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Modeling and identi�
ation of biologi
al systems with emphasis onosmoregulation in yeastPeter GennemarkDepartment of Computer S
ien
e and EngineeringChalmers University of Te
hnology and G�oteborg University
Abstra
tThis thesis deals with two topi
s in the area of systems biology. The �rsttopi
, model identi�
ation, 
on
erns the problem of automati
ally identify-ing a mathemati
al model of a bio
hemi
al system from experimental data.We present algorithms for parameter estimation and model sele
tion thatidentify both the stru
ture and the parameters of a di�erential equationmodel from experimental data. The system is designed to handle problemsof realisti
 size, where rea
tions 
an be non-linear in the parameters andwhere data 
an be sparse and noisy. To a
hieve 
omputational eÆ
ien
y,parameters are estimated for one equation at a time, giving a fast and a
-
urate parameter estimation algorithm 
ompared to other algorithms in theliterature. The model sele
tion is done with an eÆ
ient heuristi
 sear
h al-gorithm, where the stru
ture is built in
rementally. The main strengths ofour algorithms are that a 
omplete model, and not only a stru
ture, is iden-ti�ed, and that they are 
onsiderably faster 
ompared to other identi�
ationalgorithms.The se
ond topi
 
on
erns mathemati
al modeling of osmoregulation in Sa
-
haromy
es 
erevisiae, budding yeast. This system involves the biophysi
aland bio
hemi
al responses of a 
ell when it is exposed to an osmoti
 sho
k.We present two di�erent di�erential equation models based on experimentaldata of this system. The �rst model is a detailed model taking into a

ountan extensive amount of mole
ular detail, while the se
ond is a simple modelwith less detail. We demonstrate that both models agree well with experi-mental data on wild-type 
ells. Moreover, the models predi
t the behaviorof other geneti
ally modi�ed strains and input signals.Keywords: model identi�
ation, model sele
tion, parameter estimation, or-dinary di�erential equations, Sa

haromy
es 
erevisiae, osmoti
 stress, HOGsignaling pathway. iii



iv



List of papersThis thesis is based on the work 
ontained in the following papers:1. EÆ
ient ODE model identi�
ation for biologi
al appli
ations.Gennemark P. and Wedelin D.Submitted.2. Integrative model of the response of yeast to osmoti
 sho
k.Klipp E., Nordlander B., Kr�uger R., Gennemark P. and Hohmann S.Nat Biote
hnol. 2005, 23(8), 975-82.3. A simple mathemati
al model of adaptation to high osmolarity inyeast.Gennemark P. and Nordlander B.

v



Contents1 Introdu
tion 12 Modeling biologi
al systems 53 ODE models of bio
hemi
al systems 83.1 Model examples . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.3 S-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Parameter estimation in ODEs 144.1 The basi
 method . . . . . . . . . . . . . . . . . . . . . . . . 154.2 The derivative approa
h . . . . . . . . . . . . . . . . . . . . . 174.3 Our method for parameter estimation . . . . . . . . . . . . . 204.4 Parameter sensitivity . . . . . . . . . . . . . . . . . . . . . . . 215 Model sele
tion 225.1 Model 
omplexity . . . . . . . . . . . . . . . . . . . . . . . . . 225.2 Model stru
ture ambiguity . . . . . . . . . . . . . . . . . . . . 235.3 Manual model sele
tion . . . . . . . . . . . . . . . . . . . . . 255.4 Automati
 model sele
tion . . . . . . . . . . . . . . . . . . . . 275.5 Our model sele
tion algorithm . . . . . . . . . . . . . . . . . 295.6 Model identi�
ation algorithms in experimental planning . . . 326 Modeling osmoregulation in yeast 366.1 Physi
s behind osmoregulation . . . . . . . . . . . . . . . . . 396.2 The biophysi
al model . . . . . . . . . . . . . . . . . . . . . . 426.3 A �rst 
ontrol model . . . . . . . . . . . . . . . . . . . . . . . 436.4 A more detailed 
ontrol model . . . . . . . . . . . . . . . . . 456.5 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Main 
ontributions 50vi



A
knowledgmentsI would like to thank:Do
ent Dag Wedelin (Computing s
ien
e, Chalmers), who has guided methrough this edu
ation in a professional and pedagogi
al way. Dag's 
uriosityand determination in problem solving have been a great sour
e of inspirationto me.Bodil Nordlander (Cell and Mole
ular Biology, G�oteborg University), whohas explained and dis
ussed the biology of osmoregulation as well as theexperimental issues 
on
erning our mathemati
al models.Professor Olle Nerman (Mathemati
al statisti
s, Chalmers), who has showna great interest in the proje
t and given me valuable advi
e 
on
erningmodeling in general and sto
hasti
 aspe
ts in parti
ular.Professor Stefan Hohmann (Cell and Mole
ular Biology, G�oteborg Univer-sity), who has explained the biologi
al details of osmoregulation and helpedme to understand its role from a biophysi
al perspe
tive.Professor Per Sunnerhagen (Cell and Mole
ular Biology, G�oteborg Univer-sity), who has put valuable questions 
on
erning our work on identi�
ationand who has also explained and dis
ussed the biology of osmoregulation.Dr. Edda Klipp (Max-Plan
k Institute for Mole
ular Geneti
s, Berlin), whohas hosted me in Berlin and introdu
ed me to biologi
al modeling in generaland ODEs in parti
ular.The people in my PhD 
ommittee: Aarne Ranta, Peter Damas
hke and PerSunnerhagen for giving feedba
k and input to my work and taking theirtime for several meetings.Colleagues and friends at Computer S
ien
e, Mathemati
s and Lundberglaboratory for giving me a ni
e and pleasant work environment.Tesse & Erik, for your great support and patien
e.Peter Gennemark, August 2005
vii



viii



1 Introdu
tionThe adaptive responses of a living 
ell to internal and external signals are
ontrolled by 
omplex networks of proteins a�e
ting for example trans
rip-tional responses and metaboli
 pro
esses. On a basi
 level, the stru
tureof su
h a network 
an be des
ribed by a graph, see e.g. Figure 1. Thisgives a useful overview of the network, but it is not a 
omplete des
ription,sin
e 
on
entrations and the dynami
 behavior in time and spa
e are notdes
ribed. Despite this fa
t, this is the level of detail at whi
h biologiststraditionally model bio
hemi
al systems. In part this is due to la
k of quan-titative experimental data and the diÆ
ulty in manually inferring the modelfrom su
h data.
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NucleusFigure 1: Traditional pathway model of the main 
omponents in the HighOsmolarity Gly
erol (HOG) signaling pathway in S. 
erevisiae (Hohmann2002). The proteins (verti
es) are 
onne
ted by intera
tions (edges). Be-
ause of impre
ise meaning of the intera
tions and la
k of dynami
 informa-tion, models like these only give a s
hemati
 overview of the system. Detailsof the HOG pathway are presented in Se
tion 6.To 
reate more powerful des
riptions, dynami
 mathemati
al models basedon bio
hemi
al rate equations 
an be 
onsidered. One of several basi
 mo-tivations for 
reating a more 
omplete model is to simulate the system.For a suÆ
iently exa
t model it then be
omes possible to predi
t the be-havior of the real system as well as modi�ed systems. In 
ell biology, atypi
al experiment involves variation of one or several input variables, su
h1



as temperature, osmolarity and drug 
on
entration. Besides, the 
ell 
an begeneti
ally modi�ed, e.g. by deletion or over-expression of a 
ertain gene.The use of systemati
 experimental te
hnologies in order to develop andanalyze mathemati
al models of 
omplex biologi
al systems 
onstitutes thebase of systems biology, a resear
h �eld that has rapidly evolved in re
entyears (Kitano 2002a, 2002b). This involves a shift from studying spe
i�

ellular 
omponents like a single gene or a single protein to emphasizingsystems level studies of 
ellular pro
esses. The development of systems biol-ogy has been driven by the advan
ement of experimental methods. Severalmajor breakthroughs like the genome sequen
ing and the development ofhigh-throughput and large-s
ale te
hniques, su
h as mi
ro-arrays, o�er agreat potential for obtaining a suÆ
ient volume of data (Zhu et al. 2002).At the same time, methods for obtaining high-quality data, su
h as quanti-tative mass spe
trometry, have be
ome more eÆ
ient (Aebersold et al. 2003,M
kenzie et al. 2003). Another key 
omponent in systems biology is thedevelopment of systems approa
hes for modeling (Westerho� et al. 2004),like Metaboli
 Control Analysis (Heinri
h et al. 1977, Ka
ser et al. 1973)and Bio
hemi
al Systems Theory (Savageau 1976). In 
ombination with therapid in
rease of 
omputational power, su
h approa
hes o�er a frameworkfor detailed mathemati
al modeling of 
omplete systems. Re
ently, severalnew 
omputational approa
hes, like the systems biology mark-up languageSBML (Hu
ka et al. 2003) and the software environment for whole-
ell sim-ulation, E-
ell (Tomita et al. 1999, Takahashi et al. 2003), have also beendeveloped in this area.This thesis deals with two separate but related topi
s within systems biology:Automati
 model identi�
ation. This topi
 
on
erns the problem ofautomati
ally identifying a mathemati
al model from data. Identi�
ation
omplements data simulation as illustrated in Figure 2, and 
loses a loop be-tween model and data. We present eÆ
ient model identi�
ation algorithms,that re
onstru
t an ordinary di�erential equation (ODE) model from timeseries measurement of individual 
ompounds (Paper 1). The performan
e ofthe algorithms has been evaluated on three previously published biologi
almodels. We show that our approa
h is more a

urate and 
onsiderably faster
ompared to existing methods. Model identi�
ation involves both estimat-ing the parameters of a model and sele
ting the model stru
ture. In thisintrodu
tion we 
onsider these two issues in Se
tions 4 and 5, respe
tively.Modeling osmoregulation in yeast. We present work on modeling ofosmoregulation in the yeast Sa

haromy
es 
erevisiae. This work has beendone in 
ollaboration with experimentalists at G�oteborg University. Os-moregulation involves the biophysi
al and bio
hemi
al responses of a 
ellwhen it is exposed to an osmoti
 sho
k, see Figure 3 for an overview. Wepresent two di�erent ODE models based on experimental data of this sys-2
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Model Data

Figure 2: The desired relationship between a model and data involves twomain fun
tionalities: data simulation and model identi�
ation.tem. The �rst model (Paper 2) is a detailed model taking into a

ount anextensive amount of mole
ular detail, while the se
ond (Paper 3) is a sim-ple model with less detail. We demonstrate that both models agree wellwith experimental data on wild-type 
ells. Moreover, the models predi
tthe behavior of other geneti
ally modi�ed strains. In this introdu
tion, wedes
ribe osmoregulation in Se
tion 6.
Yeast cell

Time

osmotic shock
Extra−cellular

accumulation
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Water

WaterFigure 3: A basi
 overview of osmoregulation in yeast (Gervais et al. 2001,Hohmann 2002). An extra-
ellular osmoti
 sho
k, e.g. the addition of 0.5MNaCl to the medium, rapidly initiates a water 
ow out of the 
ell leading toloss of turgor pressure and volume de
rease. The 
ell adapts by a

umulatinggly
erol in order to regain water and thereby volume and turgor pressure. Inthe �gure, turgor pressure is indi
ated by thi
kness of the 
ell membrane.Basi
ally, the two topi
s of this thesis both deal with the question of howto 
onstru
t a model from experimental data. This 
an be done either au-tomati
ally using our identi�
ation algorithms or manually as mainly donefor the osmoregulation system. However, also in the latter 
ase we use auto-3



mati
 means for estimating the parameters. Hen
e, parameter estimation isa re
urrent theme in this thesis. Furthermore, regardless of approa
h usedfor model 
onstru
tion, the problem of 
hoosing a proper level of detail,i.e. to avoid over- and under�tting when de
iding on the model, is of greatimportan
e and this is also an issue in 
ommon.This extended introdu
tion is intended to give a ba
kground to the papersand also to provide further perspe
tives that are not present in the papersthemselves.The rest of the introdu
tion is stru
tured as follows. The next se
tion isdevoted to a brief introdu
tion to mathemati
al modeling of biologi
al sys-tems and in Se
tion 3 we fo
us on ODE models for bio
hemi
al systems. Inthe following two se
tions we 
onsider parameter estimation and model se-le
tion, respe
tively. In Se
tion 6 we des
ribe our modeling e�orts on yeastosmoregulation. Finally, in Se
tion 7 the main 
ontributions of this thesisare summarized.

4



2 Modeling biologi
al systemsThis se
tion introdu
es basi
 
on
epts and approa
hes for the modeling ofbiologi
al systems. In the 
ontext of this thesis we restri
t ourselves tobiologi
al systems in 
ell biology, although most of the 
ontent also appliesto other biologi
al modeling areas, su
h as population dynami
s. In thefollowing se
tions we will also refer to bio
hemi
al systems, whi
h 
an be
onsidered a sub
lass of biologi
al systems. In a bio
hemi
al system weonly deal with mole
ules su
h as proteins and metabolites. In Paper 1 we
onsider bio
hemi
al systems, while the models of Paper 2 and 3 
an beviewed as biologi
al models sin
e bio
hemi
al and biophysi
al modeling are
ombined.An essential issue in all modeling is to de�ne the s
ope of the model. Thisinvolves spe
ifying whi
h subsystems and whi
h variables that should 
on-stitute the model. A natural goal is to �nd a system that is reasonablywell isolated under the 
onsidered experimental 
onditions. Obviously thisis a very diÆ
ult task, sin
e all pro
esses in the 
ell are more or less depen-dent on ea
h other. As an example, the level of a parti
ular enzyme 
anbe assumed 
onstant for a short time interval. However, for an experimentstarting with some environmental stimulus, the stress may trigger 
hangesin gene expression that alter the a
tivity of the enzyme. This is espe
iallyimportant for experimental s
enarios ranging in the order of hours. It istherefore natural to try to identify all variables that are adjusting to theexperimental perturbation, for instan
e by large-s
ale experiments.Another important issue in modeling is to 
onsider what amount and qualityof experimental data is available. This in
uen
es the 
hoi
e of modelingapproa
h as well as the level of detail of the model. A variety of modelingapproa
hes with di�erent pre
ision are used for modeling and analysis ofbiologi
al systems. In general, a more pre
ise approa
h requires more pre
iseand extensive data to be identi�ed. Naturally, a more pre
ise approa
h alsoo�ers more realisti
 and useful predi
tions. To give an overview, it is usefulto distinguish three basi
 modeling approa
hes:Boolean networks. This is the most 
oarse approa
h in whi
h ea
h vari-able is either 'on' or 'o�'. For instan
e, when modeling a geneti
 networka gene is either fully expressed or not expressed at all. Using boolean fun
-tions one de�nes how the system deterministi
ally goes from one state tothe other. As an example, gene A is 'on' in the next state given that gene Band gene C are 'on' in the 
urrent state. In this formalism 
omputation isobviously rapid - the updates of all variables o

ur syn
hronously and onlyboolean fun
tions are evaluated. From any initial state, a boolean networkrea
hes either a steady state or a state 
y
le in �nite time.5



Typi
ally, boolean networks have been applied to geneti
 networks wherethe number of variables is large and where data is sparsely sampled andnoisy (Huang 1999). There are several methods available for identi�
ationof boolean networks from experimental data (Liang et al. 1998, de Jong2002). In order to de
rease the 
omplexity of identi�
ation one 
an setan upper bound on the number of inputs to ea
h fun
tion. The biologi
alinterpretation of this is that ea
h gene 
an only be in
uen
ed by a subset ofother genes.Obviously, boolean network models are ina

urate sin
e variables are dis-
rete and there is no pre
ise notion of time. Therefore, this approa
h ismainly appli
able to systems were a steady state is rea
hed.Ordinary di�erential equations (ODEs). ODEs deal with 
ontinuousvariables that typi
ally assume real-valued 
on
entrations. In general, asystem is des
ribed asX 0i(t) = fi(X; I); i = 1:::n (1)whereX = [X1 : : : Xn℄ is the state ve
tor of 
on
entrations and I = [I1 : : : Im℄is a ve
tor of input variables, and fi are typi
ally non-linear fun
tions. Thesefun
tions usually in
lude several parameters (rate 
onstants) that 
an eitherbe experimentally determined or estimated from various data. We generallynote that it is diÆ
ult to measure kineti
 rate 
onstants experimentallyand that parameter estimation is a 
omplex optimization problem for ODEmodels of realisti
 size.The main feature of a system of ODEs is that it 
an be simulated in orderto obtain deterministi
 time series for the variables. Standard numeri
almethods exist for this purpose. The input to su
h a simulation is the ODEs,values for the parameters and initial values for all variables.ODEs have been widely used to model biologi
al systems. For instan
e,the metabolism and the 
ell 
y
le regulation have been extensively modeledusing ODEs (Chen et al. 2004, Rizzi et al. 1997). We note, however, thatthere are few identi�
ation methods available for ODE models. In Se
tion3 we give a more 
omprehensive introdu
tion to ODEs.Sto
hasti
 models. This is a very detailed modeling approa
h, in whi
hea
h variable represents the number of mole
ules. The state 
hanges dis-
retely, but how and when is determined sto
hasti
ally. There are standardmethods to perform sto
hasti
 simulation, although they are typi
ally very
omputer intensive (Gillespie 1976, Gibson et al. 2000, Meng et al. 2004).One su
h simulation gives one potential behavior of the system. By repeat-ing the simulation many times, we obtain an approximation to the probabil-ity distribution of the system over time. Hen
e, we 
an tell the probabilityof having exa
tly ni mole
ules of variable Xi at time t.6



Sto
hasti
 modeling is typi
ally applied when the number of mole
ules islow and the assumption of 
ontinuously varying 
on
entrations be
omes tooinexa
t. In signaling pathways, for example, sto
hasti
 
u
tuations may belarge enough to a�e
t the system. To measure the average value of several
ells leads to a more deterministi
 shape of the experimental time series, buta systemati
 error may be present. This is espe
ially true, if there are non-linear rea
tions in the system. As an example, the distribution of individual
ells with di�erent swimming behaviors 
ould be predi
ted by introdu
ingsto
hasti
ity into a model of signaling proteins in E. 
oli (Morton-Firth etal. 1998, Levin et al. 1998, Abouhamad et al. 1998). Naturally, anotherway of dealing with the problem of inhomogeneous 
ell populations is to
onsider single-
ell experiments (Peng et al. 2004).Compared to ODE models, sto
hasti
 models are better approximations ofthe bio
hemi
al reality, but also require 
onsiderably more 
omputational ef-fort to be simulated. Furthermore, ODE models give a deterministi
 answerthat may involve a systemati
 error, while sto
hasti
 models give a proba-bilisti
 answer. The 
hoi
e between ODEs and the sto
hasti
 approa
h istherefore partly a trade-o� between 
omputational eÆ
ien
y and a

ura
yin the simulations. We note, however, that for many systems the a

ura
yobtained by ODEs is a good approximation, sin
e the e�e
ts of sto
hasti
itydo not in
uen
e the behavior of the system at the observed level of detail.In addition, it is often the 
ase that the sto
hasti
ity itself is not essentialto the biologi
al fun
tionality of the system.We �nally note that there are also several intermediate approa
hes betweenthe basi
 ones presented above (de Jong 2002, Bower et al. 2001).

7



3 ODE models of bio
hemi
al systemsThe most widespread formalism to model dynami
al systems in s
ien
e andengineering is ODEs and in this thesis we only 
onsider this approa
h.Therefore, we will introdu
e the use of ODEs in bio
hemi
al modeling inmore detail.Consider the following bio
hemi
al rea
tion for the transition of 
ompoundS to P with rate 
onstant kS k�! PThe rate of the rea
tion is obtained by the mass a
tion law as k[S℄, where[S℄ denotes the 
on
entration of S. For simpli
ity, we will from now on skipthe bra
kets for denoting 
on
entration. The ODEs for the variables 
anthen be obtained asP 0(t) = �S0(t) = kS(t): (2)Similarly, if the rea
tion is assumed 
atalysed by enzyme E, the bilinearrea
tion me
hanism is the simplest possibleP 0(t) = �S0(t) = kS(t)E(t): (3)However, a more detailed analysis is often required in order to model anenzymati
 rea
tion. In parti
ular, Mi
haelis-Menten a

ounts for the kineti
properties of many enzymes (Stryer 1995). In this approa
h, a substrate S isturned into a produ
t P by an enzyme E a

ording to the following rea
tionE + S k1�! �k�1 ES k2�! E + Pwhere ES is a transition state 
omplex, k1 and k�1 are the forward andba
kward rea
tion 
onstants of the �rst step, respe
tively, and k2 is therea
tion 
onstant of the se
ond step of the rea
tion. By assuming thatS � E, whi
h is usually valid for metaboli
 systems, and by assuming
atalyti
 steady state, that is ES0(t) = 0, we obtain (Stryer 1995)P 0(t) = �S0(t) = VmaxS(t)S(t) +KM (4)8



where Vmax and KM are 
onstants. We note that a linear approximation ofthe same form as (3) is obtained if S � KM .To add one more level of 
omplexity, we introdu
e the me
hanism of non-
ompetitive inhibition, whi
h will be used as an example in Se
tions 4 and5. This is also an enzymati
 rea
tion, but here the enzyme has two bindingsites: one a
tive site for the substrate and one regulatory site for the non-
ompetitive inhibitor (Stryer 1995), see Figure 4. The enzyme 
an bindsubstrate at the a
tive site and 
atalyze the produ
tion of produ
t as long asthe non-
ompetitive inhibitor is not bound to the regulatory site. However,on
e the non-
ompetitive inhibitor binds at the regulatory site, the shapeof the a
tive site 
hanges so that it 
an no longer 
atalyze the rea
tion.The enzyme will remain inhibited until the non-
ompetitive inhibitor leavesthe regulatory site. Using similar assumptions as for the Mi
haelis-Mentenrea
tion, the following ODE 
an be derivedP 0(t) = �S0(t) = VmaxS(t)(S(t) +KD)�1 + I(t)KI � (5)where I is the inhibitor 
on
entration and Vmax, KD and KI are 
onstants.
E ES

EI ESI

E  +  P

+I +I

+S

+SFigure 4: Rea
tion me
hanism for an enzymati
 rea
tion with non-
ompetitive inhibition (Stryer 1995). S denotes the substrate, P denotesthe produ
t, E denotes the enzyme and I denotes the inhibitor.Finally, we want to point out that there are several other bio
hemi
al rea
-tions that 
an be modeled in a similar way as des
ribed here. One exampleis rea
tions having several substrates and/or produ
ts.3.1 Model examplesBy 
ombining a set of 
ompounds with rea
tions (like the rea
tions presentedin the previous se
tion), an ODE model of a bio
hemi
al system 
an be
onstru
ted in the form of (1).We exemplify by two test models, whi
h will also be used to illustrate 
ertain
on
epts in Se
tions 4 and 5. The �rst model 
ontains one 
ompound that9



exists in two states, A1 and A2, and where the transition from A1 to A2 is
atalysed by the input signal I, while the reverse transition o

urs sponta-neously, see the left part of Figure 5. Assuming simple linear kineti
s, thesystem of ODEs is obtained asA02(t) = �A01(t) = k1A1(t)I(t) � k2A2(t) (6)where ea
h term on the right hand side 
orresponds to one rea
tion. Fromnow on we will denote the form of the ODEs as the stru
ture of the model.The model stru
ture in 
ombination with values for the parameters, k1 andk2 in this 
ase, de�ne the 
omplete model.
I

A1 A2

k1

k2

S4

S6

S5 S3

S7

I2 I1

X4 X2 X1 X3

X5 X6

v5

v2

v4

v6

v3

v1

Figure 5: Left: Simple model of two variables and one input variable. k1and k2 are rate 
onstants. Right: The metaboli
 test system in Paper 1.I1 and I2 are input variables, S3 � S7 are measured variables, X1 �X6 arevariables 
orresponding to metabolites assumed bu�ered at 
onstant levelsand rea
tions v1�v6 are 
atalysed by di�erent enzymes whi
h also are presentat 
onstant levels. All rea
tions follow Mi
haelis-Menten kineti
s and v1, v2and v5 are non-
ompetitively inhibited.The se
ond model that we 
onsider is the metaboli
 test system in Paper1, whi
h is originally taken from Arkin et al. (1995). This system has twoinput variables, I1 and I2, and �ve variables S3�S7. The kineti
 equationsall follow Mi
haelis-Menten kineti
s and inhibition is non-
ompetitive. Theright part of Figure 5 depi
ts the model.The system of ODEs is given in Paper 1 and here we simply illustrate by10



giving the ODE for variable S4S04(t) = v1 � v3 = S3(t)Vmax1(S3(t) +KD1)�1 + I1(t)KI1 � � S4(t)Vmax3S4(t) +KD3 (7)where Vmax1, KD1, KI1, Vmax3 and KD3 are rate 
onstants.Given a model, one of the fundamental things to do is to simulate it in orderto study the dynami
 behavior of the variables.3.2 SimulationSystems of di�erential equations are often diÆ
ult to solve analyti
ally, but
an be simulated by numeri
al methods. The simplest method is Euler'smethod. The formula for this method isX(t+�t) = X(t) + �tX0(t) (8)repeated for the desired number of iterations (time). Here, �t is a 
onstant,typi
ally mu
h smaller than the simulation interval, and again, the ve
tor X
orresponds to the 
on
entration of all 
ompound states. We note that theformula is asymmetri
al sin
e it advan
es the solution through an interval�t, but uses derivative information only at the beginning of that interval.For more a

urate integration we 
an 
onsider the Runge-Kutta method (seee.g. Press et al. 1993) and for even better a

ura
y and eÆ
ien
y standardmethods exist (Lambert 1991, Shampine et al. 1997).As an example, we 
onsider the model given in (6) and set the parametersas k1 = 0:05 and k2 = 0:02. Furthermore, we let the total 
on
entration ofA1 and A2 be 1 and 
onsider the following input fun
tionI(t) = ( 1; t � 200:01; otherwise (9)Before simulating, it is often useful to 
al
ulate the initial steady states of thevariables by setting all derivatives to zero and solve for the state variables.The steady state values for A1 and A2 are obtained from (6) as 200=205 and5=205, respe
tively. Then, using a standard integration method (ode15s inMatlab), we obtain simulated time series data as shown in Figure 6.For an example of simulated time series data for the metaboli
 test systemwe refer to Figure 3 of Paper 1. 11
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Figure 6: Time series data of the model given in the left part of Figure 5.The ODEs are given in (6) and the step input fun
tion is given in (9).3.3 S-systemsBesides the metaboli
 test system in Paper 1, we also 
onsider an ODEmodelof a geneti
 network. This model is taken from the literature (Kiku
hi etal. 2003) and it is spe
i�ed as a so-
alled S-system model (Savageau 1976,Voit 2000). S-systems are represented by a �xed formal stru
ture and thegeneri
 form of equation i readsX 0i(t) = �i n+mYj=1 Xgijj (t)� �i n+mYj=1 Xhijj (t) (10)where X is a ve
tor (length n + m) of both dependent and independentvariables, � and � are ve
tors (length n) of non-negative rate 
onstants andg and h are matri
es (n� n+m) of kineti
 orders, that 
an be negative aswell as positive. Con
erning X, the �rst n positions 
ontain the dependentvariables, while the remainingm positions 
ontain the independent variables,whi
h were denoted by I in (1). For an example, we refer to Figure 2 andTable 2 in Paper 1. 12



Basi
ally, the S-systems formalism is derived from (1) by splitting fi intotwo fun
tions as (Voit 2000)X 0i(t) = f+i (X; I)� f�i (X; I); i = 1:::n (11)where f+i re
e
ts all pro
esses of produ
tion of variable i and f�i re
e
ts allpro
esses of degradation of variable i. We note that these fun
tions typi
allyare very 
ompli
ated and unknown.The fun
tions f+i and f�i are assumed di�erentiable and positive-valued andare spe
i�ed as power-law fun
tions using non-linear approximations. Thisis a
hieved by �rst representing the fun
tions and variables in logarithmi

oordinates. Then, the fun
tions are approximated by Taylor series, whereonly the 
onstant and linear terms are retained. The linearized fun
tionsare �nally translated ba
k into Cartesian 
oordinates. The result of thispro
ess is the generi
 formula as given in (10).Be
ause of the �rst order Taylor's approximation it is diÆ
ult to judge thevalidity of an S-system model. In prin
iple, the validity 
an be improvedby 
onsidering additional terms in the Taylor's approximation. However,that would in
rease the number of parameters and give a less 
ompa
t formof the equations, why analysis and identi�
ation would be
ome mu
h morediÆ
ult (Guebel 2004).

13



4 Parameter estimation in ODEsIn this se
tion we 
onsider the problem of assigning values to the parametersin a known model stru
ture. For instan
e, in the model of (6) we want toassign values to k1 and k2.It is te
hni
ally diÆ
ult to measure kineti
 rate 
onstants in experiments.The origin of su
h existing data is often in vitro1 experiments and it 
annotbe generally assumed that the 
orresponding values in vivo2 are the same.Besides, di�erent laboratory 
onditions makes it diÆ
ult to 
ompare datafrom the literature. Be
ause of these diÆ
ulties, only the order of magnitudeof parameters are usually available. We note that it is parti
ularly diÆ
ultto obtain this kind of data for signaling pathways, mainly be
ause of thelow number of mole
ules and the fast kineti
s.If the parameters of a model 
annot be dire
tly measured or found in theliterature, their values 
an be indire
tly found by �tting the model as well aspossible to existing data, e.g. time series measurements of 
on
entrations.In general, the parameter estimation problem 
an be formulated as a mini-mization of an error fun
tion over the parameters. This fun
tion is typi
allya measure of goodness-of-�t to data. In Paper 1, we use the following errorfun
tion for a single time series Xj ,12Xi  Xj(ti)� X̂j(ti)�j(ti) !2 (12)where i indexes the measurement points, where Xj denotes values obtainedfrom the model, where X̂j denotes experimental values, and where �j isthe standard deviation modeling the ina

ura
y in the experimental values.The total error of the model is 
al
ulated by summing the errors for all vari-ables in all experiments. Assuming independent and normally distributedmeasurement errors, (12) 
orresponds to the negative log likelihood, L, ofobserving the data given the model.The input to a parameter estimation method is typi
ally a set of time seriesdata. We distinguish between 
omplete data, where data for all variables isavailable, and in
omplete data, where data for some variables is missing. InPaper 1, we 
onsider arti�
ial 
omplete time series data from one or severalexperiments. As an example, one experiment for the metaboli
 test systemis spe
i�ed by the input fun
tions I1 and I2 and in
ludes time series for1Literally "in glass." Refers to tests or rea
tions taking pla
e outside a living organism,on a mi
ros
ope slide, in a test tube, et
.2Literally "in life." Refers to tests or rea
tions taking pla
e in a living organism.14



S3 � S7. In Papers 2 and 3, on the other hand, we use real data that isin
omplete.A potential problem in parameter estimation is that it may be impossible tounambiguously determine all parameters from the 
onsidered data set. Onesour
e for problem of ambiguity is in
omplete data. Using an algorithm foralgebrai
 observability (Sedoglavi
 2002) we 
an test whether the parame-ters of an ODE model in theory 
an be identi�ed for di�erent sets of in-and output parameters/variables. For a model that 
annot be identi�ed,in�nitely many values of the parameters 
an �t the observed data. Hen
e,an extended set of input and/or output variables or parameters is requiredto obtain observability. On the other hand, if the observability test suggeststhat the parameters are observable, it is important to note that this holdsfor ideal data, but may not hold for a realisti
 data set.Another sour
e for problem of ambiguity is noisy data. For instan
e, theparameters Vmax and KM in a Mi
haelis-Menten rea
tion (4) are diÆ
ultto estimate from a noisy data set in whi
h the substrate 
on
entration, S,is mu
h lower than KM . One way to solve this is to in
lude additionalexperiments where higher substrate 
on
entrations are 
onsidered. This
an be a
hieved either by a di�erent input signal or by employing geneti
modi�
ations.Finally, it is the 
ase that minimization of (12) is a hard optimization prob-lem for models of realisti
 size and 
omplexity, espe
ially when the ODEsare non-linear in the parameters. In parti
ular, the error fun
tion typi
allyhas several lo
al minima. However, the 
omplexity of the sear
h 
an beredu
ed by 
onsidering parameter bounds and/or 
onstraint fun
tions. Forinstan
e, in Papers 1 and 3 we 
onstrain the parameters by lower and upperbounds.In the next se
tion we will dis
uss di�erent ways of estimating parameters.4.1 The basi
 methodA general method to minimize (12) is:1. Try a parameter set.2. Evaluate the error fun
tion.3. Update the parameters a

ording to some rule and then repeat fromstep 2 until termination a

ording to some 
riterion, e.g. that the erroris suÆ
iently stable. 15



This method follows the standard way of minimizing a fun
tion, althoughwe note that the derivatives of the fun
tion with respe
t to the parametersare also required by some methods. Typi
ally, a lo
al minimum of the errorfun
tion is found, sin
e the parameters are iteratively modi�ed in smallsteps. Hen
e, only if the initial parameters 
an be suÆ
iently well guessedwe 
an expe
t to �nd a global minimum. An example of a lo
al method isthe steepest des
ent method.For ODE models the evaluation of the error fun
tion is usually slow, sin
e itrequires the entire model to be simulated for ea
h experiment. Sin
e this hasto be repeated many times, the overall method is 
omputationally intensivefor realisti
 problems. Here we also note that the derivatives of the errorfun
tion with respe
t to the parameters 
an not be derived analyti
ally.In addition to lo
al methods, there are global methods, whi
h are designedto avoid lo
al minima of the error fun
tion. We note, however, that no op-timization method 
an guarantee �nding a global minimum and that globalmethods typi
ally require more 
omputational time than lo
al methods.Some examples of global methods are simulated annealing and evolutionaryalgorithms (see also Pint�er (1996) and Press et al. (1993)).Con
erning the parti
ular appli
ation to bio
hemi
al modeling, Moles et al.(2003) evaluate seven di�erent global methods on a bio
hemi
al model in-
luding 36 parameters and simulated data from that model. The diÆ
ultyof this parti
ular problem is that the sear
h spa
e is large and that theODEs are highly non-linear in the variables as well as in the parameters. Ofthe seven methods used, one was deterministi
 and the remaining six weresto
hasti
 methods. Only two of the methods obtained parameters 
loseto the true values. Both these methods are based on evolutionary 
ompu-tation. Basi
ally, in evolutionary 
omputation, a population of parameterve
tors (individuals) are maintained. For ea
h individual the error is 
al-
ulated and a new population of the same size is 
reated by re
ombiningthe best individuals of the 
urrent population. This pro
edure is then re-peated a

ording to the basi
 algorithm. In the study by Moles et al. thebest method, Evolution Strategy using Sto
hasti
 Ranking (Runarsson et al.2000), obtained the true parameters within 16% relative error using about39 hours 
omputational time (Pentium III, 866MHz).In Papers 1-3 we use several di�erent approa
hes to estimate the parameters.The 
hoi
e of method is largely dependent on the 
omplexity of the modelsand the requirements on 
omputational eÆ
ien
y. We �rst 
onsider the twoosmoregulation models in Papers 2 and 3:� The simple model in Paper 3 
ontains ten parameters. We use variousexperimental data to 
onstrain the sear
h spa
e by lower and upper16



parameter bounds. This gives a parameter estimation problem of rela-tively low 
omplexity and we 
an use a global minimization te
hnique.Sin
e we only do this on
e, the 
omputational eÆ
ien
y of the methodis not a major issue.� The situation is mu
h worse for the detailed model of Paper 2 be
auseof the high dimension (70 parameters) of the sear
h spa
e. To partlyover
ome this diÆ
ulty we study subparts of the model in isolation.As an example, the steady state 
hara
teristi
s of one sub-model mayindi
ate what parameter values that result in a realisti
 signal ampli-�
ation. Besides, for many of the parameters plausible values 
an befound in the literature. The manually sele
ted parameters are then�ne-tuned with respe
t to time series experimental data. Spe
i�
ally,the parameters were randomly perturbed using a normal distributionwith mean at the manually sele
ted values. Several su
h perturbedparameter sets were evaluated and the set resulting in lowest errorwas 
hosen. Due to the 
omplexity of the model, the standard devi-ation of the perturbations must be sele
ted relatively small. For thatreason, this method falls in between lo
al and global optimization. Asin Paper 3, we only estimate the parameters on
e.In Paper 1 we have a di�erent and more 
hallenging situation sin
e the modelstru
ture is unknown. We then have to estimate the parameters of manydi�erent model stru
tures to �nd the best one. It is therefore diÆ
ult touse the general parameter estimation method and at the same time obtaina realisti
 
omputational time. To over
ome this problem, we applied ade
omposition approa
h of 
onsidering one equation at a time. A methodthat 
ompletely follows this approa
h is the so-
alled derivative approa
h.Sin
e this approa
h has been an important starting point for our work onPaper 1, we des
ribe it in detail in the following se
tion.4.2 The derivative approa
hUnder 
ertain 
onditions one 
an speed up the parameter estimation dra-mati
ally by 
onsidering one equation at a time and not performing anysimulations at all. This simpli�ed approa
h, the derivative approa
h (seee.g. Englezos et al. (2001) and Voit (2000)), is based on the least-squaresmethod (see e.g. Johnson et al. 1992). The method has one advantage - its
omputational speed, but several disadvantages:� It is only working for 
omplete data sets, that is, every single variablemust be measured. 17



� The method requires estimates of not only variables but also deriva-tives of the variables at arbitrary time-points. We note that thisproblem 
an be redu
ed by 
onsidering di�erent types of data pre-pro
essing like spline methods (de Boor 1978, Voit et al. 2004).� The fun
tion it minimizes is usually not the fun
tion that we wantto minimize, e.g. (12). Instead, the residual of the least-squares isminimized as will be further explained below.To illustrate the derivative approa
h we 
onsider the linear model (6) withthe input signal (9). The parameters to estimate are k1 and k2. Given a
omplete data set, that is time series data for A1 and A2, we 
an apply thederivate approa
h.In prin
iple, by estimating A02(t) and all 
on
entrations on the right handside from experimental data, (6) gives us a number of linear equations. Ea
htime point in the experiment where A2 is measured gives one su
h equation.We let 
Ai(t) denote experimental data of variable Ai at time t. The fullsystem 
an then be written0BB� 
A1(t1)I(t1) �
A2(t1)... ...
A1(tm)I(tm) �
A2(tm) 1CCA| {z }M  k1k2 !| {z }k = 0BB� 
A02(t1)...
A02(tm) 1CCA| {z }b (13)
where t1 and tm refer to the �rst and last experimental time point respe
-tively. The system of equations is over-determined and 
an be solved by theleast-squares method, whi
h minimizes the Eu
lidean norm between Mkand b, that ismink Xi �
A02(ti)� (k1
A1(ti)I(ti)� k2
A2(ti))�2 (14)If the 
olumn ve
tors of M are linearly independent, the solution to theleast-squares problem is obtained from the linear systemMTMk =MTb: (15)For models in
luding several ODEs, we repeat the least squares method forea
h individual variable in order to estimate all parameters of the model.Figure 7 illustrates how the parameter estimates of (6) are dependent on thenumber of data-points in the time series. We note that although we have18



noise-free data, the least-squares method fails to estimate the parameters
orre
tly when we have few data-points. In this test, the derivatives wereestimated by the 
entral di�eren
e as
A02(ti) = 
A2(ti+1)� 
A2(ti�1)ti+1 � ti�1 : (16)
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Figure 7: Parameters estimated using the derivative approa
h on the modelof (6) with di�erent amounts of simulated data that is uniformly distributed.The true values are k1 = 0:05 and k2 = 0:02.Although the pre
ision 
an be in
reased by using more a

urate interpolationmethods, su
h as smoothing spline interpolation (de Boor 1978), the generalbehavior of this plot will remain.Besides the problem of estimating the derivatives, we have the problem thatthe minimization fun
tion (14) is not the same as our original minimizationfun
tion (12). Only for perfe
t data both (14) and (12) evaluate to zero forthe 
orre
t parameters. However, for noisy data the two fun
tions typi
allyevaluate to di�erent values and hen
e are minimized for di�erent parameters.We �nally note that the derivative approa
h 
an be generalized by 
onsid-ering non-linear least-squares (Marquardt 1963, Press et al. 1993). This isneeded if there are rea
tions that are non-linear in the parameters, like the19



Mi
haelis-Menten kineti
s. Non-linear least-squares algorithms require aninitial guess of the parameters and it is therefore 
ommon to re-start thepro
edure with di�erent initial guesses.4.3 Our method for parameter estimationThe parti
ular method we apply for parameter estimation in Paper 1 triesto 
ombine the 
omputational eÆ
ien
y of the derivative method with thehigh a

ura
y of the basi
 method. Our method is based on two main ideas:� Ea
h ODE is 
onsidered separately as in the derivative method. Thisin
reases the 
omputational eÆ
ien
y 
ompared to the basi
 method.� Simulation is employed as in the basi
 method. However, we onlysimulate the single variable under 
onsideration and not the 
ompletemodel. This in
reases a

ura
y 
ompared to the derivative method.When simulating a single ODE, all variables on the right-hand side of theequation ex
ept the one that is simulated must be determined in some way.A natural �rst approa
h is to employ interpolated data. However, in aniterative sear
h for the parameters (as the basi
 method) it 
an happenthat simulated data from the best model gives a better performan
e thaninterpolated data. Ideally, we 
an then estimate the parameters with higha

ura
y. This idea is used in Paper 1 and it is the main reason why theparameter estimates are so good given the relatively short 
omputationaltime.Using our algorithm for the parameter estimation problem of the linearmodel (6) with the input signal (9) 
onsidered in the previous se
tion (seeFigure 7) we 
an obtain the 
orre
t parameters with only few (< 10) data-points per time-series. For more advan
ed examples we refer to Paper 1.For biologi
al systems, it is 
ommon that experimental time series data isnot available for all variables in the model, while our approa
h requiresa 
omplete data set. Missing data is a fundamental algorithmi
 diÆ
ultyand we are typi
ally referred to the basi
 method for parameter estimation.However, using methods 
on
eptually based on the Expe
tation-Maximiza-tion (EM) algorithm (Dempster et al. 1977), whi
h is a standard statisti
alalgorithm for treating in
omplete data problems, we are able to estimate theparameters for 
ertain in
omplete data sets and still keeping the strategy of
onsidering one variable at a time. To exemplify this, we 
onsider the modelpresented in Figure 8 and a data set in
luding three time series experimentswith 8 data-points per variable and experiment. By removing all data frome.g. variables B1 and B2 we 
an still estimate the 16 parameters using ourstrategy. 20
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Figure 8: Model of a signaling network with two input fun
tions and tenvariables. All rea
tions follow linear (2) or bilinear kineti
s (3). The totalnumber of parameters is 16.4.4 Parameter sensitivityTo evaluate the reliability of the parameters obtained by a parameter es-timation method it 
an be useful to perform a sensitivity analysis. Thesensitivity of the error fun
tion to a given parameter 
an be 
al
ulated asthe partial derivative of the error fun
tion with respe
t to that parameter.A sensitivity analysis 
an reveal parameters that are undetermined from the
onsidered data set. For instan
e, some parameters in the model of Paper3 
ould not be estimated with a high degree of 
on�den
e. In prin
iple,the sensitivities 
an also be used in an estimation method in order to moreeÆ
iently sear
h the feasible region.However, we would also like to point out that biologi
al systems tend to berobust with respe
t to parameter variations (Eldar et al. 2002). Therefore,it 
an be diÆ
ult to estimate parameters with high a

ura
y from onlywild-type experiments. Instead, various system modi�
ations, like deletionsin order to break up feedba
k loops, 
an be useful in order to �nd theparameters.
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5 Model sele
tionModel sele
tion is the problem of how to sele
t the stru
ture, i.e. the formof the ODEs. We will assume that we 
an estimate the parameters in anymodel stru
ture using one of the methods dis
ussed previously. As in pa-rameter estimation, we minimize a fun
tion, e.g. (12), but we now minimizeit over both the stru
tures and the parameters. We will refer to the prob-lem of �nding both the stru
ture and the parameters of a model as modelidenti�
ation.We would like to point out that it is generally mu
h more 
hallenging toidentify the stru
ture of a model than to estimate the parameters in a knownmodel stru
ture. There are several reasons why this is a diÆ
ult problem.One reason is the diÆ
ulty to de�ne the problem in su
h a way that a modelwith reasonable 
omplexity is sele
ted. We dis
uss this topi
 in Se
tion 5.1.Another reason is the problem of model ambiguity as will be dis
ussed inSe
tion 5.2. A third reason 
on
erns the problem of performing the sele
tion,mainly due to the 
ombinatorial in
rease in possible model stru
tures whenin
reasing the number of variables. We dis
uss manual and automati
 modelsele
tion in Se
tions 5.3 and 5.4, respe
tively.5.1 Model 
omplexityThe purpose of a model is usually to explain available data suÆ
iently well,and to predi
t the behavior of the real system. When manually building amodel one usually starts from a simple model and then in
rementally addsdetails to the model, intuitively mat
hing the 
omplexity of the model withits purpose and available data.In general, a too simple model la
ks validity and fails to 
apture the trendsin data. We refer to this as under�tting to data. On the other hand, a too
omplex model, e.g. in
luding several parameters, tends to have a good �tto data, sin
e it has many degrees of freedom and 
an be �tted to noise aswell as to regularities in data. We refer to this as over�tting to data andnote that these models typi
ally give weak predi
tions.There are di�erent ways of dealing with model 
omplexity. Cross-validationand bootstrapping are both methods for estimating the error based on re-sampling (Zu

hini 2000). In k-fold 
ross-validation, the data set is dividedinto k subsets of equal size. The model error is then 
al
ulated k times, ea
htime leaving out one of the subsets in the parameter estimation, but usingonly the omitted subset to 
al
ulate the error fun
tion. In bootstrapping,instead of repeatedly analyzing subsets of the data, we repeatedly analyzesubsamples of the data. Here, ea
h subsample is a random sample with22



repla
ement from the 
omplete data set.A di�erent approa
h to avoid unne
essarily 
omplex models is to penalize
omplexity in the error fun
tion. A 
ommon way is to add a penalty termthat is typi
ally a fun
tion of the number of parameters and/or the numberof data-points (Zu

hini 2000). It is an open resear
h question how to 
hoosethis fun
tion in a best way for a parti
ular appli
ation (Crampin et al.2004). Common examples in
lude Akaike Information Criteria (AIC, Akaike1973), Minimum Des
ription Length (MDL, Rissanen 1978) and BayesianInformation Criteria (BIC, S
hwarz 1978). In Paper 1, we use the followingerror fun
tion for a single time series�L+ �K (17)where L is the log likelihood a

ording to (12), �K is the penalty term in-
luding a problem-spe
i�
 parameter � and the number of model parametersK. In model sele
tion, the e�e
t of this penalty 
an be observed by assign-ing a very low or high value to �, typi
ally resulting in over- or under�tting,respe
tively.5.2 Model stru
ture ambiguityIn model sele
tion it is important to be aware of the problem of ambiguity inthe model stru
ture. We illustrate this point by presenting examples whentwo di�erent biologi
al models 
reate the same or similar experimental data.The �rst example 
onsiders the bio
hemi
al models presented in Figure 9.In model I, two 
ompounds (A2 and B2) both a
tivate 
ompound C, whilein model II only B2 a
tivates C. As indi
ated in the �gure, the parameter(k) of the 
atalysed rea
tion from C1 to C2 in model II is the sum of the
orresponding parameters (k3 and k4) in model I. All other parameters arethe same in the two models. If we 
onsider a wild-type experiment, the twomodels will produ
e exa
tly the same experimental data for the variables.That is, the data does not unambiguously derive from one model and it isimpossible to distinguish the true model.However, by in
luding an additional experiment where either A or B isdeleted, the set of all data will unambiguously derive from either model I ormodel II. This is a powerful experimental te
hnique that for instan
e wasused to reveal the basi
 stru
ture of the HOG signaling pathway in yeast(Maeda et al. 1995).Another example of models that output similar data for an experiment aremodels that di�er in rea
tion me
hanisms. For instan
e, we re
onsider the23
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Figure 9: Experimental data of models I and II are identi
al. CompoundsA, B and C all exist in two di�erent states and all rea
tions are assumedlinear or bilinear and the rea
tion 
onstants are indi
ated as k's.model given in (6) together with a modi�ed version of that model where Iis squared. The modi�ed model readsA02(t) = �A01(t) = k1A1(t)I2(t)� k2A2(t) (18)where k1 = 0:05 and k2 = 0:02 are the same for both models.These two models output very similar data for 
ertain input signals. Forinstan
e, the input fun
tion (9) is depi
ted as Input I in Figure 10. Datais similar but there are a
tually two kind of di�eren
es: the initial steadystates and the form of the rising 
urves of the two models di�er slightly.However, for moderate levels of measurement noise, it be
omes very diÆ
ultto uniquely distinguish them from ea
h other.On the other hand, by applying a di�erent input signal we 
an obtain datawith mu
h better dis
riminating power. As an example, an input fun
tionthat steps from 0.01 to 0.2 is illustrated as Input II in Figure 10. In this
ase, the separation of the 
urves is evident, and at the end of the simulationA2 of the original model (6) has more than four times higher 
on
entrationthan A2 of the modi�ed model (18).To 
on
lude, we have shown two examples where models output equal orsimilar data and 
annot be distinguished from ea
h other using the givendata. One possible solution is to provide a more extensive data set, forinstan
e by using a di�erent 
hoi
e of input fun
tion and/or a modi�edsystem. However, we note that it is non-trivial to determine how mu
h andwhat kind of data is needed to give uniqueness.In the �rst example, the ambiguity 
ould also be resolved mathemati
allyby using an error fun
tion penalizing model 
omplexity su
h as (17). In the24



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Time

C
on

ce
nt

at
io

n Input I

Input II

Input II

Figure 10: Simulation of variable A2 in the models given in (6) (dashedlines) and (18) (solid lines) using two di�erent input signals: Input I stepsfrom 0.01 to 1 at t = 20 and Input II steps from 0.01 to 0.2 at t = 20.se
ond example, however, this is hardly suÆ
ient sin
e both models havethe same 
omplexity a

ording to (17).5.3 Manual model sele
tionA 
ommon approa
h in modeling is to manually sele
t the model stru
tureand parameter 
onstraints and then estimating the parameters automati-
ally. In prin
iple, when manually 
reating an ODE model of a bio
hemi
alsystem, one 
an 
onsider any form of equations in the model stru
ture.However, usually the modeler tries to employ standard rea
tion types (likethe Mi
haelis-Menten kineti
s) that 
an be derived from plausible rea
tionme
hanisms of the 
onsidered intera
tions. We note that S-systems are anex
eption to this.It is diÆ
ult to present a general methodology for how to 
onstru
t a modelof a parti
ular system. Instead, we exemplify by giving a brief des
riptionof the methodology used when modeling the osmoregulation system. Invery simple terms, this system involves a signaling pathway working as an25



information 
arrier in the 
ell. The sensor of the pathway is a
tivated byredu
ed turgor pressure and the output of the pathway initiates gly
erolprodu
tion that works as a feedba
k loop and 
auses turgor pressure toregain. For an overview of our models we refer to Se
tion 6 and for a moreelaborate des
ription we refer to Papers 2 and 3.Initially, our obje
tive was to model the signaling pathway in isolation. Thebasi
 stru
ture of this signaling pathway was des
ribed in the literature.Besides, we found models in the literature of similar systems in evolutionary
losely related spe
ies. Given this information we 
ould assign plausiblekineti
 equations to the rea
tions. However, sin
e the signaling pathwayintera
ts with other systems it was diÆ
ult to model the pathway in isolationand we therefore had to extend our modeling s
ope.One point of intera
tion involves an environmental stimulus that serves asinput signals to the signaling pathway. In the beginning of the proje
t, theexa
t nature of this environmental stimulus was not known. Among others,Gustin (1998) spe
ulated in turgor pressure and this was later experimen-tally veri�ed by Reiser et al. (2003). From thermodynami
s it is known thatturgor pressure is related to osmoti
 pressure and volume. Hen
e, in orderto model the input signal in a realisti
 way, a biophysi
al model in
ludingat least these variables should be 
onsidered.Another point of intera
tion exists between the output of the signaling path-way and metaboli
 pathways of gly
erol produ
tion. In prin
iple, it is easyto in
lude metaboli
 pathways in a model, sin
e a lot of modeling e�ortshave been done in that �eld. A 
hallenge, however, is to sele
t a propermodeling s
ope and level of detail. In Paper 2 we use an existing modelfrom the literature.To 
on
lude, in order to model the signaling pathway it was ne
essary toextend the modeling s
ope by in
luding two additional modules: one repre-senting the biophysi
al 
hanges of the 
ell and one representing the gly
erolprodu
tion. Given the biophysi
al des
ription we 
ould expli
itly link gly
-erol produ
tion to the turgor pressure and 
onsequently to the input signalof the pathway. On
e this was established we 
ould simulate various exper-iments in the 
omputer.Sin
e we propose two di�erent models of the same system it is interesting to
ompare these with ea
h other. The models share the main 
hara
teristi
sand give the same qualitative predi
tions. Instead, the di�eren
e lies in thelevel of detail at whi
h the pro
esses are modeled. In the simple modelhardly no mole
ular details are in
luded, while the detailed model takesinto a

ount a 
onsiderable amount of available stru
tural information ofthe pathways. We refer to Paper 3 for a dis
ussion of qualitative aspe
ts ofthe models with respe
t to their di�erent 
omplexities.26



In prin
iple, it would be interesting to perform quantitative 
omparativeanalyses of di�erent models, using a 
omplexity measure like AIC, BIC orMDL. Su
h a measure would reveal to what pri
e of in
reased 
omplexityit is reasonable to in
rease the goodness-of-�t to data. Unfortunately, thereis no single a

epted measure for this kind of problems. Besides, it is verydiÆ
ult to 
ompare models when di�erent data sets have been employed inthe 
onstru
tion of the models. For instan
e, the detailed model of Paper2 is based on the 
urrently identi�ed stru
ture of the system, and hen
e,impli
itly uses the data from whi
h the stru
ture is determined. Su
h datais typi
ally not obtained from time-series experiments of protein 
on
entra-tions but rather from protein-protein intera
tion experiments and experi-ments measuring 
ell growth in various mutant strains. Although this kindof data 
an be dire
tly employed in model identi�
ation, it may be diÆ
ultand tedious to extra
t the data from the literature. We would also like topoint out that the stru
tural information obtained from these experimentsonly tells whether variables intera
t, not the me
hanism of intera
tion.5.4 Automati
 model sele
tionWe will now des
ribe some general prin
iples for automati
 model sele
tionalgorithms. Typi
ally, the inputs to a model sele
tion algorithm are:� Time 
ourse data for the variables. In Paper 1, we 
onsider the sameinput of data as previously des
ribed for the parameter estimation.However, we note that di�erent types of data, like steady-state dataor protein intera
tion data, 
an be employed as well.� An initial stru
ture in
luding all variables and potentially known in-tera
tions. As a base 
ase, the initial stru
ture 
an be assumed empty,and hen
e, all intera
tions should be identi�ed. As an example, for themetaboli
 test system we would have S03 = S04 = S05 = S06 = S07 = 0.To de�ne the model sele
tion problem we must also spe
ify an error fun
-tion, like (17), and a sear
h domain or model spa
e, whi
h de�nes thespa
e of possible models. The sear
h domain 
an be obtained by de�n-ing rea
tion building blo
ks that may be used in the model. For instan
e,the metaboli
 test system in Figure 5 
ontains two di�erent types of rea
-tions: the Mi
haelis-Menten rea
tion (4) and the Mi
haelis-Menten rea
tionwith non-
ompetitive inhibition (5). Therefore, to identify 
orre
tly themetaboli
 test system the sear
h domain must at least 
ontain these tworea
tion types. In Paper 1, we 
onsider not only these two types, but also aspontaneous state transition with linear kineti
s (2) and an enzymati
 rea
-tion with bilinear kineti
s (3). The resulting sear
h domain is given in Table27



1. We note that the identi�
ation problem be
omes more diÆ
ult for a largesear
h domain. In a real situation, the true rea
tion types are unknown anda plausible guess of the sear
h domain must be made.Possible rea
tions for S3, S4 and S5S(S3) S(S4) S(S5) B(S3,I1) B(S3,I2) B(S3,S4)B(S3,S5) B(S3,S6) B(S3,S7) B(S4,I1) B(S4,I2) B(S4,S3)B(S4,S5) B(S4,S6) B(S4,S7) B(S5,I1) B(S5,I2) B(S5, S3)B(S5, S4) B(S5, S6) B(S5,S7) M(S3) M(S4) M(S5)I(S3,I1) I(S3,I2) I(S3,S4) I(S3,S5) I(S3,S6) I(S3,S7)I(S4,I1) I(S4,I2) I(S4,S3) I(S4,S5) I(S4,S6) I(S4,I7)I(S5, I1) I(S5,I2) I(S5, S3) I(S5, S4) I(S5, S6) I(S5,S7)Possible rea
tions for S6 and S7S(S6) S(S7) B(S6,I1) B(S6,I2) B(S6,S3) B(S6,S4)B(S6,S5) B(S6,S7) B(S7,I1) B(S7,I2) B(S7,S3) B(S7,S4)B(S7,S5) B(S7,S6) M(S6) M(S7) I(S6,I1) I(S6,I2)I(S6,S3) I(S6,S4) I(S6,S5) I(S6,S7) I(S7,I1) I(S7,I2)I(S7,S3) I(S7,S4) I(S7,S5) I(S7,S6)NotationS(A) Linear transition (2) with substrate AB(A;E) Bilinear rea
tion (3) with substrate A and enzyme EM(A) Mi
haelis-Menten rea
tion (4) with substrate AI(A;B) Mi
haelis-Menten rea
tion (5) non-
ompetitivelyinhibited by B having the substrate ATable 1: The sear
h domain for the metaboli
 test system. We assume thatmass 
onservation 
onstraints are known, that is the sum of S3, S4 and S5as well as the sum of S6 and S7 are 
onstant. In this notation, the trueODE of variable 4 is S04(t) = I(S3; I1)�M(S4).For problems of realisti
 size an exhaustive sear
h over all possible modelstru
tures is not feasible due to the 
ombinatorial explosion of possible modelstru
tures. For instan
e, given an upper limit of four rea
tions per variable(something that we do not assume in Paper 1) there are about 2:7 � 106possible stru
tures only for variable S3 in the metaboli
 test system. For thisreason, it is very diÆ
ult to �nd algorithms that solve the model sele
tionproblem in realisti
 time. To make the best of the situation, one typi
allyemploys heuristi
 algorithms that at least are able to propose a model thatis 
lose to the real system. 28



In order to redu
e the 
omplexity of model identi�
ation we 
an 
onstrainthe problem in di�erent ways. For instan
e, we 
an in
lude veri�ed inter-a
tions in the initial stru
ture of the model and we 
an restri
t the sear
hdomain in di�erent ways. Besides, the sear
h spa
e for the parameters 
an berestri
ted as dis
ussed in the previous se
tion. We also note that identi�
a-tion be
omes easier the more the system has been experimentally disturbedby various input signals and system modi�
ations.A general heuristi
 way of sear
hing the best model is to divide the sear
hinto two steps: (1) a stru
ture sear
h and (2) a parameter estimation methodfor a given stru
ture. In this way, we obtain the following approa
h:1. Try a stru
ture from the sear
h domain.2. Estimate the parameters in this stru
ture and evaluate the error fun
-tion.3. Update the stru
ture a

ording to some rule and then repeat from step2 until termination a

ording to some 
riterion.The model sele
tion algorithm that we propose in Paper 1 is based on thisapproa
h.Finally, we want to remind the importan
e of distinguishing between whatinformation is possible to extra
t from a given data set and how well thealgorithm performs on that data set. In parti
ular, given suÆ
ient datato unambiguously de�ne the 
orre
t model and an ideal identi�
ation algo-rithm, one 
an �nd the 
orre
t model. However, for this kind of problems, aheuristi
 approa
h may fail sin
e it does not perform an exhaustive sear
h.Hen
e, the heuristi
 nature of an algorithm may give an attra
tive 
ompu-tational time but also limits the performan
e on data sets that are small butnevertheless unambiguously de�ne the 
orre
t model.5.5 Our model sele
tion algorithmIn Paper 1 we suggest a model sele
tion algorithm, in whi
h we employthe general heuristi
 method presented in 5.4 and 
onsider one variable ata time, as also done in our parameter estimation algorithm. We build thestru
ture in
rementally and always maintain a 
urrent model with stru
tureand parameters. As a base 
ase, the initial model is trivial with all variablesindependent of ea
h other. Our model sele
tion algorithm 
an be des
ribedas follows.For ea
h variable we do the following:29



1. Cal
ulate the error of the initial model.2. For ea
h possible test rea
tion from the sear
h domain:(a) Temporarily add the rea
tion to the model.(b) Estimate the parameters.(
) Cal
ulate the error.3. If a better model was found in step 2, use this model as the new bestmodel.4. Remove rea
tions if this results in a lower error.This pro
ess of 
onsidering all variables in turn is repeated until no bettermodel is obtained. Hen
e, for ea
h iteration over all variables, a rea
tionmay be added to ea
h equation and any of the existing rea
tions might beremoved. A rea
tion is removed if it improves the �t to data (measuredby the �rst term of (17)) less than it in
reases the 
omplexity of the model(measured by the penalty term of (17)). We note that this heuristi
 algo-rithm 
an not guarantee a global minimum of the error fun
tion, and hen
e,as in the parameter estimation we may obtain a lo
al minimum, where thestru
ture and/or parameters are in
orre
t.In an attempt to illustrate the progress of the model sele
tion algorithmwe 
onsider the metaboli
 test system for the noise-free data set of 12 ex-periments employed in Paper 1. We 
onsider the sear
h domain given inTable 1 and we also use the same notation as in that table. The true modelstru
ture that we sear
h for isS03(t) =M(S4) +M(S5)� I(S3; I1)� I(S3; I2) (19)S04(t) = �M(S4) + I(S3; I1) (20)S05(t) = �M(S5) + I(S3; I2) (21)S06(t) = �S07(t) = �M(S6) + I(S7; S3) (22)However, this model is from now 
onsidered unknown to the algorithm, andthe initial stru
ture is empty, that is S03 = S04 = S05 = S06 = S07 = 0. Theonly information we use is the set of time series experiments (data fromsimulation of the true model) with various input fun
tions I1 and I2.After one iteration over all variables the following model is obtained:S03(t) = �B(S3; S7) (23)30



S04(t) = I(S3; I1) (24)S05(t) = �B(S5; I2) (25)S06(t) = I(S7; S3) (26)S07(t) = �I(S7; S3) (27)We note that the ODE of S3 in
ludes a bilinear rea
tion that does not belongto the true stru
ture. The same holds for the ODE of S5 where B(S5; I2) isa false positive rea
tion, while true positive rea
tions are added to all otherODEs.We repeat the pro
edure for all variables and obtain:S03(t) = �B(S3; S7) +B(S4; I1) (28)S04(t) = I(S3; I1)�M(S4) (29)S05(t) = �B(S5; I2) + I(S3; I2) (30)S06(t) = I(S7; S3)�M(S6) (31)S07(t) = �I(S7; S3) +M(S6) (32)Hen
e, after the se
ond iteration, the ODE of S3 
ontains two false positiverea
tions, the ODE of S5 
ontains one false positive and one true positiverea
tion and the stru
ture of the other ODEs are 
orre
tly identi�ed.Iteration 3 gives:S03(t) = B(S4; I1)� I(S3; I2) (33)S04(t) = I(S3; I1)�M(S4) (34)S05(t) = I(S3; I2)�M(S5) (35)S06(t) = I(S7; S3)�M(S6) (36)S07(t) = �I(S7; S3) +M(S6) (37)31



Here we make two observations: First, the addition of the true positiverea
tion I(S3; I2) to the ODE of S3 results in a model in whi
h the previouslyadded rea
tion B(S3; S7) was unne
essary and 
ould be removed. This is dueto the non-greedy strategy of the sear
h: a rea
tion that has been addedmight fall o� in later stages. Similarly, the addition of the true positiverea
tion M(S5) to the ODE of S5 pushed out the false rea
tion B(S5; I2).Se
ond, no rea
tions were added to the ODEs of S4, S6 and S7. In otherwords, the 
ost in in
reased 
omplexity of an additional rea
tion was higherthan the (potential) gain in goodness-of-�t due to more parameters.In the following iterations only the stru
ture of S03 is modi�ed. The truemodel is obtained after a total of 7 iterations.This example illustrates how the heuristi
 sear
h in
rementally builds upthe true stru
ture of the metaboli
 test system. We note that the sear
hroute is not only dependent on the error fun
tion and parameter estimationroutine but also on the spe
i�
 data set employed.5.6 Model identi�
ation algorithms in experimental plan-ningIn this se
tion we 
onsider the potential use of model identi�
ation algo-rithms in experimental planning. Spe
i�
ally, we outline a 
omputer-basedplanning methodology where a model identi�
ation algorithm plays an im-portant role.In the area of mole
ular biology experimental plans are traditionally mademanually by professionals with great biologi
al insight and experien
e. Ba-si
ally, the next experiment is determined by the 
urrent knowledge of thesystem, the 
urrent hypotheses about the system and the 
urrently avail-able experimental te
hniques. Based on the out
ome of the experiment, theknowledge of the system as well as the hypotheses are modi�ed and newexperiments are thus iteratively proposed and exe
uted. Our 
omputer-based experimental planning method mimi
s this iterative exploration of abiologi
al system.We assume the fun
tionality illustrated in Figure 2, in whi
h we 
an bothsimulate data from a model and identify a model from data. Before wedis
uss experimental planning we note that this fun
tionality also o�ersseveral more elementary operations:� Simulation of one or several models, e.g. for manual evaluation of theirquality.� Evaluation of the error fun
tion to determine to what extent a newexperiment provides new information.32



� Using the identi�
ation method we 
an ask what type of experimentsand what amount and a

ura
y of data are needed in order to identifya 
ertain model.Our experimental planning method more or less in
ludes these elementaryoperations and we will now des
ribe the method in more detail.We exemplify the method on an arti�
ial 
ell signaling pathway presentedin Figure 11. This model 
orresponds to the true system that we aim at�nding.
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Figure 11: Model of a signaling pathway used to illustrate the experimentalplanning method. The model in
ludes ten proteins, ea
h of them existing intwo di�erent states (ina
tive and a
tive), and several intera
tions in
ludingpositive and negative feedba
k loops.We 
onsider the following s
enario:� We have a minimal base model, M0, 
ontaining all 
ompounds ofinterest 
onne
ted by previously veri�ed intera
tions. This model 
or-responds to our 
urrent knowledge of the system. In our example, M0does not 
ontain any rea
tions at all, see the left part of Figure 12.� We have performed a set of experiments, E0. Typi
ally, an experimentis a 
ertain genomi
 ba
kground in 
ombination with a 
ertain inputfun
tion. For instan
e, we have performed one experiment on a wild-type 
ell using a step input signal.� We have the potential of exe
uting several experiments, denoted E,see Table 2. 33



� We have a hypotheti
al model, M , that di�ers from M0. In our ex-ample, the hypotheti
al model is given in the right part of Figure 12.We want to test this hypothesis experimentally.
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al model M .Experiment Genomi
 ba
kground Input signal1 wild-type pulse2 �A step3 �B pulse4 �D step5 �C�J pulse... ... ...Table 2: An example of E, the set of possible experiments to perform.We spe
ify the experimental planning problem as follows: extend the dataset E0 by the smallest possible set of experiments from E su
h that we 
anreje
t or verify our hypothesis M . To reje
t M it is enough to exe
ute anexperiment for whi
h data is suÆ
iently distin
t, measured by some metri
,from simulated data of M . Verifying that M is the unique model from agiven data set is a mu
h more diÆ
ult task.A powerful approa
h to deal with this problem is to employ the modelidenti�
ation algorithm. In this way, we 
an sear
h a set of experiments thatuniquely identi�es the hypotheti
al model. The method works as follows.For every possible experiment e 2 E, we do the following:1. Simulate e from M . 34



2. Temporarily merge simulated data from 1 with the real data set E0.3. Run the model identi�
ation algorithm with the initial model and theextended data set.4. Evaluate how 
lose the output model from step 3 is to M . A verysimple measure of similarity is the number of similar intera
tions minusthe number of non-similar intera
tions.The experiment from E 
orresponding to the best result in step 4 is thesuggested experiment to perform. Ideally, this experiment is exe
uted inthe laboratory and we 
an either reje
t M or we have uniquely identi�edM . We note that any simulated experiment in step 1 obviously implies M ,but that only some experiments may uniquely identify M .The pro
edure above 
an be generalized in the following ways:� It 
annot generally be assumed that one single experiment from E isenough to uniquely identify M . Therefore, the test set E 
an be ex-tended by in
luding not only single experiments but also 
ombinationsof for example two experiments from E. One test 
ase 
ould then in-
lude both experiment 1 and experiment 2 from Table 2. However, ifall possible 
ombinations are to be tested, this also implies an expo-nential in
rease in the number of test 
ases and thereby 
omputationaltime.� The pro
edure 
an be repeated for a number of hypotheti
al models.In this 
ase, the experiments suggested is the union of the experimentssuggested for ea
h hypotheti
al model.� We 
an assign 
osts to the experiments (e.g. 
orresponding to time orlabor) and also in
lude that in the evaluation fun
tion of step 4.To 
on
lude, we suggest a way of generating more eÆ
ient experimentalplans by in
luding a model identi�
ation algorithm in an automati
 de
i-sion pro
ess. In prin
iple, su
h a planning method would take advantageof the integrated data simulation and model identi�
ation fun
tionality pre-sented in Figure 2. We also note that other fun
tionality, su
h as testingfor algebrai
 observability, would be a valuable 
omplement to simulationand identi�
ation. The planning method would probably prove helpful notonly in resear
h, but also as a pedagogi
al tool in edu
ation for biologists, aswell as for mathemati
ians and 
omputer s
ientists. Besides, it 
ould helppeople from these dis
iplines to learn more about the other subje
ts andalso fa
ilitate 
ommuni
ation between these groups when ex
hanging ideas.35



6 Modeling osmoregulation in yeastIn this se
tion we present our modeling work on osmoregulation in the yeastSa

haromy
es 
erevisiae, whi
h is one of the most well-studied eukaryoti
organisms (Sherman 2002).To understand osmoregulation it is useful to 
onsider a simpli�ed 
ell, 
on-taining a water solution of large mole
ules (e.g. proteins and sugars) andsmall inorgani
 ions. We further assume that the 
ell membrane is semi-permeable, su
h that the large mole
ules are unable to pass the membrane,while water and the small ions 
an freely pass. In prin
iple, the ions wouldthen have equal 
on
entration inside and outside the 
ell at equilibrium.However, the large mole
ules in the 
ell are often highly 
harged and attra
tmany small inorgani
 ions. Therefore, the 
on
entration of ions is greater in-side than outside the 
ell at equilibrium (the Donnan e�e
t, see e.g. Albertset al. 1994).Based on this simple 
ell model we 
an give a 
on
eptual explanation oftwo fundamental variables in osmoregulation: osmoti
 pressure and turgorpressure. On a basi
 level, osmoti
 pressure is proportional to the 
on
en-tration of mole
ules other than water in a solution. Hen
e, a large protein
ontributes as mu
h as a small ion to the osmoti
 pressure. Sin
e the 
on-
entration of ions is greater inside than outside the 
ell at equilibrium, the
ell has a higher intra-
ellular than extra-
ellular osmoti
 pressure. This
auses an outward pressure on the plasma membrane. Due to this di�eren
ewater will 
ow into the 
ell. In isolation, this would 
ause the 
ell to swelland potentially lead to 
ell rupture. This is a fundamental problem that any
ell must master. Basi
 solutions are to a
tively pump out ions, to a
tivelyextrude water or to prevent the 
ell to swell by a 
ell wall.The yeast 
ell uses the latter solution and has a 
ell wall with less elasti
itythan the plasma membrane. Basi
ally, the 
ell wall resists the expansion ofthe 
ell, and 
reates an inward pressure on the 
ell 
ontents. This pressureis 
alled the turgor pressure, de�ned as the di�eren
e in the hydrostati
pressure between the inside and the outside of the 
ell. At equilibrium, theosmoti
 pressure di�eren
e is balan
ed by the turgor pressure and the 
ellvolume is 
onstant with no net 
ow of water.An osmoti
 sho
k is a sudden in
rease in the extra-
ellular osmoti
 pressure,for instan
e due to the addition of salt to the 
ell medium. The immediatee�e
t on yeast to an osmoti
 sho
k involves water out
ow and de
reasingvolume. In this way, a new equilibrium is rea
hed, in whi
h the higher extra-
ellular osmoti
 pressure is balan
ed by an in
reased intra-
ellular osmoti
pressure (due to the redu
ed volume), and redu
tion of turgor pressure (dueto redu
ed size of the 
ell wall). We will refer to these pro
esses as the36



biophysi
al system of the 
ell.Generally, the 
ell strives to keep volume, turgor pressure and relative water
ontent 
onstant and independent of environmental 
hanges. It therefore hasa 
ontrol system responding to these 
hanges by a

umulating gly
erol andthereby in
reasing the intra-
ellular osmoti
 pressure in order to regain itsprevious size (Gervais et al. 2001, Hohmann 2002, de Nadal et al. 2002).This pro
ess is 
alled osmoregulation.The 
ontrol system 
onsists of two main 
omponents, as illustrated in Fig-ure 13. First, the aquagly
eroporin Fps1 
loses upon hyper-osmoti
 sho
kpreventing the out
ow of gly
erol (Tamas et al. 1999, Tamas et al. 2000).Se
ond, the gly
erol produ
tion is in
reased in the following way: The os-moti
 sho
k a
tivates the High Osmolarity Gly
erol (HOG) pathway, seeFigure 1. This pathway belongs to the 
lass of Mitogen A
tivated ProteinKinase (MAPK) pathways that are found in all eukaryoti
 organisms and areimportant for transmitting and pro
essing signals from the 
ell membraneinto the 
ell. Typi
ally, a MAPK pathway 
onsists of a sensing system, a
as
ade of three tiers of protein kinases and output systems su
h as tran-s
riptional regulators. Upon a
tivation the MAPK, i.e. the last kinase in thepathway, enters the nu
leus and indu
es trans
ription. For the HOG path-way, there are at least two independent sensors and one of them, Sln1, hasbeen shown to respond to 
hanges in turgor pressure (Reiser et al. 2003).The other sensor of the HOG pathway, the so-
alled Sho1-bran
h, is notidenti�ed. A
tive Hog1 a

umulates in the nu
leus where it intera
ts withtrans
ription fa
tors and a
tively parti
ipates in trans
riptional a
tivationof target genes. One e�e
t of HOG pathway a
tivity is a metaboli
 shifttowards produ
tion of gly
erol to balan
e osmoti
 
hanges.To analyze the di�erent aspe
ts of osmoregulation, geneti
s and mole
ularbiology are used in numerous ways. Cells are exposed to high osmolaritymedium and the response to the hyper-osmoti
 stress is analyzed. The phos-phorylation (a
tivation) state of Hog1 is measured to elu
idate the kineti
sand the duration of the response. mRNA expression patterns of a few genesdependent on a
tivated Hog1 (su
h as GPD1 and STL1 ) are also studied.In order to understand the physiologi
al response to the stress, intra-
ellularand total amount of gly
erol are measured.The osmoregulation system in yeast is an interesting target for mathemati
almodeling for several reasons:� The system is relatively well-
hara
terized. Several key 
omponentsare identi�ed, e.g. in the HOG signaling pathway, although we notethat other parts are des
ribed in less detail, e.g. the trans
riptionalresponse. 37
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Figure 13: Key 
omponents in osmoregulation in S. 
erevisiae. The bio-physi
al system a

ounts for 
hanges in volume and osmoti
 pressure. Thissystem 
an be experimentally disturbed by adding an osmolyte (e.g. NaCl)to the medium. The 
ontrol system involves the a
tivation of the HOG sig-naling pathway and the 
losure of Fps1. Subsequent gly
erol a

umulation
onstitutes a feedba
k loop to balan
e osmoti
 
hanges.� The 
omplexity of the system is non-trivial and 
hallenging for mod-eling studies. In parti
ular, the down-regulation of the HOG pathwayhas been an open question.� Basi
 strategies of 
ellular adaptation are 
onserved from ba
teria tohumans (Somero et al. 1997). Therefore, the system involves sev-eral 
omponents that are of general biologi
al and medi
al interest(osmosensors, signaling pathways et.
.).To mathemati
ally model yeast osmoregulation, it is natural to divide themodel into two 
omponents. The �rst 
omponent 
onsiders the biophysi
alsystem, involving the 
hanges in osmoti
 pressure and volume. This 
om-ponent is des
ribed in the two following se
tions. The se
ond 
omponentinvolves the 
ontrol system, su
h as the HOG signaling pathway and gly
erola

umulation, and is 
overed in Se
tions 6.3 and 6.4.38



6.1 Physi
s behind osmoregulationIn order to des
ribe the biophysi
al system mathemati
ally we need properde�nitions of the di�erent pressures involved. Therefore, this se
tion intro-du
es the physi
s behind osmoregulation in a formal way and thus serves asa ba
kground to Papers 2 and 3.The 
hemi
al potential of water 
an be seen as a measure of the e�e
tivewater 
on
entration in a given area. The value of the water potential isin
uen
ed by two fa
tors: (1) the osmoti
 potential and (2) the pressurepotential. The �rst is a�e
ted by the 
on
entration of dissolved mole
ulesof solutes. As the 
on
entration of solute mole
ules in
reases, the waterpotential de
reases. The latter takes into a

ount the hydrostati
 pressure.If a solution is put under pressure, the water potential in
reases.Formally, the 
hemi
al potential of a 
ompound des
ribes how the Gibbsenergy3 
hanges in a system when the 
ompound is added to it (Atkins1994). The 
hemi
al potential for water 
an be derived as (Levin 1979)�w = ��w(T ) + vw p+RT ln aw (38)where ��w(T ) is the 
hemi
al potential of pure water at temperature T, vwis the apparent molar volume of water [dm3 mol�1℄, p is the hydrostati
pressure [Pa℄, R the universal molar gas 
onstant [J K�1 mol�1℄, T is thetemperature [K℄, and aw is the water a
tivity in the solution. The latter isde�ned as (Atkins 1994)aw = pwp�w (39)where p�w is the vapor pressure of pure water and pw is vapor pressure ofwater when it is a 
omponent of a solution.If two regions of water with di�erent potential are separated from ea
h otherby a membrane permeable to water but not to the solute (a semi-permeablemembrane), there will be a water 
ow to the region of lower potential (Atkins1994). This pro
ess is 
alled osmosis and the water 
ow, Jw [mol dm�2 s�1℄,is given as (Levin 1979)Jw = Lpv2w ��iw � �ow� (40)3Gibbs energy is de�ned as G = H�TS where H is the enthalpy, S is the entropy andT is temperature (Atkins 1994). 39



where Lp is the hydrauli
 water permeability 
oeÆ
ient [dm2 s kg�1℄, �iwand �ow are, respe
tively, the 
hemi
al potentials of water on the inside andoutside of the membrane [kg dm2 s�2 mol�1℄.The osmoti
 pressure, �, of a solution is the for
e per unit of surfa
e exertedby the 
ow of water moving by osmosis from a region 
ontaining distilledwater to a region 
ontaining the solution, the two regions being separated bya semi-permeable membrane (E
kert et al. 1997). For very dilute solutionsin whi
h ideal behavior 
an be assumed, van't Ho� equation relates � fora solute in a solution to solute 
on
entration and water a
tivity as (Levin1979, Atkins 1994)� = RT � B n = �RTvw ln aw (41)where � is the osmoti
 
oeÆ
ient, B is the 
on
entration of the solute, andn is number of parti
les that disso
iated from the solute mole
ule. Takingmore than one solute into 
onsideration gives (E
kert et al. 1997)� = RTXj �j Bj nj (42)where j indexes the solutes and �j is the osmoti
 
oeÆ
ient of solute j.By dividing the above equation by RT we obtain the osmoti
 pressure inthe unit Osm instead of Pa. For example, a solution 
ontaining 0.1 Mglu
ose, 0.3 M KCl, and 0.4 M MgCl2 has an approximate osmolarity of0:1 + 0:3 � 2 + 0:4 � 3 = 1:9 Osm assuming osmoti
 
oeÆ
ients of 1.Given the above expressions for 
hemi
al potential, 
ow of water and os-moti
 pressure, we 
an derive an expression for the 
ow of water over a 
ellmembrane in terms of osmoti
 pressure and turgor pressure (Levin 1979).First of all, (38), (40) and (41) 
an be 
ombined and simpli�ed tovwJw = Lp (�t +�e ��i) (43)where �e and �i are, respe
tively, the external and internal osmoti
 pressureand �t is the di�eren
e in hydrostati
 pressure over the membrane (pi�pe),also 
alled turgor pressure.Turgor pressure 
an be seen as the outward hydrostati
 pressure exertedagainst the inside surfa
e of a 
ell wall as water tries to 
ow into the 
ell byosmosis. If the 
ell membrane is not stabilized by the presen
e of a 
ell wall,the 
ell will expand and eventually burst. For a walled 
ell (like S. 
erevisiae)40



at equilibrium (eq), the turgor pressure is balan
ed by the osmoti
 pressuredi�eren
e between the internal and external medium (Smith et al. 2000)�eqt = � (�eqe ��eqi ) : (44)If the 
on
entration of the external medium is in
reased, its osmoti
 pressurein
reases, and water 
ows out of the 
ell. A new equilibrium is establishedand the 
ell turgor pressure is redu
ed. At a 
ertain point the external
on
entration will be large enough to abolish the 
ell turgor pressure (�t =0), and hen
e (Smith et al. 2000)��t=0e = ��t=0i : (45)If �e is in
reased further, the turgor pressure is assumed to remain negligible.In an ideal and dilute system4 the 
ell will behave as an ideal osmometer andthe van't Ho� relationship holds, so that at 
onstant temperature (Smith etal. 2000)�i (V � b) = ��t=0i �V �t=0 � Vb� (46)where V is the volume of the 
ell and Vb is the so-
alled intra-
ellular non-osmoti
 volume, whi
h is the sum of the volumes of hydrophobi
 
ellular
omponents (su
h as lipid bilayers) that are osmoti
ally unresponsive.To obtain an expli
it expression for the transient behavior of turgor pressureunder a varying volume, we assume that 
hanges in pi are related to thefra
tional 
hanges in 
ell volume (dV=V ) by a volumetri
 elasti
 modulus �as (Levin 1979)� = V dpidV : (47)By integrating the above equation and approximating ln(V (t)=V 0) by thelinear expression �V (t)=V 0 � 1�, we obtain (Levin 1979)�t(t) = ��V (t)V 0 � 1�+�0t : (48)4�e < 13 MPa (Martinez de Mara~non 1997).41



6.2 The biophysi
al modelWe obtained the biophysi
al model for osmoregulation in Paper 2 and 3 from(42), (43), (46) and (48) in 
ombination with the following assumptions:� The 
ell volume only 
hanges due to in- and out
ow of water. This is areasonable assumption for the rapid 
hanges upon osmoti
 sho
k anda �rst approximation for longer time intervals. Besides, for simpli
ity,the 
ell surfa
e area is assumed 
onstant.� Other variables than volume and pressure are assumed 
onstant. Ex-amples of su
h possible variables are 
ell surfa
e area, 
ell wall thi
k-ness, membrane 
omposition and va
uole volume, whi
h all are a�e
tedby osmoti
 stress, see e.g. Hohmann (2002). However, the importan
eof these responses is diÆ
ult to judge and these pro
esses are typi-
ally non-trivial to in
lude in a model, mainly due to la
k of data.Therefore, we disregard them in our 
urrent models.� We 
onsider gly
erol as the sole osmolyte and, hen
e, ions and othersmall mole
ules that have been reported to 
hange upon osmoti
 sho
k(see e.g. Sunder et al. 1996) are not 
onsidered. This simpli�
ation isto a 
ertain extent motivated by experimental results from Reed et al.(1987), who found that gly
erol 
ounter-balan
es in the order of 80%of applied stress of NaCl in S. 
erevisiae.In parti
ular, we multiply (43) by the 
ell surfa
e area and obtain a relationfor the 
ell volume asV 0(t) / �i(t)��e(t)��t(t): (49)The intra-
ellular osmoti
 pressure is 
al
ulated from (42) and (46) a

ordingto �i(t) = n+Gly(t)V (t)� Vb (50)where Gly [mol℄ is the main osmolyte gly
erol and n [mol℄ is the number ofother osmoti
ally a
tive 
ompounds in the 
ell.The natural input variable of the osmoregulation system is �e. A typi
alexperiment involves adding 0.5M NaCl to the medium, thereby in
reasing�e by 0.93 Osm (�NaCl = 0:93, nNaCl = 2).42



The turgor pressure is obtained from (48) as�t(t) = ( �0t V (t)�V �t=0V 0�V �t=0 ; V (t) > V �t=00; otherwise : (51)by restri
ting �t to positive values. Here V �t=0 is a 
onstant for the volumewhen �t = 0.We �nally note that the order of magnitude of the parameters in the bio-physi
al model 
an be found dire
tly or indire
tly in the literature.6.3 A �rst 
ontrol modelIn order to get an intuitive understanding of the osmoregulation system, wenow des
ribe a �rst simple model of how the 
ell 
ontrols the biophysi
alsystem when exposed to an osmoti
 sho
k. This �rst 
ontrol model is simplerthan the models presented in Paper 2 and 3.As illustrated in Figure 13, the trans-membrane sensor proteins Sln1 andFps1 are dependent on the biophysi
al variable �t. In this �rst model weonly 
onsider Sln1 and its e�e
t on intra-
ellular gly
erol produ
tion. Wenote that a

umulation of gly
erol works as a feedba
k response to osmoti
sho
k, sin
e the biophysi
al variable �i is dependent on intra-
ellular gly
-erol, as given by (50). An overview of the model is given in Figure 14.
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Turgor pressure
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Figure 14: A �rst model 
ontrolling the biophysi
al model. The gly
erollevel is adjusted by a proportional and time-delayed 
ontroller.To model the turgor sensor Sln1, the HOG pathway, trans
ription and trans-lation in a very simple way, we 
onsider a single time-delayed 
ontrol fun
-tion 
orresponding to all these steps. We let the di�eren
e between �t anda referen
e level �0t be the input (e) to this 
ontroller ase(t) = �0t ��t(t): (52)43



We 
onsider the simplest possible 
ontroller (u) that adjusts e by a 
onstantK as u(t) = K e(t): (53)To make the model more realisti
, we also in
lude a time-delay (td) 
orre-sponding to the time it takes to initiate gly
erol a

umulation, e.g. tran-s
ription and translation of enzymes. The time-delayed 
ontrol signal (v) isobtained asv(t) = u(t� td) (54)Finally, we let the rate of 
hange of gly
erol, Gly, be dependent on the
ontrol signal asGly0(t) = v: (55)We use this model to simulate an experiment where the input signal is anosmoti
 sho
k of 0.5M NaCl, see Figure 15. We note the input signal ofin
reased �e at t = 0, followed by the rapid 
hanges towards a new equilib-rium in the biophysi
al variables. First, the imbalan
e in (49) 
auses a dropin volume, whi
h leads to a de
rease in turgor pressure (51) and an in
reasein intra-
ellular osmoti
 pressure (50). Turgor pressure is abolished and thesystem rea
hes a new equilibrium where �i = �e only a few se
onds afterthe applied stress. The 
ontrol model initiates gly
erol produ
tion imme-diately after the time-delay has expired (10 minutes after the stress in thissimulation), whi
h in turn results in in
reasing intra-
ellular osmoti
 pres-sure. As a 
onsequen
e, water 
ows ba
k into the 
ell and both volume andturgor pressure are slowly in
reasing to their original values. In parti
ular,about 33 minutes after stress volume is re
overed above V �t=0 and turgorpressure starts to in
rease, while the in
rease in volume slows down. At thispoint we also see a slight in
rease in the rate of gly
erol a

umulation. Thisis be
ause gly
erol is plotted as 
on
entration and therefore is dependent onvolume.The model presented in Paper 3 involves further re�nements of this �rst
ontrol model:� Both intra- and extra-
ellular gly
erol are 
onsidered in the model.Di�usion of gly
erol mole
ules over the 
ell membrane is assumed tofollow Fi
k's law (Gervais et al. 2001). Hen
e, the gly
erol di�usionrate is proportional to the di�eren
e between intra-
ellular and extra-
ellular gly
erol 
on
entration.44
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Figure 15: Simulated data from the biophysi
al model in 
ombination with(55). The input signal is an osmoti
 sho
k of 0.5M NaCl and reasonablemodel parameters are taken from Paper 3.� Changes in turgor pressure is independently sensed by Sln1 and Fps1.The se
ond a�e
ts the di�usion 
onstant for gly
erol over the 
ell mem-brane.Using the simplest possible sensor me
hanisms (linear dependen
e on thedi�eren
e between �t and �0t ) we obtain reasonable time series for bothintra- and extra-
ellular gly
erol. Hen
e, the model in Paper 3 
aptures thefundamental pro
esses that are dis
overed in yeast osmoregulation hitherto.6.4 A more detailed 
ontrol modelWe 
ontinue to re�ne the model we have developed in order to approa
hthe more detailed model 
onsidered in Paper 2. In parti
ular, the mole
ulardetails of the 
ontrol system are further analyzed, starting with the HOG sig-naling pathway and 
ontinuing with trans
ription/translation, metabolismand gly
erol produ
tion.The key 
omponents and intera
tions of the HOG signaling pathway havebeen identi�ed during the last de
ade, see Figure 1 for an overview. To45



model the HOG pathway we make the following assumptions:� Rea
tions are modeled with linear (2) and bilinear kineti
s (3). Wenote that detailed analyses of the me
hanisms of isolated signalingrea
tions have been presented (Ferrell et al. 1997), while linear andbilinear kineti
s usually have been employed in models of entire sig-naling pathways (S
hoeberl et al. 2002, Swameye 2003). The mainreason for this is that data typi
ally is sparse and in
omplete.� The Sln1-bran
h of the pathway in isolation gives a similar response asthe 
omplete pathway in
luding the Sho1-bran
h (O'Rourke 2004). We
an therefore ex
lude the Sho1-bran
h from the model, something thatis very useful sin
e the sensor protein of that bran
h is not identi�ed.� The 
ell 
ontains two 
ompartments, the nu
leus and the 
ytosol. Dou-ble phosphorylated Hog1 may enter the nu
leus and is 
onsidered tobe a trans
ription fa
tor in the nu
leus 
ompartment. Furthermore,dephosphorylated Hog1 
an leave the nu
leus.� The transmembrane protein Sln1 senses turgor pressure by adjustingits rate of auto-phosphorylation asrate of Sln1 auto-phosphorylation / ��t(t)�0t �� (56)where � is a 
onstant.We note that the auto-phosphorylation of Sln1 is needed to keep theHOG pathway ina
tive under normal 
onditions and that the exa
tsensor me
hanism of Sln1 is unknown.� All phosphorylated 
ompounds are dephosphorylated by protein phos-phatases. The rate of dephosphorylation is dependent on Hog1-indu
edprotein synthesis of phosphatases. This realizes a negative feedba
kloop on the a
tivation of the HOG signaling pathway. However, wenote that there is always a basal level of phosphatases (Ghaemmaghamiet al. 2003).� This has to do with so 
alled s
a�old proteins, whi
h are able to bindseveral (di�erent) other proteins. They might fa
ilitate signal trans-du
tion by forming multi-mole
ular 
omplexes that 
an be rapidlya
tivated by an in
oming signal. In the HOG pathway, Pbs2 is be-lieved to a
t as a s
a�old protein (Posas et al. 1997). One detailedway of modeling s
a�old 
omplexes is dis
ussed in Lev
henko et al.(2000). However, due to la
k of data we have not been able to in
ludethis aspe
t in our model. 46



� The number of signaling mole
ules are assumed to be suÆ
ient forallowing deterministi
 simulation. A re
ent study suggests that thenumber of signaling mole
ules ranges from about 300 (Ssk2) to about7000 (Hog1) for the proteins in the HOG pathway (Ghaemmaghamiet al. 2003).The parameters of the HOG signaling pathway were obtained taking intoa

ount experimental data on the response time of the pathway and theampli�
ation of the signal. Here we note that the stru
ture of a signalingMAPK 
as
ade allows for signal ampli�
ation (Heinri
h et al. 2002) as wellas swit
h-like response of the kinases in the end of the 
as
ade (Huang et al.1996, Ferrell 1998). In our model, we also note that the sensor 
ontributesto the swit
h-like behavior when � > 1 in (56).The HOG signaling pathway triggers trans
ription and translation of severalgenes as indi
ated in Figure 13. The bio
hemi
al details of this a
tivationare not understood to the same degree as the HOG signaling pathway, al-though there are ongoing resear
h in this area (de Nadal et al. 2004). Thesepro
esses are therefore simpli�ed and we 
onsider only two types of mRNAspe
ies and two types of proteins. The �rst type 
orresponds to metaboli
enzymes, su
h as GLK1, GPD1 and GPD2, and the se
ond 
orresponds tophosphatases, su
h as PTP2 and PTP3. Trans
ription is assumed linearlydependent on a
tive Hog1 in the nu
leus and translation is assumed linearlydependent on mRNA in the 
ytoplasm.To model 
arbohydrate metabolism and gly
erol produ
tion we 
onsideredpreviously published models (Hynne et al. 2001, Teusink et al. 2000, Rizziet al. 1997) and adjusted the kineti
s to allow for stable steady state 
on-
entrations and 
ows as determined by Rizzi et al. (1997) and Theobaldet al. (1997). The dependen
e of 
arbohydrate metabolism and gly
erolprodu
tion on the HOG signaling pathway was in
luded by letting the ratesof several rea
tions be linearly dependent on the Hog1-indu
ed protein. Be-sides, in order to in
lude the dependen
e of gly
erol transport on Fps1, weassume the following sensor me
hanismFi
kean di�usion 
oeÆ
ient / ��t(t)�0t �
 (57)where the exponent 
 is a 
onstant.Finally, in order to obtain a 
omplete model we also let the 
on
entrationsof all spe
ies in the 
ytosol be dependent on the 
ell volume (whi
h is adependent variable in the biophysi
al model). The 
omplete model as givenin Paper 2 in
ludes 35 ODEs and 70 parameters.47



6.5 Dis
ussionThe detailed model of Paper 2 and the simpler model of Paper 3 sharesome main 
hara
teristi
s. Both models in
lude two parallel ways of 
ontrolin the 
ell, sin
e these seem to be ne
essary to explain experimental data.The �rst 
ontrol way is the ability of the 
ell to in
rease the intra-
ellular
on
entration of gly
erol, and the se
ond 
ontrol way is the ability to 
ontrolthe gly
erol di�usion rate over the membrane. If any of these two 
ontrolways is absent, the 
ell fails to 
ounter-balan
e an osmoti
 sho
k in aneÆ
ient way. A slight di�eren
e between the models is that the detailedmodel takes Hog1-indu
ed up-regulation of phosphatases into a

ount andthereby 
loses a negative feedba
k loop on the HOG signaling pathway.However, 
onsidering realisti
 indu
tion of the phosphatases, this feedba
kplays no important role in pathway down-regulation.To realize the models mathemati
ally it is essential to 
ombine a biophys-i
al des
ription with a des
ription of the 
ellular 
ontrol me
hanisms. Wegenerally note that our mathemati
al models are important not only for sim-ulations but also for 
ommuni
ating the system in a 
ompa
t and pre
iseway.In 
ombination with new experimental results, our models have improvedthe biologi
al understanding of osmoregulation in yeast and we exemplifythis in two di�erent ways. The �rst example 
on
erns gly
erol a

umulationand Fps1. It is generally assumed that stimulated expression of GPD1 andGPP2 and the resulting in
reased gly
erol produ
tion 
apa
ity a

ounts forthe in
rease in intra-
ellular gly
erol level upon osmoti
 sho
k. However,our results indi
ate that this e�e
t is only important for the long-term a
-
umulation of gly
erol. We suggest that a rapid 
losure of Fps1 leads toan initial gly
erol a

umulation that, in turn, a

ounts for HOG pathwaydown-regulation. This also implies that down-regulation of the HOG path-way o

urs before intra-
ellular gly
erol peaks and hen
e before 
ells havefully adapted to the osmoti
 stress. Consequently, a strain expressing anFps1 that 
annot 
lose should result in a strongly prolonged HOG pathwaya
tivation. This has also been experimentally veri�ed.The se
ond example 
on
erns feedba
k 
ontrol of the HOG pathway inosmoti
 adaptation. It has been suggested that enhan
ed expression ofgenes en
oding phosphatases a

ounts for feedba
k 
ontrol (Hohmann 2002).However, our data suggests that an in
rease in the level of phosphatases isnot ne
essary to down-regulate the pathway. Instead, the input signal to theHOG pathway is de
reasing as turgor pressure is re
overed. The phospho-rylated kinases of the pathway are then dephosphorylated by phosphatasesat a basal level. This view is supported by experimental results indi
atingthat the pathway 
an be fully rea
tivated by a se
ond osmoti
 sho
k.48



The simple and detailed models of osmoregulation have been 
onstru
ted inparallel. Notably, it 
an be useful to 
onsider a simple model when develop-ing a more detailed model, sin
e the main 
hara
teristi
s of the system 
anmore easily be observed and sin
e the simple model 
an be parameterizedwith higher 
on�den
e than the detailed model. For instan
e, data fromthe simple model has suggested how to adjust the detailed model to giverealisti
 output on intra-
ellular gly
erol.In order to further develop our models of osmoregulation several experiments
ould be performed. Naturally, quantitative time series data are of parti
ularinterest. Below we give some examples of potential experiments for futurestudies:� To investigate the roles of the two input bran
hes of the HOG signalingpathway one 
an 
onsider mutants with only one bran
h a
tive andan input signal of various salt 
on
entrations. In this way we obtainthe dose-response 
hara
teristi
s for the di�erent bran
hes. This hasalready been done for one bran
h, but 
an be repeated for the other.Also for these experiments it 
an be useful to follow gly
erol in timeseries.� Con
erning the mutant with an open Fps1 one 
ould think of experi-ments with di�erent 
ombinations of salt and gly
erol/sorbitol stress,e.g. 25% salt and 75% gly
erol. This kind of experiments 
an beimportant in order to reveal the exa
t relationship between the two
ontrol fun
tions.� The osmoti
 pressures and turgor pressure of the biophysi
al modelare diÆ
ult to measure experimentally. However, the volume 
an bemeasured by di�erent te
hniques. Ideally, one 
ould follow one in-dividual 
ell in time series using state-of-the-art mi
ro-
uid systems.This would signi�
antly in
rease the measurement pre
ision 
omparedto data on a 
ell population.A general observation of the experiments that have been performed hith-erto is that the 
olle
tion of possible system modi�
ations using geneti
allymodi�ed strains is very ri
h and advan
ed. Su
h modi�
ations give valuableinsights into the system and 
an a
tually be ne
essary in order to 
ompletelyunderstand 
ertain systems, e.g. systems with mixed fast and slow kineti
sand systems in
luding feedba
k loops. However, one should not forget thatvariations of the input signal 
an be employed in 
ombination with thesemodi�
ations in order to identify the system. The standard step fun
tion of0.5M NaCl 
ould be 
omplemented by other fun
tions, e.g. a steady in
reasein NaCl from 0 to 1M. 49



7 Main 
ontributionsIn this se
tion the main 
ontributions of the three papers are listed. Besides,my 
ontribution to ea
h paper is listed.Paper 1EÆ
ient ODE model identi�
ation for biologi
al appli
ations.Gennemark P. and Wedelin D.A parameter estimation algorithm. An algorithm that estimates theparameters of an ODE model from time series data has been devised. It
onsiders one equation at a time and 
ombines least-squares estimationwith simulation of a single ODE to obtain both 
omputational eÆ
ien
yand a

ura
y. Our results suggest that the method is more a

urate and
onsiderably faster 
ompared to other published methods.A model sele
tion algorithm. An algorithm that identi�es both stru
-ture and parameters of an ODE model from time series data has been de-vised. It is designed to handle problems of realisti
 size, where rea
tions 
anbe non-linear in the parameters and where data 
an be sparse and noisy. Themodel sele
tion is done in an eÆ
ient heuristi
 way, where the stru
ture isbuilt in
rementally. The method is evaluated on two previously publishedmodels using arti�
ial data. In 
omparison to other methods that were usedfor these test systems, the main strength of the algorithm is that a 
ompletemodel, and not only a stru
ture, is identi�ed, and that it is more a

urateand 
onsiderably faster 
ompared to other identi�
ation algorithms.My 
ontribution: literature studies and all implementation. Developmentof the basi
 ideas for both parameter estimation and model sele
tion in
ooperation with DW.Paper 2Integrative model of the response of yeast to osmoti
 sho
k.Klipp E., Nordlander B., Kr�uger R., Gennemark P. and Hohmann S.A mathemati
al model of yeast osmoregulation. The ODE modelin
ludes re
eptor stimulation, a MAP kinase 
as
ade, a
tivation of geneexpression and adaptation of 
ellular metabolism as well as a biophysi
aldes
ription of volume regulation and osmoti
 pressure. Simulations agreewell with experimental results obtained under di�erent stress 
onditions or50



with 
ertain mutants. The model is predi
tive sin
e it suggests previouslyunre
ognized features of the system with respe
t to osmolyte a

umulationand feedba
k 
ontrol, whi
h we 
on�rm experimentally.Improved understanding of Gly
erol a

umulation and Fps1. It isgenerally assumed that stimulated expression of GPD1 and GPP2 and theresulting in
reased gly
erol produ
tion 
apa
ity a

ounts for the in
reasein intra-
ellular gly
erol level upon osmoti
 sho
k. However, our resultsindi
ate that this e�e
t is only important for the long-term a

umulation ofgly
erol. We suggest that a rapid 
losure of Fps1 leads to an initial gly
erola

umulation that, in turn, a

ounts for HOG pathway down-regulation.This also implies that down-regulation of the HOG pathway o

urs beforeintra-
ellular gly
erol peaks and hen
e before 
ells have fully adapted to theosmoti
 stress. Consequently, a strain expressing an Fps1 that 
an not 
loseshould result in a strongly prolonged HOG pathway a
tivation.Improved understanding of feedba
k 
ontrol of the HOG path-way. It has been suggested that enhan
ed expression of genes en
odingphosphatases a

ounts for feedba
k 
ontrol (Hohmann 2002). However, ourdata suggests that an in
rease in the level of phosphatases is not ne
essaryto down-regulate the pathway. Instead, the input signal to the HOG path-way de
reases as turgor pressure is re
overed. The phosphorylated kinasesof the pathway are then dephosphorylated by phosphatases at basal level.This view is supported by experimental results indi
ating that the pathway
an be fully rea
tivated by a se
ond osmoti
 sho
k.My 
ontribution:1. Original idea and �rst models of 
ombining a biophysi
al des
riptionwith a 
ontrol model of osmoregulation. This idea was presented ona talk and poster together with BN at the Fun
tional Genomi
s 
on-feren
e in G�oteborg 2001. This biophysi
al model has been furtherdeveloped in 
ollaboration with EK.2. Work on the basi
 model of the HOG signaling pathway (in
luding thetwo-
ompartment model 
ytosol/nu
leus) together with RK and EK.3. My results from the simple model in Paper 3 have suggested howto adjust the detailed model to give realisti
 output on intra-
ellulargly
erol.4. Suggestion of an experiment with di�erent magnitude of osmoti
 sho
kin order to study the pathway sensor me
hanism.51



Paper 3A simple mathemati
al model of adaptation to high osmolarity in yeast.Gennemark P. and Nordlander B.A mathemati
al model of yeast osmoregulation. This model 
om-plements the detailed model of Paper 2. Compared to the detailed model,the main strength of this model is its lower 
omplexity, 
ontributing to abetter understanding of osmoregulation by fo
using on relationships whi
hare obs
ured in the more detailed model. The ten parameters of this simplemodel were 
onstrained by data from various literature sour
es as well asour own data and estimated from absolute time series data on gly
erol. Thelow 
omplexity makes it possible to parameterize the model from absolutedata. The qualitative behavior of the model has been su

essfully testedon data from other geneti
ally modi�ed strains as well as data for di�erentinput signals.Improved understanding of osmoregulation. The model strengthenthe hypothesis that at least two ways of 
ontrol are required in order toeÆ
iently 
ounter-balan
e an osmoti
 sho
k in the 
ell. The �rst 
ontrolway is the ability of the 
ell to adjust the intra-
ellular 
on
entration ofgly
erol, and the se
ond 
ontrol way is the ability to 
ontrol the gly
eroldi�usion rate over the membrane.My 
ontribution: All work, based on experimental data supplied by BN.

52



Referen
esAbouhamadW.N., Bray D., S
huster M., Boes
h K.C., Silversmith R.E. andBourret R.B. 1998. Computer-aided resolution of an experimental paradoxin ba
terial 
hemotaxis. J Ba
teriol. 180(15), 3757-64.Aebersold R. and Mann M. 2003. Mass spe
trometry-based proteomi
s.Nature 422, 198-207.Akaike, H. 1973. Information theory and an extension of the maximumlikelihood prin
iple. 2nd International Symposium on Information Theory,Petrov B.N. and Csaki F. (eds.), Akademiai Kiado, Budapest, 267-281.Alberts B., Bray D., Lewis J., Ra� M., Roberts K. and Watson J.D. 1994.Mole
ular Biology of the Cell. Garland Publ. In
., New York, 3rd ed.Arkin, A.P. and Ross, J. 1995. Statisti
al Constru
tion of Chemi
al Rea
-tion Me
hanisms from Measured Time-Series. J. Phys. Chem. 99, 970-979.Atkins P.W. 1994. Physi
al 
hemistry. 5th. Oxford University Press. Wal-ton Street, Oxford OX2 6DP.Bower J.M. and Bolouri H. 2001. Computational Modeling of Geneti
 andBio
hemi
al Networks. MIT Press.Chen K.C., Calzone L., Csikasz-Nagy A., Cross F.R., Novak B. and TysonJ.J. 2004. Integrative analysis of 
ell 
y
le 
ontrol in budding yeast. MolBiol Cell. 15(8), 3841-62.Crampin E.J., S
hnell S. and M
Sharry P.E. 2004. Mathemati
al and 
om-putational te
hniques to dedu
e 
omplex bio
hemi
al rea
tion me
hanisms.Prog. Biophy. Mol. Biol. 86, 77-112.de Boor C. 1978. A pra
ti
al guide to splines. Springer-Verlag, New York,235-43.de Jong H. 2002. Modeling and simulation of geneti
 regulatory Systems:A literature review. Journal of Computational Biology, 9(1), 69-105.de Nadal E, Alepuz P.M. and Posas F. 2002. Dealing with osmostressthrough MAP kinase a
tivation. EMBO Rep. 3(8), 735-40.Dempster A.P., Laird N.M. and Rubin D.B. 1977. Maximum likelihood fromin
omplete data via the EM algorithm. J. Roy. Stat. So
. B 39, 1-38.E
kert R., Randall D.J., Burggren W. and Fren
h K. 1997. Animal Physi-ology, 4th edition. W. H. Freeman Company, New York.53



Eldar A., Dorfman R., Weiss D., Ashe H., Shilo B.Z. and Barkai N. 2002.Robustness of the BMP morphogen gradient in Drosophila embryoni
 pat-terning. Nature. 419(6904), 304-8.Englezoz P. and Kalogerakis N. 2001. Applied parameter estimation for
hemi
al engineers. Mar
el Dekker, In
., New York, NY.Ferrell JE Jr. 1998. How regulated protein translo
ation 
an produ
eswit
h-like responses. Trends Bio
hem S
i. 23(12), 461-5.Ferrell J.E. Jr and Bhatt R.R. 1997. Me
hanisti
 studies of the dual phos-phorylation of mitogen-a
tivated protein kinase. J Biol Chem. 272(30),19008-16.Gervais P. and Beney L. 2001. Osmoti
 mass transfer in the yeast Sa

ha-romy
es 
erevisiae. Cell Mol Biol (Noisy-le-grand). 47(5), 831-9.Ghaemmaghami S., Huh W.K., Bower K., Howson R.W., Belle A., De-phoure N., O'Shea E.K. and Weissman J.S. 2003. Global analysis of proteinexpression in yeast. Nature. 425(6959), 737-41.Gibson M.A. and Bru
k J. 2000. EÆ
ient Exa
t Sto
hasti
 Simulation ofChemi
al Systems with Many Spe
ies and Many Channels. J. Phys. Chem.A. 104, 1876-1889.Gillespie D.T. 1976. A General Method for Numeri
ally Simulating theSto
hasti
 Time Evolution of Coupled Chemi
al Rea
tions. J. Comp. Phys.22, 403-434.Guebel D.V. 2004. Canoni
al sensitivities: A useful tool to deal with largeperturbations in metaboli
 network modeling. In Sili
o Biology 4, 0015.Gustin M.C., Albertyn J., Alexander M. and Davenport K. 1998. MAPkinase pathways in the yeast Sa

haromy
es 
erevisiae. Mi
robiol Mol BiolRev. 62(4), 1264-300.Heinri
h, R., Neel, B.G. and Rapoport, T.A. 2002. Mathemati
al models ofprotein kinase signal transdu
tion. Mol. Cell. 9, 957-970.Heinri
h, R., Rapoport, S. M. and Rapoport, T. A. 1977. Metaboli
 regu-lation and mathemati
al models. Progr. Biophys. Mol. Biol. 32, 1-82.Hohmann S. 2002. Osmoti
 stress signaling and osmoadaptation in yeasts.Mi
robiol Mol Biol Rev. 66(2), 300-72.Huang C.Y. and Ferrell JE Jr. 1996. Ultrasensitivity in the mitogen-a
tivated protein kinase 
as
ade. Pro
 Natl A
ad S
i U S A. 93(19), 10078-83.Huang S. 1999. Gene expression pro�ling, geneti
 networks, and 
ellular54



states: an integrating 
on
ept for tumorigenesis and drug dis
overy. J MolMed. 77(6), 469-80.Hu
ka M., Finney A., Sauro H.M. et al. 2003. The systems biology markuplanguage (SBML): a medium for representation and ex
hange of bio
hemi
alnetwork models. Bioinformati
s 19 (4), 513-523.Hynne F., Dano S. and Sorensen P.G. 2001. Full-s
ale model of gly
olysisin Sa

haromy
es 
erevisiae. Biophys Chem. 94(1-2), 121-63.Johnson M.L. and Faunt L.M. 1992. Parameter estimation by least-squaresmethods. Methods In Enzymology. 210, 1-37.Ka
ser, H. and Burns, J.A. 1973. In Rate Control of Biologi
al Pro
esses(Davies, D.D., ed.) 65-104, Cambridge University Press, London.Kiku
hi S., Tominaga D., Arita M., Takahashi K. and Tomita M. 2003. Dy-nami
 modeling of geneti
 networks using geneti
 algorithm and S-system.Bioinformati
s. 19(5), 643-50.Kitano H. 2002a. Computational Systems Biology, Nature. 420, 206-210.Kitano H. 2002b. Systems Biology: A Brief Overview. S
ien
e, 295, 1662-1664.Lambert, J. D. 1991. Numeri
al methods for ordinary di�erential systemsthe initial value problem. John Wiley.Lev
henko A., Bru
k J. and Sternberg P.W. 2000. S
a�old proteins maybiphasi
ally a�e
t the levels of mitogen-a
tivated protein kinase signalingand redu
e its threshold properties. Pro
 Natl A
ad S
i U S A. 97(11),5818-23.Levin, R. L. 1979. The water permeability of yeast 
ells at sub-zero tem-peratures. J. Mem. Biol. 46, 91-124.Levin M.D., Morton-Firth C.J., Abouhamad W.N., Bourret R.B. and BrayD. 1998. Origins of individual swimming behavior in ba
teria. Biophys J.74(1), 175-81.Liang S., Fuhrman S., and Somogyi R. 1998. REVEAL, a general reverseengineering algorithm for inferen
e of geneti
 network ar
hite
tures. Pa
i�
Symposium on Bio
omputing, 3, 18-29.Maeda T., Takekawa M. and Saito H. 1995. A
tivation of yeast PBS2MAPKK by MAPKKKs or by binding of an SH3-
ontaining osmosensor.S
ien
e. 269(5223), 554-9.Martinez de Mara~non, I., Gervais P. and Molin P. 1997. Determination of
ells' water membrane permeability: unexpe
ted high osmoti
 permeabilityof Sa

haromy
es 
erevisiae. Biote
hnol. Bioeng. 56, 63-70.55



Marquardt D.W. 1963. An algorithm for least-squares estimation of non-linear parameters. Journal of the So
iety for Industrial and Applied Math-emati
s, 11, 431-441.M
kenzie J.A. and Strauss P.R. 2003. A quantitative method for measuringprotein phosphorylation. Anal. Bio
hem. 313, 9-16.Meng T.C., Somani S. and Dhar P. 2004. Modeling and simulation of bio-logi
al systems with sto
hasti
ity. In Sili
o Biology 4, 0024.Moles C.G., Mendes P. and Banga J.R. 2003. Parameter estimation in bio-
hemi
al pathways: a 
omparison of global optimization methods. GenomeRes. 13(11), 2467-74.Morton-Firth C.J. and Bray D. 1998. Predi
ting temporal 
u
tuations inan intra
ellular signalling pathway. J Theor Biol. 192(1), 117-28.O'Rourke, S.M. and Herskowitz, I. 2004. Unique and redundant roles forHOG MAPK pathway 
omponents as revealed by whole-genome expressionanalysis. Mol. Biol. Cell 15, 532-542.Peng X.Y.and Li P.C.H. 2004. A Three-Dimensional Flow Control Con-
ept for Single-Cell Experiments on a Mi
ro
hip. 2. Fluores
ein Dia
etateMetabolism and Cal
ium Mobilization in a Single Yeast Cell As Stimulatedby Glu
ose and pH Changes. Anal. Chem. 76(18) 5282-92.Pint�er. 1996. Continuous global optimization software: a brief review.Optima, 52, 1-8.Posas F. and Saito H. 1997. Osmoti
 a
tivation of the HOG MAPK pathwayvia Ste11p MAPKKK: s
a�old role of Pbs2p MAPKK. S
ien
e. 276(5319),1702-5.Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. 1993. Nu-meri
al Re
ipes in C : The Art of S
ienti�
 Computing, Cambridge Univer-sity Press.Reed R.H., Chudek J.A., Foster R. and Gadd G.M. 1987. Osmoti
 signi�-
an
e of gly
erol a

umulation in exponentially growing yeasts, Appl Envi-ron Mi
robiol. 53(9), 2119-23.Reiser V., Raitt D.C. and Saito H. Yeast osmosensor Sln1 and plant 
y-tokinin re
eptor Cre1 respond to 
hanges in turgor pressure. 2003. J CellBiol. 161(6), 1035-40.Rissanen J. 1978. Modeling by shortest data des
ription. Automati
a. 14,465-471.Rizzi M., Baltes M., Theobald U. and Reuss M. 1997. In Vivo Analysis ofMetaboli
 Dynami
s in Sa

haromy
es 
erevisiae: II. Mathemati
al Model.56



Biote
hnology and Bioengineering 55, 592-608.Runarsson T.P. and Yao X. 2000. Sto
hasti
 Ranking for Constrained Evo-lutionary Optimization. IEEE Transa
tions on Evolutionary Computation.4(3), 284-294.Savageau, M. A. 1976. Bio
hemi
al Systems Analysis: A Study of Fun
tionand Design in Mole
ular Biology. Addison-Wesley, Reading, Mass.S
hoeberl B., Ei
hler-Jonsson C., Gilles E.D. and Muller G. 2002. Compu-tational modeling of the dynami
s of the MAP kinase 
as
ade a
tivated bysurfa
e and internalized EGF re
eptors. Nat. Biote
h, 20(4), 370-5.S
hwarz, G. 1978. Estimating the dimension of a model. Annals of Statisti
s6, 461- 464.Sedoglavi
, A. 2002. A probabilisti
 algorithm to test lo
al algebrai
 ob-servability in polynomial time. J. Symb. Comp. 33(5), 735-755.Shampine L. F. and Rei
helt M. W. 1997. The MATLAB ODE Suite. SIAMJournal on S
ienti�
 Computing. 18, 1-22.Sherman F. 2002. Getting started with yeast. Methods Enzymol. 350, 3-41.Smith A.E., Zhang Z. and Thomas C.R. 2000. Wall materials propertiesof yeast 
ells: Part 1. Cell measurements and 
ompression experiments.Chemi
al Engineering S
ien
es. 55, 2031-41.Somero, G.N. and Yan
ey, P.H. 1997. Handbook of Physiology. (eds. Ho�-mann and Jamieson) Oxford University Press, Oxford, New York. 441-484.Stryer L. 1995. Bio
hemistry. 4th ed. WH Freeman and Company. NewYork.Sunder S., Singh A.J., Gill S. and Singh B. 1996. Regulation of intra
ellularlevel of Na+, K+ and gly
erol in Sa

haromy
es 
erevisiae under osmoti
stress. Mol Cell Bio
hem. 158(2), 121-4.Swameye I., Muller T.G., Timmer J., Sandra O. and Klingmuller U. 2003.Identi�
ation of nu
leo
ytoplasmi
 
y
ling as a remote sensor in 
ellularsignaling by databased modeling. Pro
 Natl A
ad S
i U S A. 100(3), 1028-33.Takahashi, K., Ishikawa, N., Sadamoto, Y., et al. 2003. E-CELL2: Multi-platform E-CELL Simulation System. Bioinformati
s. 19(13), 1727-1729.Tamas, M.J., Luyten K, Sutherland F.C., Hernandez A., Albertyn J., ValadiH., Li H., Prior B.A., Kilian S.G., Ramos J., Gustafsson L., Thevelein J.M.and Hohmann S. 1999. Fps1p 
ontrols the a

umulation and release ofthe 
ompatible solute gly
erol in yeast osmoregulation. Mol Mi
robiol. 31,1087-1104. 57



Tamas M.J., Rep M., Thevelein J.M. and Hohmann S. 2000. Stimulationof the yeast high osmolarity gly
erol (HOG) pathway: eviden
e for a signalgenerated by a 
hange in turgor rather than by water stress. FEBS Lett.472, 159-165.Teusink, B., Passarge J., Reijenga C.A. et al. 2000. Can yeast gly
olysis beunderstood in terms of in vitro kineti
s of the 
onstituent enzymes? Testingbio
hemistry. Eur J Bio
hem. 267, 5313-5329.Theobald U., Mailinger W., Baltes M., Rizzi M. and Reuss M. 1997. In vivoanalysis of metaboli
 dynami
s in Sa

haromy
es 
erevisiae: I. Experimentalobservations. Biote
hnology and Bioengineering, 55(2), 305-316.Tomita, M., Hashimoto, K., Takahashi, K., et al. 1999. E-CELL: softwareenvironment for whole-
ell simulation. Bioinformati
s. 15(1), 72-84.Voit, E.O. 2000. Computational analysis of bio
hemi
al systems. A pra
ti
alguide for bio
hemists and mole
ular biologists. Cambridge University Press,Cambridge.Voit E.O. and Almeida J. 2004. De
oupling dynami
al systems for pathwayidenti�
ation from metaboli
 pro�les. Bioinformati
s. 20(11), 1670-81.Westerho� H.V. and Palsson B.O. 2004. The evolution of mole
ular biologyinto systems biology. Nature Biote
hnology. 22, 1249-52.Zhu H. and Snyder M. 2002. "Omi
" approa
hes for unraveling signalingnetworks. Curr Opin Cell Biol. 14(2), 173-9.Zu

hini, W. 2000. An Introdu
tion to Model Sele
tion. J. Math. Psy
h.44, 41-61.

58


