministi
ally simulated experimental time series data were produ
edfrom the two test models by integrating the system of di�erential equationswith Euler's method. An overview of the di�erent experiments produ
ed forTest model I and II is shown in table 4.2. Time series data goes from 0 to100 (arbitrary unit) with a step-size of 0.5, giving rise to 201 measurementpoints. In order to 
reate a smaller set of measurement points, we samplefrom the 201 measurement points. Plots of the experiments are found inAppendix A.The same experiments were sto
hasti
ally simulated using the Dire
t method[31℄ that is brie
y presented below.In a given state, the number of mole
ules of ea
h substan
e state is known.The algorithm 
al
ulates probabilisti
ally, whi
h rea
tion o

urs next andwhen it o

urs. For ea
h rea
tion a probability (propensity) is 
omputed bymultiplying the rate 
onstant of the rea
tion with the 
on
entration of itssubstrates. Then a random number is used to perform a sele
tion a

ordingto the relative probabilities of all rea
tions, and a se
ond random numberdetermines the exe
ution time used for this rea
tion. The exe
ution time istaken from an exponential distribution, where the parameter is the sum ofall propensities. The 
hosen rea
tion is exe
uted. For example, assume therea
tion X1 �! X2 
atalysed by E is 
hosen. Then X1 is de
reased by onemole
ule and X2 in
reased by one mole
ule. The algorithm is summarizedas1. Initialise (set initial numbers of mole
ules and set time = 0).2. Cal
ulate the propensity fun
tion Ai for all rea
tions i.3. Choose one rea
tion a

ording to the relative propensities.4. Choose �t from the distribution Exp(PiAi):5. Update number of mole
ules to re
e
t exe
ution of the rea
tion.6. Set time = time+�t.7. Go to step 2. 23



As mentioned in se
tion 2.3, rea
tions represented as di�erential equations
an easily be adapted to the dis
rete 
ase. The volume was set to oneand the total number of mole
ules of ea
h substan
e was set to 1000. Inorder to 
hange from ma
ros
opi
 to the mesos
opi
 s
ale, the parametersin the 
atalysed rea
tions are s
aled to new values. In rea
tion type 3, theparameter k is divided by 1000 and in rea
tion type 4, the KM is multipliedby 1000. Sin
e a real experiment usually is not a single-
ell experiment,several 
ells were simulated and the average value was 
onsidered in sometest 
ases.Noise from di�erent sour
es in the measurement pro
ess disturbs a realbiologi
al experiment. In this work all sour
es is treated as one, 
alled mea-surement noise. The varian
e of the measurement noise at a measurementpoint ti is assumed to be var(ti) = 
 � e(ti) (4.1)where 
 is a 
onstant and e(ti) is the experimental value at time ti. Normaldistribution is assumed. The di�erent simulations are presented in table 4.3and plots of the experimental data are found in Appendix B.Simulation Number Measurementof 
ells noise 
onstant1 1 02 50 03 50 0.24 50 0.55 50 1.0Table 4.3: Sto
hasti
 simulations of Test Models I and II.4.3 Interpolation of experimental dataIn the model identi�
ation algorithm it is ne
essary to estimate 
on
en-trations and derivatives of 
on
entrations at arbitrary time points, withinthe time range of an experiment. The most basi
 approa
h is to use linearinterpolation. For the derivative, it is natural to use the forward di�eren
eddt bX(t) = X(tj+1)�X(tj)tj+1 � tj (4.2)for an estimation on the interval between tj and tj+1.24



The above methods are rough estimates. In order to improve the estima-tion we use 
ubi
 spline interpolation [32℄, whi
h is a standard method innumeri
al analysis. The method is built on the same prin
iple as the linearinterpolation, but a 
ubi
 polynomial is used instead of the linear.4.4 Model ambiguity of experimental dataIt 
an happen that two di�erent biologi
al models 
reate the same experi-mental data. We illustrate this point by an example.
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k = k3 + k4
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k5IIFigure 4.1: Experimental data of models I and II are identi
al. Curved rea
-tions with "Sensor" label 
orrespond to sensor rea
tions (type 1), straight-line rea
tions 
orrespond to non-
atalysed rea
tions (type 2) and 
urved re-a
tions without label 
orrespond to 
atalysed rea
tions (type 3).Consider the biologi
al models presented in �gure 4.1. In model I, twosensors (A and B) both a
tivate substan
e C, while only sensor B a
tivateC in model II. As indi
ated in the �gure, the rate parameter (k) of the
atalysed rea
tion from C1 to C2 in model II is the sum of the 
orrespondingrate parameters (k3 and k4) in model I. All other rate parameters are thesame in both models. Furthermore, rea
tions on A and B share the sameparameters (k1 and k2), that is, the a
tivation kineti
s of the two sensorsare identi
al. If we 
onsider a wild-type experiment, the two models willprodu
e the same experimental data for all the substan
es. That is, thedata does not unambiguously derive from one biologi
al model.It is important to note that if we add another experiment 
ategory whereone of the sensors is deleted, the set of all data will unambiguously derivefrom either model I or model II. This te
hnique was su

essfully used by25



Maeda, Takekawa and Saito [11℄ when revealing the basi
 stru
ture of theHOG signalling pathway.
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Chapter 5The model identi�
ationalgorithm
In this 
hapter the algorithm for re
onstru
ting signalling pathways fromexperimental data is presented. The input to the algorithm is an initialstru
ture and a set of experiments. The initial stru
ture 
ontains all sub-stan
es, the sensor rea
tions (type 1) and any number of other rea
tionsof the model. It 
orresponds to the established knowledge of the system.In this thesis we 
onsider only the worst-
ase examples, where the initialstru
tures la
k all rea
tions of type 2-4, see �gure 5.1. All parameters areassumed unknown.
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Initial structure of Test model I

Sensor

A1 A2

B1 B2

C1 C2
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D2D1

E1 E2

Sensor

Initial structure of Test model IIFigure 5.1: Initial stru
ture of Test model I and II. Curved rea
tions with"Sensor" label 
orrespond to sensor rea
tions (type 1).The output of the algorithm is the best stru
ture found, its parameters anda measure of the error of that model. The goal of the algorithm is to �nd amodel that minimizes a fun
tion, representing the error between the modeland the experimental data. The error of the model for a single experiment is
al
ulated by summing the square of the di�eren
e between simulated datafrom the model and the experimental data for ea
h data point. The total27



error of the model is 
al
ulated by summing the errors for all experiments.Thus, the obje
tive of the algorithm is expressed asminXe2EXti2e (e(ti)� esim(ti))2 (5.1)where E is the set of all experiments, e(ti) is the measured 
on
entration inexperiment e at time point ti and esim(ti) is the simulated value of e at timeti using the model. The sear
h for a better stru
ture ends when a 
ertaintermination 
riterion is satis�ed.The present version of the algorithm has the following data requirements:� It is only possible to have two states of ea
h substan
e.� Experimental data points are given with 
orre
t units (non-normalized).� The total 
on
entration Xtot of ea
h substan
e is known.� Experimental data for at least one state of every substan
e must begiven. This is usually not the 
ase in reality. In se
tion 5.8, we demon-strate that this restri
tion 
an probably be relaxed in the future.The requirements are analysed further in the dis
ussion of 
hapter 7.5.1 Top level algorithmTo explain the algorithm we �rst 
onsider only one experiment 
ategory asinput. For example, for Test model I only the experiments of 
ategory [wild-type, step(20)℄ are present, i.e. we 
onsider the three experiments where A2,B2 and C2 are measured in a wild-type geneti
 ba
kground and with a stepfun
tion as input.The main prin
iple of the algorithm is a heuristi
 that re
onstru
ts themodel stru
ture in
rementally. A best stru
ture and a best set of parametersare always maintained. In a pre-pro
essing step, all possible non-
atalysedrea
tions (type 2) are added to the initial model and the error is 
al
ulated.Then, every possible 
atalysed rea
tion (type 3 and type 4) is temporarilyadded to the model one by one. For ea
h rea
tion that is tried, the errorof the resulting model is 
al
ulated. The best rea
tion is added and thepro
ess is repeated until a termination 
riterion is ful�lled. At the end ofea
h iteration, rea
tions of type 2-4 that have a small rate parameter areremoved. 28



The evaluation of a parti
ular model stru
ture 
an be divided into threesteps: parameter estimation, simulation and error 
al
ulation. First theparameters are estimated, then the model is simulated and �nally the erroris 
al
ulated by equation 5.1. When simulating, a deterministi
 method isalways used. The initial 
on
entration is taken from the �rst experimentaldata point of the substan
e.The algorithm in pseudo-
ode is presented below.INPUT:S - initial stru
tureE - set of experimentsOUTPUT:S - stru
ture of estimated modelP - parameters in estimated model// PRE-PROCESSINGR2 := allPossibleRea
tionsType2(S)R3 := allPossibleRea
tionsType3(S)R4 := allPossibleRea
tionsType4(S)R3UR4 := R3 [ R4S := S [ R2P :=estimateParameters(S;E)Esim:=simulate(S; P;E)�min:=
al
ulateError(Esim; E)// TEST CATALYSED REACTIONSLOOPFOR ALL testRea
tion 2 R3UR4 DOS := S + testRea
tionPlo
al:=estimateParameters(S;E)Esim:=simulate(S; Plo
al; E)�testRea
tion:=
al
ulateError(Esim; E)S := S � testRea
tionENDr :=bestRea
tion(R3UR4; �)IF (terminationCriterion(�min; �r; P; r)) THENBREAKELSE BEGINS := S + rremoveRea
tionsWithSmallRates(S,P)P :=estimateParameters(S;E)Esim:=simulate(S; P;E) 29



�min:=
al
ulateError(Esim; E)ENDENDRETURN S; P; �minThe parameter estimation and the termination 
riterion are 
overed morein detail in the following se
tions.5.2 Parameter estimationWe 
ontinue to 
onsider only one experiment 
ategory as input. In orderto obtain a low error, we want to �nd the best parameters for a parti
ularstru
ture. For any experiment, the substan
e 
on
entration for a 
ouple ofmeasurement points are given. The derivative of the 
on
entration 
an beestimated. With these data, the set of di�erential equations 
orrespondingto the stru
ture is redu
ed to an overdetermined set of equations in theunknown parameters. Ea
h measurement point gives one equation. Theoverdetermined system of equations is solved with the least-square methodif it is linear. If a 
atalysed rea
tion of type 4 is involved in the equationit be
omes non-linear, and Marquardt's method [32, 33℄ is used instead. Inpra
ti
e, every di�erential equation is 
onsidered separately, and the dif-ferential equations are handled in turn. The parameter estimation is nowdes
ribed by an example.Consider Test model I and the di�erential equation of A2, see equation3.8. Ea
h term on the right hand side 
orresponds to one rea
tion. Theparameters to estimate are kpe, k1, k2 and k12. By estimating ddtA2(t) andall 
on
entrations on the right hand side from experimental data, equation3.8 gives us a linear equation. Ea
h data point in the experiment whereA2 is measured gives one su
h equation. The notation 
Xi(t) will denotea 
on
entration estimation of substan
e Xi given data from the 
onsideredexperiment 
ategory. The full system 
an be writtenMk = b (5.2)whereM = 0BBBB� 
A1(t1)f(t1) 
A1(t1) �
A2(t1) �
A2(t1)
C2(t1)
A1(t2)f(t2) 
A1(t2) �
A2(t2) �
A2(t2)
C2(t2)... ... ... ...
A1(tn)f(tn) 
A1(tn) �
A2(tn) �
A2(tn)
C2(tn) 1CCCCA ; (5.3)30



k = 0BBB� kpek1k2k9 1CCCA (5.4)and b = 0BB� ddt
A2(t1)...ddt
A2(tn) 1CCA : (5.5)In equation 5.3, t1 and tn refer to the �rst and last experimental time pointrespe
tively. The system of equations is overdetermined and is solved bythe least-square method, whi
h minimizes the Eu
lidean norm between Mkand b [34℄, that is mink k b�Mk k2 : (5.6)If the 
olumn ve
tors are linearly independent (MTM positive de�nite), thesolution to the least-square problem is obtained from the linear systemMTMk =MT b: (5.7)It is important to note that the minimization fun
tion 5.6 
oin
ides with theoriginal minimization fun
tion 5.1 only if the model stru
ture is 
orre
t. Thisis be
ause experimental data are used in order to estimate the 
on
entrationsand the derivatives. Thus, the best parameters in terms of the originalminimization fun
tion are obtained only in this 
ase. This is an algorithmi
short-
ut in order to speed up the algorithm and it works be
ause we havea 
omplete data set. This is also why we need a subsequent simulation stepin the algorithm to determine the true error of the 
urrent model.If there is a 
atalysed rea
tion (type 4) in the di�erential equation, the or-dinary least-square method will not do. Instead we employ Marquardt'smethod for least-squares estimation of non-linear parameters [32, 33℄. Mar-quardt's method works well in pra
ti
e and has be
ome a standard for non-linear least-squares. Brie
y, the method varies smoothly between two meth-ods, the inverse-Hessian method and the steepest des
ent method. Thelatter method is used far from the minimum, swit
hing 
ontinuously to theformer as the minimum is approa
hed. The method is not 
overed morethoroughly here. 31



5.3 Termination 
riterion and thresholdsThe sear
h for new rea
tions of type 3 and 4 is terminated when:�r > �min � � OR kr < Æi (5.8)where �r is the lowest error found when testing new 
atalysed rea
tions,�min is the presently best (lowest) error, � � 1, kr is the rate 
onstant ofthe rea
tion proposed to be added to the model, Æi > 0 and i 2 3; 4. The
onstants, � and Æi are spe
i�ed by the user of the algorithm. Æ3 and Æ4are used when the added rea
tion is of type 3 or 4, respe
tively. Thus, thesear
h ends when either the de
rease of the error is too small or when therea
tion to add has to small rate 
onstant.In a �nal step of the loop in the algorithm, rea
tions of type 2-4 mightbe removed from the model (removeRea
tionsWithSmallRates(S,P) in thepseudo-
ode), the 
riterion being k < Æi (5.9)where k belongs to a rea
tion of type i 2 2; 3; 4 and, as previously, Æi > 0.In general, a model with a 
omplex stru
ture is more likely to have low error,be
ause the parameter spa
e is large and the model 
an be �ne-tuned to �texperimental data. Presently, the 
omplexity of the model is not expli
itly
onsidered in the minimization fun
tion and is only impli
itly 
onsidered inthe termination 
riterion, whi
h is ne
essary to avoid over�tting. There areseveral ways to punish high 
omplexity, but this is a 
omplex issue and willbe 
onsidered in the future.5.4 Extension to several experiment 
ategoriesWe now generalize the algorithm to handle several experiment 
ategories.Again, 
onsider Test model I, but let all experiment 
ategories presentedin table 4.2 be in
luded. The parameter estimation and the top level algo-rithm are both a�e
ted by the 
hange. In the parameter estimation, ea
hdi�erential equation is still 
onsidered separately, but the experiments fromall experiment 
ategories are merged and 
onsidered simultaneously. In themain algorithm, simulation is then performed for ea
h experimental 
ate-gory. The simulation itself and the error 
al
ulation are not a�e
ted.As an example, 
onsider Test model I and the di�erential equation of A2,see equation 3.8. In order to take all experiments where A2 is measured into32



a

ount, all su
h experiments are merged in matrix M (equation 5.3). Theexperiments are [A2, wild-type, step(20)℄, [A2, Gene deletion B, step(20)℄and [A2, Gene deletion C, step(20)℄. Ea
h data point in ea
h experimentwhere A2 is measured gives one row in M . The number of 
olumns inthe matrix is not a�e
ted, sin
e the number of unknown parameters is thesame. The number of rows 
orresponds to the total number of experimentalmeasurement points of A2 in all experiment 
ategories. As before, the systemof equations is overdetermined and is solved by the least-square method. Thesame approa
h holds for the non-linear 
ase with Marquardt's method.5.5 Methods for in
reasing the speedThe short-
ut of not minimizing the original error fun
tion 5.1 signi�
antlyredu
es the 
omputational time of the algorithm. This simpli�
ation alsogives us the opportunity to further in
rease the speed of the algorithm. Wemake one observation:When adding (testing) a 
atalysed rea
tion (type 3 or 4) a�e
ting substan
eX, only parameters in the di�erential equation for X need to be re-estimated.All other parameters are una�e
ted by the 
hange of the model. From thisfollows that only the di�erential equation of X needs to be simulated and thatonly experiments measuring X need to have their errors re-
al
ulated. Asan example, 
onsider Test model I (se
tion 3.2). Assume we want to add therea
tion A1 �! A2 
atalysed by B1 to the model. Only the parameters inthe di�erential equation of A2 (equation 3.8) need to be 
onsidered. All otherparameters remain the same. Furthermore, only the di�erential equation ofA2 must be simulated, and 
onsequently, only those experiments measuringA2 must have their errors re-
al
ulated.The basi
 pro
edure of estimating parameters remains the same. The di�er-en
e is that ea
h di�erential equation is not 
onsidered when re-
al
ulatingthe new set of parameters. Only the di�erential equation for the substan
ethat is 
hanging state is 
onsidered.The simulation is a�e
ted too: instead of simulating the full set of di�er-ential equations, we only simulate one di�erential equation. As before, theinitial 
on
entration is taken from the �rst experimental data point of thesubstan
e. Con
entrations of other substan
es o

urring in the di�erentialequation are estimated from experimental data. For example, assume thattime series data for the substan
e A2 are simulated given Test model I andthe experimental attributes of experiment e. Thus, the di�erential equation33



3.8 is simulated. The initial 
on
entration value of A2 is taken from exper-imental data, while all other data points are simulated. Con
entrations ofother substan
es (C2 in this 
ase) o

urring in the di�erential equation areestimated from experimental data, they are not simulated. As before, theparameters k1, k2 and k12 must have been estimated in advan
e. The resultis simulated time series data for substan
e A2. Sin
e only parts of the modelis simulated and the other parts estimated from data, the result may notbe the same as if the whole model was simulated. Again, we note that wedepend on a 
omplete data set in order to use this short-
ut.In the top level algorithm, the error of ea
h individual experiment (denoted�e) must be monitored. The abbreviation 
at is used for 
ategory. Thealgorithm in pseudo-
ode is given below.INPUT:S - initial stru
tureE - set of experimentsOUTPUT:S - stru
ture of estimated modelP - parameters in estimated model// PRE-PROCESSINGR2 := allPossibleRea
tionsType2(S)R3 := allPossibleRea
tionsType3(S)R4 := allPossibleRea
tionsType4(S)R3UR4 := R3 [R4S := S [R2P :=estimateParameters(S;E)FOR ALL 
at 2 E DOE
atsim:=simulate(S; P;E; 
at)ENDFOR ALL e 2 E DO�e:=
al
ulateError(Esim; e)END�min :=Pall e2E �eLOOPFOR ALL e 2 E DO�eold:=�eENDFOR ALL testRea
tion 2 R3UR4 DOFOR ALL e 2 E DO�e; testRea
tion:=�eold34



ENDS := S + testRea
tions:=substan
eChangingState(testRea
tion)Ed:=fe 2 E j e:measured variable 2 sgP testRea
tion:=estimateParametersSingle(S; P;E; s)FOR ALL e 2 Ed DOesim:=simulateSingle(S; P testRea
tion; s; E; e)�e; testRea
tion:=
al
ulateErrorSingle(esim; e)END�testRea
tionE :=Pall e2E �e; testRea
tionS := S � testRea
tionENDr :=bestRea
tion(R3UR4; �E)IF (terminationCriterion(�min; �rE; P; r)) THENBREAKELSE BEGINS := S + rremoveRea
tionsWithSmallRates(S,P)P :=estimateParameters(S;E)FOR ALL 
at 2 E DOE
atsim:=simulate(S; P;E; 
at)ENDFOR ALL e 2 E DO�e:=
al
ulateError(Esim; e)END�min :=Pall e2E �eENDENDRETURN S, P , �minThere are other possible short-
uts. We note that rea
tions of type 3 and4 are similar in the sense that they are both 
atalysed rea
tions. If a lowerror is obtained by adding a parti
ular rea
tion of type 3, the 
orrespondingrea
tion of type 4 will probably also give a low error when added, and vi
eversa. Sin
e the non-linear parameter estimation demands more 
omputa-tional time, we �rst test the rea
tion of type 3. If the error of that model issuÆ
iently bad, no test of the 
orresponding rea
tion of type 4 o

urs. Weformulate the following ruleIF (�r3 > 
 � �min) THENskip test of 
orresponding r4where 
 > 1 is a 
onstant. The above 
ode-fragment 
an easily be in
luded35



in the main loop of the top-level algorithm. This short-
ut has been used inthis thesis with 
 = 1:2.5.6 Computational time of the algorithmThe 
omputational time of the algorithm is diÆ
ult to exa
tly formulate,sin
e the 
hoi
e of parameter estimation method depends on the spe
i�
model. Without rea
tions of type 4 the least-square method is applied,otherwise the 
omputational mu
h more expensive Marquardt's method isused. In this se
tion we 
onsider a base 
ase where rea
tions of type 4 arenot in
luded at all. This simpli�
ation 
an partly be justi�ed by the quitesparse use of Marquardt's method when the short-
ut of skipping some testsof rea
tions of type 4 is employed (se
tion 5.5).We 
onsider the 
omputational time as a fun
tion of the variables presentedin table 5.1.Variable Des
riptionns Number of substan
es in the model.ne
 Number of experiment 
ategories.ndp Total number of experimental data points,measuring a parti
ular substan
e.�t Step size in simulation.tsim Simulation time.Table 5.1: Variables used in 
al
ulation of 
omputational time. For simpli-�
ation, we assume that ndp is equal for all substan
es and that tsim is equalfor all experiments.The time 
omplexity of the algorithm, Talg, 
an be expressed asTalg = NloopsNtests (Tpe + Tsim + Terr) (5.10)where Nloops is the number of loops in the algorithm, Ntests is the number ofrea
tion tests within one loop and Tpe, Tsim and Terr are the time 
omplex-ity for one parameter estimation, one simulation and one error 
al
ulation,respe
tively.It is diÆ
ult to estimate Nloops, sin
e it is dependent on the iterative be-haviour of the algorithm. In parti
ular, Nloops is strongly a�e
ted by thetermination 
riterion. A typi
al value for Nloops involves the variable n
r36



whi
h is the number of 
atalysed rea
tions that are not in
luded in the ini-tial stru
ture but belong to the 
orre
t stru
ture of the model. Assumingthat we �nd the 
orre
t stru
ture we obtainNloops = n
r + 1 (5.11)whi
h 
an be motivated by an example: In Test model I the number ofloops is ideally four, three loops for identifying ea
h of the three 
atalysedrea
tions and one loop for rea
hing the termination 
riterion.If all possible rea
tions are added to the model, Nloops is dramati
ally in-
reased: one loop for ea
h possible 
atalysed rea
tion is required. Sin
eevery substan
e rea
ts in two dire
tions (X1 �! X2 and X2 �! X1) andthe enzyme 
an be any other substan
e, ea
h existing in two di�erent states,(2(ns � 1)), we obtain the fun
tionNloops = 4ns(ns � 1) 2 O(n2s): (5.12)There is also a possibility that the algorithm shows a 
y
li
 behaviour. Inthat 
ase, Nloops may potentially go to in�nity, given the 
urrent termination
riterion.One 
y
le of the loop 
ontains tests of all possible 
atalysed rea
tions. Thesame reasoning as for equation 5.12 gives usNtests = 4ns(ns � 1) 2 O(n2s): (5.13)For ea
h rea
tion that is tested, the resulting model is subje
ted to param-eter estimation, simulation and error 
al
ulation. Before analysing themin turn, we de�ne nr to be the number of rea
tions a�e
ting a parti
ularsubstan
e. We obtain an upper bound for nr by observing that nr equals4(ns � 1) rea
tions of type 1 and 3 respe
tively (
ompare to equation 5.13)and two rea
tions of type 2 in worst 
ase. Thus,nr = 8(ns � 1) + 2 2 O(ns): (5.14)The parameter estimation is performed by the least square method, wherethe matrix is of size ndp�nr (equation 5.3). The method runs in polynomialtime, sin
e it requires n2rndp � n3r=3 multipli
ations and a similar numberof additions (QR fa
torisation) [35℄. Substituting nr for ns a

ording toequation 5.14, an upper bound for Tpe is obtained asTpe 2 O(n2sndp): (5.15)37



One simulation is performed for ea
h experiment 
ategory and the runningtime of ea
h simulation depends on �t, tsim and nr. Substituting nr for ns,Tsim is obtained as Tsim 2 O(ne
 tsim�t ns): (5.16)The time 
omplexity of the error 
al
ulation is linear in time w.r.t. ndp,giving Terr 2 O(ndp): (5.17)Inserting equation 5.15, 5.16 and 5.17 into equation 5.10, we obtain the time
omplexity of the algorithm asTalg = NloopsNtests �O(n2sndp) +O(ne
 tsim�t ns) +O(ndp)� : (5.18)Most 
omputational time of the algorithm is spent evaluating di�erent re-a
tions added to the model. Test runs indi
ate that Terr always 
an benegle
ted in 
omparison to Tpe and Tsim. However, the relationship be-tween Tpe and Tsim is not straightforward. For large ndp, Tpe > Tsim, whilefor small ndp, Tpe < Tsim. For example, given Test model I and experimentswith 201 data points, the parameter estimation takes about 4 times longertime as the simulation. For 8 or 16 data points per experiment the simula-tion takes about 9 times longer time as the parameter estimation. Thus, forsmall ndp, an approximation to equation 5.18 
an be obtained asTalg � NloopsNtestsO(ne
 tsim�t ns) (5.19)and for large ndp, a similar approximation is obtained asTalg � NloopsNtestsO(n2sndp): (5.20)We would also like to emphasize that for non-linear models usually Tpe �Tsim.Based on the analysis of the 
omputational time above, we 
an give a roughestimate of the di�eren
e in running time between Test model I and II.In those 
ases we assume that Nloops equals its typi
al value a

ording toequation 5.11. This a
tually turns out to be true for our test 
ases. ForTest model I, n
r = 3, ns = 3 and ne
 = 3, and for Test model II, n
r = 5,ns = 5 and ne
 = 5. ndp is proportional to ne
, sin
e the number of data38



points in ea
h experiment is 
onstant. Using equation 5.19, the di�eren
e in
omputational time would approximately be a fa
tor of 13 when the numberof data points per experiment is 8 or 16. Using equation 5.20 and 
onsidering201 data points per experiment, the same fa
tor would approximately be 21.The running time of the algorithm on Test models I and II are given in theresults se
tion (5.7).Sin
e we use an heuristi
 approa
h and the in
rease of 
omputational e�ortis typi
ally polynomial w.r.t. number of substan
es and amount of exper-imental data, we argue that signi�
antly larger models than Test model IIare possible to identify with reasonable 
omputational e�ort using this or asimilar algorithm.5.7 Test resultsThe algorithm has been implemented in Java as a part of the integratedenvironment (
hapter 6). A linear algebra pa
kage for Java, JAMA [36℄,was used for basi
 linear algebra manipulations. As mentioned before, Eu-ler's method has been used for simulations. A more a

urate method, the�fth order Runge-Kutta Method with adaptive step-size [32℄ has also beenemployed, both to produ
e experimental data and to run the simulations inthe algorithm. However, for our present purposes the 
hoi
e of integrationmethod did not give an evident e�e
t of the performan
e of the algorithm.For that reason, only Euler's method is used to produ
e the test results.The performan
e of the algorithm is presented in terms of test runs of Testmodels I and II. All tests were run on a Sun Enterprise 450, Dual UltraSpar
300 MHz, 512 MB RAM.Results with deterministi
ally simulated dataWe �rst 
onsider experimental data simulated deterministi
ally and withoutany noise (see se
tion 4.2). In order to test the algorithm under best possible
onditions, all (201) simulated data points of ea
h experiment served asinput. In this 
ase the trivial linear interpolation was used, instead of the
ubi
 spline interpolation. This is be
ause the data is simulated using Euler'smethod and therefore the forward di�eren
e (equation 4.2) is the exa
t one.The algorithm was able to 
orre
tly re
onstru
t both the stru
ture and theparameters of Test model I and II from the initial stru
tures (�gure 5.1) andthe experimental data given.In order to test the algorithm under more realisti
 
onditions, the number ofexperimental data points per experiment was redu
ed. In this 
ase, the 
ubi
spline interpolation was used. For both Test model I and II the number of39



data points per experiment 
ould be redu
ed down to eight before the 
orre
tstru
ture was not found any more. See table 5.2 and 5.3 for detailed results.The running time of the algorithm is also presented in the tables. Therunning times of Test model I and II di�er by a fa
tor of 16, 10, and 15for the three di�erent test runs with di�erent number of data points. Thosefa
tors are reasonable 
onsidering the theoreti
al 
al
ulation in se
tion 5.6,where the fa
tors were roughly 
al
ulated to 21, 13 and 13 respe
tively.Type Substan
es Corre
t Estimated Estimated Estimatedparameter parameter parameter parametern=2011 n=16 n=81 A1 �! A2 0.04 0.040 0.026 0.0192 A1 �! A2 0.02 0.020 0.013 0.0112 A2 �! A1 0.02 0.020 0.012 0.00882 B1 �! B2 0.02 0.020 0.020 0.0172 B2 �! B1 0.06 0.060 0.061 0.0532 C1 �! C2 0.02 0.020 0.020 0.0192 C2 �! C1 0.06 0.060 0.059 0.0583 B1 �! B2 (A2) 0.10 0.10 0.10 0.0893 C1 �! C2 (B2) 0.06 0.060 0.059 0.0583 A2 �! A1 (C2) 0.20 0.20 0.13 0.10Running time (s) 16 4.4 1.9Table 5.2: Results from re
onstru
tion of Test model I, n is the number ofdata points per experiment. Parameters Æ2 = 0:002, Æ3 = 0:001, Æ4 = 0:001and � = 0:85. 1) Linear interpolation.
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Type Substan
es Corre
t Estimated Estimated Estimatedparameter parameter parameter parametern=2011 n=16 n=81 A1 �! A2 0.04 0.040 0.022 0.0371 D1 �! D2 0.08 0.080 0.036 0.0922 A1 �! A2 0.02 0.020 0.0092 0.0232 A2 �! A1 0.02 0.020 0.0088 0.0202 B1 �! B2 0.02 0.020 0.019 0.0142 B2 �! B1 0.06 0.060 0.056 0.0412 C1 �! C2 0.02 0.020 0.018 0.0162 C2 �! C1 0.06 0.060 0.056 0.0502 D1 �! D2 0.04 0.040 0.015 0.0542 D2 �! D1 0.08 0.080 0.032 0.0982 E2 �! E1 0.06 0.060 0.056 0.0373 B1 �! B2 (A2) 0.10 0.10 0.094 0.0684 C1 �! C2 (B2) k=0.06 k=0.060 k=0.066 k=0.071KM=0.20 KM=0.20 KM=0.34 KM=0.503 A2 �! A1 (C2) 0.20 0.20 0.10 0.203 E1 �! E2 (D2) 0.08 0.080 0.075 0.0513 E2 �! E1 (B2) 0.14 0.140 0.13 0.089Running time (s) 260 44 28Table 5.3: Results from re
onstru
tion of Test model II, n is the number ofdata points per experiment. Parameters Æ2 = 0:002, Æ3 = 0:001, Æ4 = 0:001and � = 0:85. 1) Linear interpolation.
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Results with sto
hasti
ally simulated data with added noiseWe now 
onsider data simulated by the sto
hasti
 method and with mea-surement noise added. Again, we refer to Appendix B where plots of thedata are shown.To get an idea about to what extent data are disturbed, we �rst ran theparameter estimation by itself given the 
orre
t stru
tures of Test modelsI and II. Note that we are not running the model identi�
ation algorithm.The results are presented in Appendix C, table C.1 and C.2. They showthat parameters estimated from sto
hasti
ally simulated data di�er fromthe original parameters, but that the di�eren
e gets smaller, with data thatwere averaged over several simulations, whi
h is to be expe
ted. Data witha higher level of added noise, naturally, make the result worse.We now 
onsider model identi�
ation from sto
hasti
ally simulated data.Note that it is only the data that are simulated in a sto
hasti
 manner,the simulations within the algorithm are still deterministi
. The resultsobtained for Test models I and II are summarized in table 5.4 and 5.5. Boththe stru
ture of Test model I and II were identi�ed using data averaged fromseveral sto
hasti
 simulations. The models were almost fully identi�ed usingdata with moderate levels of added noise. For some of the non-identi�edrea
tions, the 
orresponding rea
tion of type 4 was found instead of the
orre
t rea
tion. Thus, the prin
ipal stru
ture of the pathway, but not the
orre
t kineti
 behaviour was identi�ed.The reason why the 
orre
t stru
ture is not found in some 
ases is be
ause ofthe noisy data. The stru
ture found gives an error (a

ording to our 
urrenterror fun
tion 5.1) that is lower than the error of the 
orre
t stru
ture. Wenote that adjustment of the error fun
tion may improve the ability of thealgorithm to �nd the 
orre
t stru
ture. We also note that the rea
tions thatare not found by the algorithm generally have small rate 
onstants.The running times of the algorithm are similar to those presented in table5.2 and 5.3.
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Type Substan
es Corre
t 
ells=50 
ells=50 
ells=50 
ells=50parameter 
=0 
=0.2 
=0.5 
=1.01 A1 �! A2 0.04 0.027 0.025 0.021 0.0322 A1 �! A2 0.02 0.012 0.011 0.0093 0.0202 A2 �! A1 0.02 0.012 0.011 0.0086 0.0172 B1 �! B2 0.02 0.018 0.031 0.036 0.0452 B2 �! B1 0.06 0.054 0.080 0.088 0.0162 C1 �! C2 0.02 0.012 0.019 0.029 -2 C2 �! C1 0.06 0.036 0.058 0.090 -3 B1 �! B2 (A2) 0.10E-3 0.093E-3 - - -3 C1 �! C2 (B2) 0.06E-3 0.038E-3 - - -3 A2 �! A1 (C2) 0.20E-3 0.13E-3 0.12E-3 0.10E-3 -4 B1 �! B2 (A2) - - k=0.13 k=0.17 -- - KM=580 KM=810 -4 C1 �! C2 (B2) - - k=0.062 k=0.13 -- - KM=480 KM=810 -4 A2 �! A1 (C2) - - - - k=0.25- - - - KM=9904 B2 �! B1 (A1) - - - - k=0.041- - - - KM=290Table 5.4: Typi
al results from model identi�
ation of Test model I givensto
hasti
 data. 
ells = number of 
ells (simulations) from whi
h the averagevalue is 
al
ulated. 
 = measurement noise 
onstant (see equation 4.1).The symbol - indi
ates that a rea
tion is not present in the stru
ture. Thefour last rea
tions are not in
luded in the 
orre
t stru
ture. The numberof experimental data points per experiment is 25 in all runs. ParametersÆ2 = 0:002, Æ3 = 0:001E � 3, Æ4 = 0:001E � 3 and � = 0:9.
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Type Substan
es Corre
t 
ells=50 
ells=50 
ells=50 
ells=50parameter 
=0 
=0.2 
=0.5 
=1.01 A1 �! A2 0.04 0.028 0.027 0.021 0.0211 D1 �! D2 0.08 0.050 0.049 0.045 0.0392 A1 �! A2 0.02 0.014 0.013 0.011 0.0212 A2 �! A1 0.02 0.013 0.013 0.0093 0.0142 B1 �! B2 0.02 0.020 0.027 0.040 0.00602 B2 �! B1 0.06 0.061 0.065 0.10 0.0162 C1 �! C2 0.02 0.018 0.014 0.040 -2 C2 �! C1 0.06 0.054 0.042 0.12 0.00182 D1 �! D2 0.04 0.025 0.025 0.023 0.0212 D2 �! D1 0.08 0.049 0.048 0.044 0.0382 E2 �! E1 0.06 0.060 0.034 - -3 B1 �! B2 (A2) 0.10E-3 0.10E-3 - - 0.026E-34 C1 �! C2 (B2) k=0.06 k=0.064 k=0.047 k=0.19 -KM=200 KM=340 KM=270 KM=630 -3 A2 �! A1 (C2) 0.20E-3 0.14E-3 0.13E-3 0.11E-3 -3 E1 �! E2 (D2) 0.08E-3 0.080E-3 0.048E-3 - -3 E2 �! E1 (B2) 0.14E-3 0.14E-3 0.083E-3 - -4 B1 �! B2 (A2) - - k=0.12 k=0.22 -- - KM=780 KM=1000 -4 A2 �! A1 (C2) - - - - k=0.095- - - - KM=3203 C1 �! C2 (B2) - - - - 0.0053E-33 E1 �! E2 (D1) - - - - 0.0048E-33 E2 �! E1 (B1) - - - - 0.0064E-3Table 5.5: Typi
al results from model identi�
ation of Test model II givensto
hasti
 data. 
ells = number of 
ells (simulations) from whi
h the averagevalue is 
al
ulated. 
 = measurement noise 
onstant (see equation 4.1).The symbol - indi
ates that a rea
tion is not present in the stru
ture. The�ve last rea
tions are not in
luded in the 
orre
t stru
ture. The numberof experimental data points per experiment is 25 in all runs. ParametersÆ2 = 0:002, Æ3 = 0:001E � 3, Æ4 = 0:001E � 3 and � = 0:9.
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5.8 Extension to handle an in
omplete datasetThe parameter estimation presented in se
tion 5.2 will not do for an in-
omplete experimental dataset, where data from at least one substan
e ismissing. In an �rst attempt to show the feasibility of methods of this kindwhen some of the data is missing we apply a more general method, Powell'smethod [32℄. It minimizes the error fun
tion by sear
hing the full parameterspa
e for a given model stru
ture. In general, Powell's method is used to�nd a parameter set that minimizes a fun
tion, for whi
h the gradient 
annot be 
al
ulated. The sear
h starts at a point P in the N-dimensional pa-rameter spa
e, and pro
eeds from there in some ve
tor dire
tion. In order to
al
ulate the length of the step, a line minimization sub-algorithm is 
alled.The method 
onsists of sequen
es of su
h line minimizations. At ea
h step,the next dire
tion to try is 
hosen. This is done by testing several (N) di-re
tions and 
al
ulate the best possible dire
tion (by an heuristi
 fun
tionof the test results). For a more thoroughly des
ription of Powell's method,we refer to [32℄.This approa
h is more a

urate than the former parameter estimation method(se
tion 5.2), be
ause the 
orre
t error fun
tion is minimized. However, thedrawba
k is a dramati
ally extended 
omputational time. The algorithmmakes several fun
tion evaluations. In order to evaluate the error fun
tion,the model must be simulated and the error 
al
ulated. Thus, most of the
omputational time is spent on simulation and error 
al
ulation. The prin-
iple of the model identi�
ation algorithm is not a�e
ted by the 
hange ofparameter estimation method.An in
omplete dataset was 
reated by removing the experiments [B2, wild-type, step(20)℄ and [B2, Gene deletion C, step(20)℄ from the set of experi-ments belonging to Test model I. The algorithm su

essfully identi�ed theparameters given the 
orre
t stru
ture.It was also possible to re
onstru
t the stru
ture of Test model I from theredu
ed dataset. In this 
ase, the steady-state 
on
entrations of B1 and B2were assumed known. Furthermore, the input stru
ture presented in �gure5.1 was slightly modi�ed. The rea
tion C1 �! C2 (B2) was added. Withoutthis 
hange substan
e B would have no 
onne
tion to the other substan
es inthe model. We would also like to emphasize that it is impossible to predi
tboth stru
ture and parameters of a model, if a substan
e that misses datahas no stru
tural 
onne
tion to other substan
es. The running time wasabout 8 hours. Test model II was not tested with an in
omplete dataset,sin
e the present algorithm is not fast enough.To summarize, we have demonstrated that it is possible to run the modelidenti�
ation algorithm with a redu
ed data set. The 
omputational time is45



dramati
ally in
reased, but this was not our main fo
us at this stage. It isprobably possible to signi�
antly redu
e the 
omputational time of similaralgorithms in the future.
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Chapter 6The prototype software tool
The prototype software tool realizes the integrated data simulation andmodel identi�
ation environment presented in �gure 1.2 in 
hapter 1. Itis possible to work with models of biologi
al systems and experimental datawithin the same appli
ation. These two 
omponents are 
ombined by thepossibility to run simulations and use the model identi�
ation algorithm togo ba
kwards from experiment to model. The software tool is not builtfor a spe
i�
 biologi
al type of system, but is intended to be as general aspossible.

Figure 6.1: Snapshot of the model panel.There are two main panels within the appli
ation: the model panel and the47



Figure 6.2: Snapshot of the experiment panel.experiment panel. In the model panel, a model 
an be built by de�ning aset of substan
es and by 
onne
ting them with rea
tions. In �gure 6.1, Testmodel II is shown. All substan
es and rea
tions are represented as boxesin the graphi
al user interfa
e. When a substan
e box or a rea
tion box isdouble-
li
ked, a dialog for setting the attributes (parameters et
.) appears.To 
reate and remove obje
ts, Add and Remove in the main menu are used.In the experiment panel, experiments are spe
i�ed and visualised. In �gure6.2, the spe
i�
ation of the experiments for Test model II is shown. Allattributes of an experiment are easily set within the appli
ation.From the model panel, it is possible to simulate the model. Two simulationalgorithms are implemented, Euler's method and �fth order Runge-KuttaMethod with adaptive step-size. In �gure 6.3 a plot frame of the experimentaldata of Test model II is shown. The plot frame shows up at the end ofa simulation. The analysis algorithm is started and monitored from ananalysis panel, whi
h is also shown in �gure 6.3.The main target group of the software tool are biologists and bioinformati-
ians. In the future development the usability of the software system isof great importan
e. That involves improvements of the graphi
al user in-terfa
e, but also to 
arefully de
ide whi
h mathemati
al and algorithmi
details, that should be presented for the user and whi
h should be hidden.To fully make use of the expertise of the biologists, they should be for
edto translate their knowledge into mathemati
al expressions valuable for a48



Figure 6.3: Snapshot from the software tool showing a plot frame (upper)and the 
ontrol frame for the analysis algorithm (lower).model. Partly, that 
an be done by letting the software tool ask relevantquestion in a non-mathemati
al language.Another important issue in the future development of the software is toimprove the edu
ational use of the program, for biologists and bioinformati-
ians, but also for mathemati
ians and 
omputer s
ientists. A software tool
ould help people from these dis
iplines to learn more about the other sub-je
ts. The tool 
ould also fa
ilitate 
ommuni
ation between these groupswhen ex
hanging ideas.The prototype software tool is implemented in Java and is thus portablebetween di�erent operating systems.
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Chapter 7Dis
ussion
The main result of this thesis is an algorithm for re
onstru
ting signallingpathways from time series data. The algorithm re
onstru
ts both the stru
-ture and the parameters of two test models given deterministi
ally simulateddata. The algorithm takes advantage of data from several di�erent experi-ment 
ategories at the same time. It is possible to in
lude non-linear rea
-tions w.r.t. the parameters by applying a non-linear parameter estimationalgorithm.The test results indi
ate that the algorithm 
an potentially handle biologi-
ally realisti
 situations. First of all, the number of measurement points 
anbe redu
ed to a

eptable levels. Se
ondly, the algorithm 
an handle datathat are simulated sto
hasti
ally and that have measurement noise addedto them. Finally, we have demonstrated that it is possible to use an in
om-plete dataset in order to identify a model. We would like to emphasize thatthe worst-
ase model identi�
ation s
enarios have been tested, sin
e only abasi
 initial stru
ture has been assumed. In reality, parts of the stru
tureare usually known.The main e�ort in the development of the model identi�
ation algorithm hasbeen to in
rease its speed, both in order to make it attra
tive to users andto enable us to study its behaviour 
onveniently. The running time of thealgorithm is 
onsiderably lower than other model identi�
ation algorithmsin the literature.7.1 Modelling of signalling pathwaysIn this work only four di�erent types of rea
tions are used. As mentionedin 
hapter 3, this is a too small set to fully model a signalling pathway.However, it is straightforward to in
lude additional rea
tion types. For51



instan
e, a two-substrate and two-produ
t rea
tion 
ould be added. It is alsopossible to have di�erent rea
tion types with the same variables, somethingthat was demonstrated by the two 
atalysed rea
tions (rea
tion types 3 and4).It is not only the available number of rea
tion types that limits the possi-bility to 
reate realisti
 models. Also the response of the pathway must betaken into 
onsideration in order to properly model the HOG pathway. Thepathway stimulates gly
erol produ
tion in order to in
rease the intra
ellularturgor pressure, and a model must probably in
lude parts of the metabolismto be realisti
. Thus, the set of available rea
tions has to be extended inorder to handle transmembrane transport (
ytosol to nu
leus), trans
rip-tion (DNA to mRNA) and translation (mRNA to protein). Furthermore, athermodynami
 model of osmoregulation in
luding variables su
h as turgorpressure and volume must probably also be in
luded.7.2 Analysis of real experimental dataAt this stage the algorithm has not been tested on real experimental datafrom the HOG pathway. As mentioned in se
tion 7.1, the modelling itselfdemands additional 
omponents in order to be realisti
. Besides, there is agap between the stru
ture and data requirements of the algorithm on oneside and the available experimental data on the other side. The gap is due toseveral di�erent 
auses, whi
h indi
ate the limitations of the present versionof the algorithm, as well as the limitations of available experimental data.The limitations dis
ussed below are divided into two groups: minor andmajor limitations.Minor limitations� The algorithm allows at most two states of ea
h substan
e. In biolog-i
al systems several states may be present. For instan
e, in the HOGsignalling pathway there are at least three di�erent states of Hog1;Hog1, Hog1P and Hog1PP . It is easy to allow for several states inthe algorithm, but the demand for data would in
rease. In the aboveexample, data for at least two of the three states would be ne
essary.In general, data from (n-1) out of n states are required.� The algorithm requires experimental data points given with 
orre
tunits (non-normalised). In reality, time series data are normalisedbetween 0 and 1. Although the data is normalised, the stru
ture isnot dependent of the s
aling. Thus, the stru
ture will be 
orre
t but52



the parameters will not. Res
aling of the parameters might adjustfor that, if partial knowledge of the 
orre
t model is known. Su
hknowledge in
lude steady-state distribution of the states, that is, whatfra
tion of the mole
ules is in state i at steady state. In prin
iple, itis easy to 
onstru
t su
h an algorithm.� The total 
on
entration Xtot of ea
h substan
e is assumed known inthe algorithm. The real 
on
entrations are not known but 
an beestimated from the literature, see se
tion 2.4.� The prin
iple of in
rementally adding one rea
tion to the model, maynot be suÆ
ient in all situations. It is possible to 
ome up with sit-uations where it is ne
essary to test all di�erent 
ombinations of tworea
tions in order to get the 
orre
t result. It is simple to 
hange thetop level algorithm to do this. The 
ost is an in
rease in 
omputingtime.Major limitations� The algorithm requires time series data for all substan
es in the modelin order to be fast in pra
ti
e. Presently, experimental time seriesdata is only available for a 
ouple of the substan
es involved in theHOG signalling pathway. Missing data is a fundamental algorithmi
diÆ
ulty, whi
h 
an be ta
kled in several di�erent ways. In general,algorithms that 
an handle this are 
onsiderably slower, 
omparedto the �rst algorithm presented (based on the least-square methodparameter estimation).Using Powell's method for parameter estimation, we demonstrate thatit is possible to run the algorithm with an in
omplete dataset, but it ispresently too slow to be attra
tive. However, there are ways of speed-ing up the method. It might also be possible to use the least-squareapproa
h for all possible situations and then automati
ally swit
h tomethods like Powell's method for unresolved sub-problems.We would also like to emphasize that there are other ways to de
reasethe 
omplexity of the analysis. For example, it 
ould be possible toin
lude 
onstraints on the full model in order to limit the spa
e of possi-ble models. Su
h 
onstraints 
ould be extra
ted from publi
 databasesof the yeast proteins. The main diÆ
ulty is that the information isgiven in textual format. Thus, one has to translate the informationinto mathemati
al or logi
al form.� Due to limited resour
es, time series data from biologi
al experimentsare usually 
olle
ted from less than ten measurement points. Besides,53



there are several sour
es of measurement error as dis
ussed in se
tion4.2. This further restri
ts the 
apa
ity of the algorithm working onreal data. The solution to these problems is not easy. Further develop-ment of the used error fun
tion (and/or the termination 
riterion), agood model of the measurement errors, proper �lter and interpolationmethods et
. help to extra
t the information. From the experimentalside, new te
hniques su
h as protein 
hips, may lead to larger datasetswith higher quality.� As mentioned, the number of signalling proteins in a 
ell is not veryhigh. Therefore, sto
hasti
 
u
tuations may be large enough to a�e
tthe system. To measure the average value of several 
ells lead to a moredeterministi
 shape of the experimental time series, but a systemati
error may be present. This is espe
ially true, if there are non-linearrea
tions in the model. As an example, the e�e
ts of sto
hasti
 
u
-tuations of proteins in E. 
oli 
ells have been studied by Bray and
o-workers [28, 37, 38, 39℄. They have built a di�erential equationmodel of the bio
hemi
al rea
tion steps behind the way the swimmingbehaviour of the 
ells. By introdu
ing sto
hasti
ity into the model,they found that the model 
an predi
t the distribution of individual
ells with di�erent swimming behaviours. This example highlights theneed to 
onsider sto
hasti
 
u
tuations in signalling systems. In orderto in
lude sto
hasti
 aspe
ts in the model identi�
ation algorithm, es-timates of the varian
es must be 
onsidered. One way of doing thisis to perform series of sto
hasti
 simulations. However, that would bea very time-
onsuming strategy, sin
e sto
hasti
 simulation requiresmore 
omputing time than deterministi
 simulation do.The result presented in this thesis is an important �rst step in order torealize the future plans, where real biologi
al systems and real experimentaldata will be 
onsidered.
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Appendix APlots of deterministi
 data
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Figure A.1: Test model 1, deterministi
 simulation of wild-type experiments,step(20) as physi
al e�e
t.
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Figure A.2: Test model 2, deterministi
 simulation of wild-type experiments,step(20) as physi
al e�e
t.
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Figure A.3: Test model 2, deterministi
 simulation of wild-type experiments,stairs(20,50) as physi
al e�e
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Appendix BPlots of sto
hasti
 data
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Figure B.1: Test model 1, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment, 1
ell, no measurement noise (measurement noise 
onstant=0).
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Figure B.2: Test model 1, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment,average values of 50 
ells, no measurement noise (measurement noise 
on-stant=0).
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Figure B.3: Test model 1, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment,average values of 50 
ells, ,measurement noise is added (measurement noise
onstant=0.2). 58
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Figure B.4: Test model 1, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment,average values of 50 
ells, measurement noise is added (measurement noise
onstant=0.5).
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Figure B.5: Test model 1, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment,average values of 50 
ells, measurement noise is added (measurement noise
onstant=1). 59
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Figure B.6: Test model 2, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment, 1
ell, no measurement noise (measurement noise 
onstant=0).
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Figure B.7: Test model 2, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment,average values of 50 
ells, no measurement noise (measurement noise 
on-stant=0). 60
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Figure B.8: Test model 2, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment,average values of 50 
ells, measurement noise is added (measurement noise
onstant=0.2).
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Figure B.9: Test model 2, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment,average values of 50 
ells, measurement noise is added (measurement noise
onstant=0.5). 61
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Figure B.10: Test model 2, sto
hasti
 simulation of wild-type experiments,step(20) as physi
al e�e
t. 25 measurement points for ea
h experiment,average values of 50 
ells, measurement noise is added (measurement noise
onstant=1.0).
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Appendix CParameter estimation fromsto
hasti
 data
Type Substan
es Corre
t Estimated Estimated Estimatedparameter parameter parameter parameter
ells=1 
ells=50 
ells=50
=0 
=0 
=0.51 A1 �! A2 0.04 0.026 0.026 0.0292 A1 �! A2 0.02 0.012 0.012 0.0132 A2 �! A1 0.02 0.012 0.012 0.0132 B1 �! B2 0.02 0.0083 0.019 0.00532 B2 �! B1 0.06 0.021 0.060 0.0102 C1 �! C2 0.02 0.0012 0.013 0.000512 C2 �! C1 0.06 0.0034 0.039 0.00143 B1 �! B2 (A2) 0.10E-3 0.0037E-3 0.040E-3 0.0034E-33 C1 �! C2 (B2) 0.06E-3 0.13E-3 0.13E-3 0.14E-33 A2 �! A1 (C2) 0.20E-3 0.036E-3 0.10E-3 0.016E-3Table C.1: Results from parameter estimation of Test model I given the
orre
t stru
ture and sto
hasti
 data, the number of experimental data pointsper experiment is 25 in all runs. 
ells = number of 
ells (simulations) fromwhi
h the average value is 
al
ulated. 
 = measurement noise 
onstant (seeequation 4.1).
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Type Substan
es Corre
t Estimated Estimated Estimatedparameter parameter parameter parameter
ells=1 
ells=50 
ells=50
=0 
=0 
=0.51 A1 �! A2 0.04 0.025 0.028 0.0211 D1 �! D2 0.08 0.044 0.050 0.0452 A1 �! A2 0.02 0.013 0.014 0.0112 A2 �! A1 0.02 0.012 0.013 0.00932 B1 �! B2 0.02 0.0073 0.020 0.00802 B2 �! B1 0.06 0.018 0.061 0.0222 C1 �! C2 0.02 0.014 0.018 0.0402 C2 �! C1 0.06 0.041 0.054 0.122 D1 �! D2 0.04 0.022 0.025 0.0232 D2 �! D1 0.08 0.043 0.049 0.0442 E2 �! E1 0.06 0.025 0.060 0.0203 B1 �! B2 (A2) 0.10E-3 0.029E-3 0.10E-3 0.036E-34 C1 �! C2 (B2) k=0.06 k=0.036 k=0.065 k=0.19KM=200 KM=120 KM=340 KM=6303 A2 �! A1 (C2) 0.20E-3 0.13E-3 0.14-3 0.11E-33 E1 �! E2 (D2) 0.08E-3 0.039E-3 0.080E-5 0.029E-33 E2 �! E1 (B2) 0.14E-3 0.070E-3 0.14E-3 0.051E-3Table C.2: Results from parameter estimation of Test model II given the
orre
t stru
ture and sto
hasti
 data, the number of experimental data pointsper experiment is 25 in all runs. 
ells = number of 
ells (simulations) fromwhi
h the average value is 
al
ulated. 
 = measurement noise 
onstant (seeequation 4.1).
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