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Modeling and identification of biological systems with emphasis on
osmoregulation in yeast

PETER GENNEMARK

Department of Computer Science and Engineering

Chalmers University of Technology and Goteborg University

Abstract

This thesis deals with two topics in the area of systems biology. The first
topic, model identification, concerns the problem of automatically identify-
ing a mathematical model of a biochemical system from experimental data.
We present algorithms for parameter estimation and model selection that
identify both the structure and the parameters of a differential equation
model from experimental data. The system is designed to handle problems
of realistic size, where reactions can be non-linear in the parameters and
where data can be sparse and noisy. To achieve computational efficiency,
parameters are estimated for one equation at a time, giving a fast and ac-
curate parameter estimation algorithm compared to other algorithms in the
literature. The model selection is done with an efficient heuristic search al-
gorithm, where the structure is built incrementally. The main strengths of
our algorithms are that a complete model, and not only a structure, is iden-
tified, and that they are considerably faster compared to other identification
algorithms.

The second topic concerns mathematical modeling of osmoregulation in Sac-
charomyces cerevisiae, budding yeast. This system involves the biophysical
and biochemical responses of a cell when it is exposed to an osmotic shock.
We present two different differential equation models based on experimental
data of this system. The first model is a detailed model taking into account
an extensive amount of molecular detail, while the second is a simple model
with less detail. We demonstrate that both models agree well with experi-
mental data on wild-type cells. Moreover, the models predict the behavior
of other genetically modified strains and input signals.

Keywords: model identification, model selection, parameter estimation, or-
dinary differential equations, Saccharomyces cerevisiae, osmotic stress, HOG
signaling pathway.
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1 Introduction

The adaptive responses of a living cell to internal and external signals are
controlled by complex networks of proteins affecting for example transcrip-
tional responses and metabolic processes. On a basic level, the structure
of such a network can be described by a graph, see e.g. Figure 1. This
gives a useful overview of the network, but it is not a complete description,
since concentrations and the dynamic behavior in time and space are not
described. Despite this fact, this is the level of detail at which biologists
traditionally model biochemical systems. In part this is due to lack of quan-
titative experimental data and the difficulty in manually inferring the model
from such data.

&
oy e

\

S8

}7

@@

Nucleus

Figure 1: Traditional pathway model of the main components in the High
Osmolarity Glycerol (HOG) signaling pathway in S. cerevisiae (Hohmann
2002). The proteins (vertices) are connected by interactions (edges). Be-
cause of imprecise meaning of the interactions and lack of dynamic informa-
tion, models like these only give a schematic overview of the system. Details
of the HOG pathway are presented in Section 6.

To create more powerful descriptions, dynamic mathematical models based
on biochemical rate equations can be considered. One of several basic mo-
tivations for creating a more complete model is to simulate the system.
For a sufficiently exact model it then becomes possible to predict the be-
havior of the real system as well as modified systems. In cell biology, a
typical experiment involves variation of one or several input variables, such



as temperature, osmolarity and drug concentration. Besides, the cell can be
genetically modified, e.g. by deletion or over-expression of a certain gene.

The use of systematic experimental technologies in order to develop and
analyze mathematical models of complex biological systems constitutes the
base of systems biology, a research field that has rapidly evolved in recent
years (Kitano 2002a, 2002b). This involves a shift from studying specific
cellular components like a single gene or a single protein to emphasizing
systems level studies of cellular processes. The development of systems biol-
ogy has been driven by the advancement of experimental methods. Several
major breakthroughs like the genome sequencing and the development of
high-throughput and large-scale techniques, such as micro-arrays, offer a
great potential for obtaining a sufficient volume of data (Zhu et al. 2002).
At the same time, methods for obtaining high-quality data, such as quanti-
tative mass spectrometry, have become more efficient (Aebersold et al. 2003,
Mckenzie et al. 2003). Another key component in systems biology is the
development of systems approaches for modeling (Westerhoff et al. 2004),
like Metabolic Control Analysis (Heinrich et al. 1977, Kacser et al. 1973)
and Biochemical Systems Theory (Savageau 1976). In combination with the
rapid increase of computational power, such approaches offer a framework
for detailed mathematical modeling of complete systems. Recently, several
new computational approaches, like the systems biology mark-up language
SBML (Hucka et al. 2003) and the software environment for whole-cell sim-
ulation, E-cell (Tomita et al. 1999, Takahashi et al. 2003), have also been
developed in this area.

This thesis deals with two separate but related topics within systems biology:

Automatic model identification. This topic concerns the problem of
automatically identifying a mathematical model from data. Identification
complements data simulation as illustrated in Figure 2, and closes a loop be-
tween model and data. We present efficient model identification algorithms,
that reconstruct an ordinary differential equation (ODE) model from time
series measurement of individual compounds (Paper 1). The performance of
the algorithms has been evaluated on three previously published biological
models. We show that our approach is more accurate and considerably faster
compared to existing methods. Model identification involves both estimat-
ing the parameters of a model and selecting the model structure. In this
introduction we consider these two issues in Sections 4 and 5, respectively.

Modeling osmoregulation in yeast. We present work on modeling of
osmoregulation in the yeast Saccharomyces cerevisiae. This work has been
done in collaboration with experimentalists at Goteborg University. Os-
moregulation involves the biophysical and biochemical responses of a cell
when it is exposed to an osmotic shock, see Figure 3 for an overview. We
present two different ODE models based on experimental data of this sys-
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Figure 2: The desired relationship between a model and data involves two
main functionalities: data simulation and model identification.

tem. The first model (Paper 2) is a detailed model taking into account an
extensive amount of molecular detail, while the second (Paper 3) is a sim-
ple model with less detail. We demonstrate that both models agree well
with experimental data on wild-type cells. Moreover, the models predict
the behavior of other genetically modified strains. In this introduction, we
describe osmoregulation in Section 6.
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Figure 3: A basic overview of osmoregulation in yeast (Gervais et al. 2001,
Hohmann 2002). An extra-cellular osmotic shock, e.g. the addition of 0.5M
NaCl to the medium, rapidly initiates a water flow out of the cell leading to
loss of turgor pressure and volume decrease. The cell adapts by accumulating
glycerol in order to regain water and thereby volume and turgor pressure. In
the figure, turgor pressure is indicated by thickness of the cell membrane.

Basically, the two topics of this thesis both deal with the question of how
to construct a model from experimental data. This can be done either au-
tomatically using our identification algorithms or manually as mainly done
for the osmoregulation system. However, also in the latter case we use auto-



matic means for estimating the parameters. Hence, parameter estimation is
a recurrent theme in this thesis. Furthermore, regardless of approach used
for model construction, the problem of choosing a proper level of detail,
i.e. to avoid over- and underfitting when deciding on the model, is of great
importance and this is also an issue in common.

This extended introduction is intended to give a background to the papers
and also to provide further perspectives that are not present in the papers
themselves.

The rest of the introduction is structured as follows. The next section is
devoted to a brief introduction to mathematical modeling of biological sys-
tems and in Section 3 we focus on ODE models for biochemical systems. In
the following two sections we consider parameter estimation and model se-
lection, respectively. In Section 6 we describe our modeling efforts on yeast
osmoregulation. Finally, in Section 7 the main contributions of this thesis
are summarized.



2 Modeling biological systems

This section introduces basic concepts and approaches for the modeling of
biological systems. In the context of this thesis we restrict ourselves to
biological systems in cell biology, although most of the content also applies
to other biological modeling areas, such as population dynamics. In the
following sections we will also refer to biochemical systems, which can be
considered a subclass of biological systems. In a biochemical system we
only deal with molecules such as proteins and metabolites. In Paper 1 we
consider biochemical systems, while the models of Paper 2 and 3 can be
viewed as biological models since biochemical and biophysical modeling are
combined.

An essential issue in all modeling is to define the scope of the model. This
involves specifying which subsystems and which variables that should con-
stitute the model. A natural goal is to find a system that is reasonably
well isolated under the considered experimental conditions. Obviously this
is a very difficult task, since all processes in the cell are more or less depen-
dent on each other. As an example, the level of a particular enzyme can
be assumed constant for a short time interval. However, for an experiment
starting with some environmental stimulus, the stress may trigger changes
in gene expression that alter the activity of the enzyme. This is especially
important for experimental scenarios ranging in the order of hours. It is
therefore natural to try to identify all variables that are adjusting to the
experimental perturbation, for instance by large-scale experiments.

Another important issue in modeling is to consider what amount and quality
of experimental data is available. This influences the choice of modeling
approach as well as the level of detail of the model. A variety of modeling
approaches with different precision are used for modeling and analysis of
biological systems. In general, a more precise approach requires more precise
and extensive data to be identified. Naturally, a more precise approach also
offers more realistic and useful predictions. To give an overview, it is useful
to distinguish three basic modeling approaches:

Boolean networks. This is the most coarse approach in which each vari-
able is either 'on’ or ’off’. For instance, when modeling a genetic network
a gene is either fully expressed or not expressed at all. Using boolean func-
tions one defines how the system deterministically goes from one state to
the other. As an example, gene A is 'on’ in the next state given that gene B
and gene C are ’on’ in the current state. In this formalism computation is
obviously rapid - the updates of all variables occur synchronously and only
boolean functions are evaluated. From any initial state, a boolean network
reaches either a steady state or a state cycle in finite time.



Typically, boolean networks have been applied to genetic networks where
the number of variables is large and where data is sparsely sampled and
noisy (Huang 1999). There are several methods available for identification
of boolean networks from experimental data (Liang et al. 1998, de Jong
2002). In order to decrease the complexity of identification one can set
an upper bound on the number of inputs to each function. The biological
interpretation of this is that each gene can only be influenced by a subset of
other genes.

Obviously, boolean network models are inaccurate since variables are dis-
crete and there is no precise notion of time. Therefore, this approach is
mainly applicable to systems were a steady state is reached.

Ordinary differential equations (ODEs). ODEs deal with continuous
variables that typically assume real-valued concentrations. In general, a
system is described as

X!(t) = £;(X,1), i=1.n (1)

where X = [X ... X,,] is the state vector of concentrations and I = [ ... I,;,]
is a vector of input variables, and f; are typically non-linear functions. These
functions usually include several parameters (rate constants) that can either
be experimentally determined or estimated from various data. We generally
note that it is difficult to measure kinetic rate constants experimentally
and that parameter estimation is a complex optimization problem for ODE
models of realistic size.

The main feature of a system of ODEs is that it can be simulated in order
to obtain deterministic time series for the variables. Standard numerical
methods exist for this purpose. The input to such a simulation is the ODEs,
values for the parameters and initial values for all variables.

ODEs have been widely used to model biological systems. For instance,
the metabolism and the cell cycle regulation have been extensively modeled
using ODEs (Chen et al. 2004, Rizzi et al. 1997). We note, however, that
there are few identification methods available for ODE models. In Section
3 we give a more comprehensive introduction to ODEs.

Stochastic models. This is a very detailed modeling approach, in which
each variable represents the number of molecules. The state changes dis-
cretely, but how and when is determined stochastically. There are standard
methods to perform stochastic simulation, although they are typically very
computer intensive (Gillespie 1976, Gibson et al. 2000, Meng et al. 2004).
One such simulation gives one potential behavior of the system. By repeat-
ing the simulation many times, we obtain an approximation to the probabil-
ity distribution of the system over time. Hence, we can tell the probability
of having exactly n; molecules of variable X; at time t.



Stochastic modeling is typically applied when the number of molecules is
low and the assumption of continuously varying concentrations becomes too
inexact. In signaling pathways, for example, stochastic fluctuations may be
large enough to affect the system. To measure the average value of several
cells leads to a more deterministic shape of the experimental time series, but
a systematic error may be present. This is especially true, if there are non-
linear reactions in the system. As an example, the distribution of individual
cells with different swimming behaviors could be predicted by introducing
stochasticity into a model of signaling proteins in E. coli (Morton-Firth et
al. 1998, Levin et al. 1998, Abouhamad et al. 1998). Naturally, another
way of dealing with the problem of inhomogeneous cell populations is to
consider single-cell experiments (Peng et al. 2004).

Compared to ODE models, stochastic models are better approximations of
the biochemical reality, but also require considerably more computational ef-
fort to be simulated. Furthermore, ODE models give a deterministic answer
that may involve a systematic error, while stochastic models give a proba-
bilistic answer. The choice between ODEs and the stochastic approach is
therefore partly a trade-off between computational efficiency and accuracy
in the simulations. We note, however, that for many systems the accuracy
obtained by ODEs is a good approximation, since the effects of stochasticity
do not influence the behavior of the system at the observed level of detail.
In addition, it is often the case that the stochasticity itself is not essential
to the biological functionality of the system.

We finally note that there are also several intermediate approaches between
the basic ones presented above (de Jong 2002, Bower et al. 2001).



3 ODE models of biochemical systems

The most widespread formalism to model dynamical systems in science and
engineering is ODEs and in this thesis we only consider this approach.
Therefore, we will introduce the use of ODEs in biochemical modeling in
more detail.

Consider the following biochemical reaction for the transition of compound
S to P with rate constant k

k
S — P

The rate of the reaction is obtained by the mass action law as k[S], where
[S] denotes the concentration of S. For simplicity, we will from now on skip
the brackets for denoting concentration. The ODEs for the variables can
then be obtained as

P'(t) = -S'(t) = kS(t). (2)

Similarly, if the reaction is assumed catalysed by enzyme FE, the bilinear
reaction mechanism is the simplest possible

P'(t) = —S'(t) = kS(t)E(t). (3)

However, a more detailed analysis is often required in order to model an
enzymatic reaction. In particular, Michaelis-Menten accounts for the kinetic
properties of many enzymes (Stryer 1995). In this approach, a substrate S is
turned into a product P by an enzyme E according to the following reaction

ki
ko
E+S — ES — E+P
k_q

where ES is a transition state complex, k; and k_; are the forward and
backward reaction constants of the first step, respectively, and kg is the
reaction constant of the second step of the reaction. By assuming that
S > FE. which is usually valid for metabolic systems, and by assuming
catalytic steady state, that is ES’(t) = 0, we obtain (Stryer 1995)

P = 5'0) = gt (@)



where V4, and Kj; are constants. We note that a linear approximation of
the same form as (3) is obtained if S < K.

To add one more level of complexity, we introduce the mechanism of non-
competitive inhibition, which will be used as an example in Sections 4 and
5. This is also an enzymatic reaction, but here the enzyme has two binding
sites: one active site for the substrate and one regulatory site for the non-
competitive inhibitor (Stryer 1995), see Figure 4. The enzyme can bind
substrate at the active site and catalyze the production of product as long as
the non-competitive inhibitor is not bound to the regulatory site. However,
once the non-competitive inhibitor binds at the regulatory site, the shape
of the active site changes so that it can no longer catalyze the reaction.
The enzyme will remain inhibited until the non-competitive inhibitor leaves
the regulatory site. Using similar assumptions as for the Michaelis-Menten
reaction, the following ODE can be derived

VinazS(t)
(S() + Kp) (1+52)

P'(t) = -S'(t) = (5)

where I is the inhibitor concentration and V,,,,;, Kp and K7 are constants.

+S

E ES E +P

+l +l

El ESI

+S

Figure 4: Reaction mechanism for an enzymatic reaction with non-
competitive inhibition (Stryer 1995). S denotes the substrate, P denotes
the product, E denotes the enzyme and I denotes the inhibitor.

Finally, we want to point out that there are several other biochemical reac-
tions that can be modeled in a similar way as described here. One example
is reactions having several substrates and/or products.

3.1 Model examples

By combining a set of compounds with reactions (like the reactions presented
in the previous section), an ODE model of a biochemical system can be
constructed in the form of (1).

We exemplify by two test models, which will also be used to illustrate certain
concepts in Sections 4 and 5. The first model contains one compound that



exists in two states, A; and As, and where the transition from A; to As is
catalysed by the input signal I, while the reverse transition occurs sponta-
neously, see the left part of Figure 5. Assuming simple linear kinetics, the
system of ODEs is obtained as

Ay(t) = —AY(t) = k1 Ay (1)1 (1) — ko Aa(t) (6)

where each term on the right hand side corresponds to one reaction. From
now on we will denote the form of the ODEs as the structure of the model.
The model structure in combination with values for the parameters, k; and
k9 in this case, define the complete model.

12 11
X4 X2 X1 X3
v2 vl
S5 S3 S4
|
X5 X6
k1 v5
Al A2 S7 S6

Figure 5: Left: Simple model of two variables and one input variable. ky
and ko are rate constants. Right: The metabolic test system in Paper 1.
I and Iy are input variables, S3 — S7 are measured variables, X1 — Xg are
variables corresponding to metabolites assumed buffered at constant levels
and reactions v —vg are catalysed by different enzymes which also are present
at constant levels. All reactions follow Michaelis-Menten kinetics and vy, vo
and vs are non-competitively inhibited.

The second model that we consider is the metabolic test system in Paper
1, which is originally taken from Arkin et al. (1995). This system has two
input variables, I1 and Iy, and five variables S3 — S7. The kinetic equations
all follow Michaelis-Menten kinetics and inhibition is non-competitive. The
right part of Figure 5 depicts the model.

The system of ODEs is given in Paper 1 and here we simply illustrate by
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giving the ODE for variable Sy

S3 (t)Vmam] - S4(t)vma:1:3
(S3(t) + Kpy) (1+20)  Sa() + Kps

I1

Si(t) =v; —v3 =

where Va1, Kpi, Ki1, Vinazs and Kps are rate constants.

Given a model, one of the fundamental things to do is to simulate it in order
to study the dynamic behavior of the variables.

3.2 Simulation

Systems of differential equations are often difficult to solve analytically, but
can be simulated by numerical methods. The simplest method is Fuler’s
method. The formula for this method is

X(t+ At) = X(t) + AtX'(t) (8)

repeated for the desired number of iterations (time). Here, At is a constant,
typically much smaller than the simulation interval, and again, the vector X
corresponds to the concentration of all compound states. We note that the
formula is asymmetrical since it advances the solution through an interval
At, but uses derivative information only at the beginning of that interval.
For more accurate integration we can consider the Runge-Kutta method (see
e.g. Press et al. 1993) and for even better accuracy and efficiency standard
methods exist (Lambert 1991, Shampine et al. 1997).

As an example, we consider the model given in (6) and set the parameters
as k1 = 0.05 and k9 = 0.02. Furthermore, we let the total concentration of
A; and As be 1 and consider the following input function

1, t>20
1) = { 0.01, otherwise (9)

Before simulating, it is often useful to calculate the initial steady states of the
variables by setting all derivatives to zero and solve for the state variables.
The steady state values for A; and Ag are obtained from (6) as 200/205 and
5/205, respectively. Then, using a standard integration method (odelbs in
Matlab), we obtain simulated time series data as shown in Figure 6.

For an example of simulated time series data for the metabolic test system
we refer to Figure 3 of Paper 1.

11



Concentation

O L L L L
0 20 40 60 80 100

Time

Figure 6: Time series data of the model given in the left part of Figure 5.
The ODEs are given in (6) and the step input function is given in (9).

3.3 S-systems

Besides the metabolic test system in Paper 1, we also consider an ODE model
of a genetic network. This model is taken from the literature (Kikuchi et
al. 2003) and it is specified as a so-called S-system model (Savageau 1976,
Voit 2000). S-systems are represented by a fixed formal structure and the
generic form of equation 4 reads

n-+m n-+m

X/t =o; [[ X270 - 6 [[ X, (2) (10)
j=1 j=1

where X is a vector (length n 4+ m) of both dependent and independent
variables, & and ( are vectors (length n) of non-negative rate constants and
g and h are matrices (n X n +m) of kinetic orders, that can be negative as
well as positive. Concerning X, the first n positions contain the dependent
variables, while the remaining m positions contain the independent variables,
which were denoted by I in (1). For an example, we refer to Figure 2 and
Table 2 in Paper 1.

12



Basically, the S-systems formalism is derived from (1) by splitting f; into
two functions as (Voit 2000)

Xit)=f;7 (X, 1)~ f; (X.1), i=1l.n (11)

where fi+ reflects all processes of production of variable 7 and f;” reflects all
processes of degradation of variable 7. We note that these functions typically
are very complicated and unknown.

The functions ;" and f;” are assumed differentiable and positive-valued and
are specified as power-law functions using non-linear approximations. This
is achieved by first representing the functions and variables in logarithmic
coordinates. Then, the functions are approximated by Taylor series, where
only the constant and linear terms are retained. The linearized functions
are finally translated back into Cartesian coordinates. The result of this
process is the generic formula as given in (10).

Because of the first order Taylor’s approximation it is difficult to judge the
validity of an S-system model. In principle, the validity can be improved
by considering additional terms in the Taylor’s approximation. However,
that would increase the number of parameters and give a less compact form
of the equations, why analysis and identification would become much more
difficult (Guebel 2004).

13



4 Parameter estimation in ODEs

In this section we consider the problem of assigning values to the parameters
in a known model structure. For instance, in the model of (6) we want to
assign values to k; and ks.

It is technically difficult to measure kinetic rate constants in experiments.
The origin of such existing data is often in vitro' experiments and it cannot
be generally assumed that the corresponding values in vivo® are the same.
Besides, different laboratory conditions makes it difficult to compare data
from the literature. Because of these difficulties, only the order of magnitude
of parameters are usually available. We note that it is particularly difficult
to obtain this kind of data for signaling pathways, mainly because of the
low number of molecules and the fast kinetics.

If the parameters of a model cannot be directly measured or found in the
literature, their values can be indirectly found by fitting the model as well as
possible to existing data, e.g. time series measurements of concentrations.

In general, the parameter estimation problem can be formulated as a mini-
mization of an error function over the parameters. This function is typically
a measure of goodness-of-fit to data. In Paper 1, we use the following error
function for a single time series X,

;3 (P ) (12)

where 4 indexes the measurement points, where X; denotes values obtained
from the model, where Xj denotes experimental values, and where o; is
the standard deviation modeling the inaccuracy in the experimental values.
The total error of the model is calculated by summing the errors for all vari-
ables in all experiments. Assuming independent and normally distributed
measurement errors, (12) corresponds to the negative log likelihood, L, of
observing the data given the model.

The input to a parameter estimation method is typically a set of time series
data. We distinguish between complete data, where data for all variables is
available, and incomplete data, where data for some variables is missing. In
Paper 1, we consider artificial complete time series data from one or several
experiments. As an example, one experiment for the metabolic test system
is specified by the input functions /; and Iy and includes time series for

Literally ”in glass.” Refers to tests or reactions taking place outside a living organism,
on a microscope slide, in a test tube, etc.
Literally ”in life.” Refers to tests or reactions taking place in a living organism.

14



S3 — S7. In Papers 2 and 3, on the other hand, we use real data that is
incomplete.

A potential problem in parameter estimation is that it may be impossible to
unambiguously determine all parameters from the considered data set. One
source for problem of ambiguity is incomplete data. Using an algorithm for
algebraic observability (Sedoglavic 2002) we can test whether the parame-
ters of an ODE model in theory can be identified for different sets of in-
and output parameters/variables. For a model that cannot be identified,
infinitely many values of the parameters can fit the observed data. Hence,
an extended set of input and/or output variables or parameters is required
to obtain observability. On the other hand, if the observability test suggests
that the parameters are observable, it is important to note that this holds
for ideal data, but may not hold for a realistic data set.

Another source for problem of ambiguity is noisy data. For instance, the
parameters V., and Kjs in a Michaelis-Menten reaction (4) are difficult
to estimate from a noisy data set in which the substrate concentration, S,
is much lower than Kj;. One way to solve this is to include additional
experiments where higher substrate concentrations are considered. This
can be achieved either by a different input signal or by employing genetic
modifications.

Finally, it is the case that minimization of (12) is a hard optimization prob-
lem for models of realistic size and complexity, especially when the ODEs
are non-linear in the parameters. In particular, the error function typically
has several local minima. However, the complexity of the search can be
reduced by considering parameter bounds and/or constraint functions. For
instance, in Papers 1 and 3 we constrain the parameters by lower and upper
bounds.

In the next section we will discuss different ways of estimating parameters.

4.1 The basic method

A general method to minimize (12) is:

1. Try a parameter set.
2. Evaluate the error function.

3. Update the parameters according to some rule and then repeat from
step 2 until termination according to some criterion, e.g. that the error
is sufficiently stable.

15



This method follows the standard way of minimizing a function, although
we note that the derivatives of the function with respect to the parameters
are also required by some methods. Typically, a local minimum of the error
function is found, since the parameters are iteratively modified in small
steps. Hence, only if the initial parameters can be sufficiently well guessed
we can expect to find a global minimum. An example of a local method is
the steepest descent method.

For ODE models the evaluation of the error function is usually slow, since it
requires the entire model to be simulated for each experiment. Since this has
to be repeated many times, the overall method is computationally intensive
for realistic problems. Here we also note that the derivatives of the error
function with respect to the parameters can not be derived analytically.

In addition to local methods, there are global methods, which are designed
to avoid local minima of the error function. We note, however, that no op-
timization method can guarantee finding a global minimum and that global
methods typically require more computational time than local methods.
Some examples of global methods are simulated annealing and evolutionary
algorithms (see also Pintér (1996) and Press et al. (1993)).

Concerning the particular application to biochemical modeling, Moles et al.
(2003) evaluate seven different global methods on a biochemical model in-
cluding 36 parameters and simulated data from that model. The difficulty
of this particular problem is that the search space is large and that the
ODEs are highly non-linear in the variables as well as in the parameters. Of
the seven methods used, one was deterministic and the remaining six were
stochastic methods. Only two of the methods obtained parameters close
to the true values. Both these methods are based on evolutionary compu-
tation. Basically, in evolutionary computation, a population of parameter
vectors (individuals) are maintained. For each individual the error is cal-
culated and a new population of the same size is created by recombining
the best individuals of the current population. This procedure is then re-
peated according to the basic algorithm. In the study by Moles et al. the
best method, Evolution Strategy using Stochastic Ranking (Runarsson et al.
2000), obtained the true parameters within 16% relative error using about
39 hours computational time (Pentium III, 866 MHz).

In Papers 1-3 we use several different approaches to estimate the parameters.
The choice of method is largely dependent on the complexity of the models
and the requirements on computational efficiency. We first consider the two
osmoregulation models in Papers 2 and 3:

e The simple model in Paper 3 contains ten parameters. We use various
experimental data to constrain the search space by lower and upper
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parameter bounds. This gives a parameter estimation problem of rela-
tively low complexity and we can use a global minimization technique.
Since we only do this once, the computational efficiency of the method
is not a major issue.

e The situation is much worse for the detailed model of Paper 2 because
of the high dimension (70 parameters) of the search space. To partly
overcome this difficulty we study subparts of the model in isolation.
As an example, the steady state characteristics of one sub-model may
indicate what parameter values that result in a realistic signal ampli-
fication. Besides, for many of the parameters plausible values can be
found in the literature. The manually selected parameters are then
fine-tuned with respect to time series experimental data. Specifically,
the parameters were randomly perturbed using a normal distribution
with mean at the manually selected values. Several such perturbed
parameter sets were evaluated and the set resulting in lowest error
was chosen. Due to the complexity of the model, the standard devi-
ation of the perturbations must be selected relatively small. For that
reason, this method falls in between local and global optimization. As
in Paper 3, we only estimate the parameters once.

In Paper 1 we have a different and more challenging situation since the model
structure is unknown. We then have to estimate the parameters of many
different model structures to find the best one. It is therefore difficult to
use the general parameter estimation method and at the same time obtain
a realistic computational time. To overcome this problem, we applied a
decomposition approach of considering one equation at a time. A method
that completely follows this approach is the so-called derivative approach.
Since this approach has been an important starting point for our work on
Paper 1, we describe it in detail in the following section.

4.2 The derivative approach

Under certain conditions one can speed up the parameter estimation dra-
matically by considering one equation at a time and not performing any
simulations at all. This simplified approach, the derivative approach (see
e.g. Englezos et al. (2001) and Voit (2000)), is based on the least-squares
method (see e.g. Johnson et al. 1992). The method has one advantage - its
computational speed, but several disadvantages:

e [t is only working for complete data sets, that is, every single variable
must be measured.
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e The method requires estimates of not only variables but also deriva-
tives of the variables at arbitrary time-points. We note that this
problem can be reduced by considering different types of data pre-
processing like spline methods (de Boor 1978, Voit et al. 2004).

e The function it minimizes is usually not the function that we want
to minimize, e.g. (12). Instead, the residual of the least-squares is
minimized as will be further explained below.

To illustrate the derivative approach we consider the linear model (6) with
the input signal (9). The parameters to estimate are k; and k9. Given a
complete data set, that is time series data for A; and As, we can apply the
derivate approach.

In principle, by estimating A% (#) and all concentrations on the right hand
side from experimental data, (6) gives us a number of linear equations. Each
time point in the experiment where As is measured gives one such equation.
We let :4\7(1‘) denote experimental data of variable A; at time ¢. The full
system can then be written

— —

Aj(t)I(t)  —As(ty) A ()

: : (k;>_ A: (13)

A (b)) I (tm)  —As(tm) —— \ A(tm)

M b

where t; and t,, refer to the first and last experimental time point respec-
tively. The system of equations is over-determined and can be solved by the
least-squares method, which minimizes the Euclidean norm between Mk
and b, that is

min Y (A1) (A (1)1(1) — koA (8))” (14)

If the column vectors of M are linearly independent, the solution to the
least-squares problem is obtained from the linear system

MMk = M. (15)

For models including several ODEs, we repeat the least squares method for
each individual variable in order to estimate all parameters of the model.

Figure 7 illustrates how the parameter estimates of (6) are dependent on the
number of data-points in the time series. We note that although we have
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noise-free data, the least-squares method fails to estimate the parameters
correctly when we have few data-points. In this test, the derivatives were
estimated by the central difference as

—~ Ag(tigr) — Ag(ti_
tiv1 — i1
0.06 T T .
k1l
o 0.041 b
>
©
>
©
9
©
E
k7
W o0.02F k2
O 1 ‘2 ‘3 ‘4 5
10 10 10 10 10

Number of data—points per time—series

Figure 7: Parameters estimated using the derivative approach on the model
of (6) with different amounts of simulated data that is uniformly distributed.
The true values are k1 = 0.05 and ko = 0.02.

Although the precision can be increased by using more accurate interpolation
methods, such as smoothing spline interpolation (de Boor 1978), the general
behavior of this plot will remain.

Besides the problem of estimating the derivatives, we have the problem that
the minimization function (14) is not the same as our original minimization
function (12). Only for perfect data both (14) and (12) evaluate to zero for
the correct parameters. However, for noisy data the two functions typically
evaluate to different values and hence are minimized for different parameters.

We finally note that the derivative approach can be generalized by consid-
ering non-linear least-squares (Marquardt 1963, Press et al. 1993). This is
needed if there are reactions that are non-linear in the parameters, like the
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Michaelis-Menten kinetics. Non-linear least-squares algorithms require an
initial guess of the parameters and it is therefore common to re-start the
procedure with different initial guesses.

4.3 Our method for parameter estimation

The particular method we apply for parameter estimation in Paper 1 tries
to combine the computational efficiency of the derivative method with the
high accuracy of the basic method. Our method is based on two main ideas:

e Each ODE is considered separately as in the derivative method. This
increases the computational efficiency compared to the basic method.

e Simulation is employed as in the basic method. However, we only
simulate the single variable under consideration and not the complete
model. This increases accuracy compared to the derivative method.

When simulating a single ODE, all variables on the right-hand side of the
equation except the one that is simulated must be determined in some way.
A natural first approach is to employ interpolated data. However, in an
iterative search for the parameters (as the basic method) it can happen
that simulated data from the best model gives a better performance than
interpolated data. Ideally, we can then estimate the parameters with high
accuracy. This idea is used in Paper 1 and it is the main reason why the
parameter estimates are so good given the relatively short computational
time.

Using our algorithm for the parameter estimation problem of the linear
model (6) with the input signal (9) considered in the previous section (see
Figure 7) we can obtain the correct parameters with only few (< 10) data-
points per time-series. For more advanced examples we refer to Paper 1.

For biological systems, it is common that experimental time series data is
not available for all variables in the model, while our approach requires
a complete data set. Missing data is a fundamental algorithmic difficulty
and we are typically referred to the basic method for parameter estimation.
However, using methods conceptually based on the Expectation-Maximiza-
tion (EM) algorithm (Dempster et al. 1977), which is a standard statistical
algorithm for treating incomplete data problems, we are able to estimate the
parameters for certain incomplete data sets and still keeping the strategy of
considering one variable at a time. To exemplify this, we consider the model
presented in Figure 8 and a data set including three time series experiments
with 8 data-points per variable and experiment. By removing all data from
e.g. variables By and By we can still estimate the 16 parameters using our
strategy.
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Figure 8: Model of a signaling network with two input functions and ten
variables. All reactions follow linear (2) or bilinear kinetics (3). The total
number of parameters is 16.

4.4 Parameter sensitivity

To evaluate the reliability of the parameters obtained by a parameter es-
timation method it can be useful to perform a sensitivity analysis. The
sensitivity of the error function to a given parameter can be calculated as
the partial derivative of the error function with respect to that parameter.
A sensitivity analysis can reveal parameters that are undetermined from the
considered data set. For instance, some parameters in the model of Paper
3 could not be estimated with a high degree of confidence. In principle,
the sensitivities can also be used in an estimation method in order to more
efficiently search the feasible region.

However, we would also like to point out that biological systems tend to be
robust with respect to parameter variations (Eldar et al. 2002). Therefore,
it can be difficult to estimate parameters with high accuracy from only
wild-type experiments. Instead, various system modifications, like deletions
in order to break up feedback loops, can be useful in order to find the
parameters.
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5 Model selection

Model selection is the problem of how to select the structure, i.e. the form
of the ODEs. We will assume that we can estimate the parameters in any
model structure using one of the methods discussed previously. As in pa-
rameter estimation, we minimize a function, e.g. (12), but we now minimize
it over both the structures and the parameters. We will refer to the prob-
lem of finding both the structure and the parameters of a model as model
identification.

We would like to point out that it is generally much more challenging to
identify the structure of a model than to estimate the parameters in a known
model structure. There are several reasons why this is a difficult problem.
One reason is the difficulty to define the problem in such a way that a model
with reasonable complexity is selected. We discuss this topic in Section 5.1.
Another reason is the problem of model ambiguity as will be discussed in
Section 5.2. A third reason concerns the problem of performing the selection,
mainly due to the combinatorial increase in possible model structures when
increasing the number of variables. We discuss manual and automatic model
selection in Sections 5.3 and 5.4, respectively.

5.1 Model complexity

The purpose of a model is usually to explain available data sufficiently well,
and to predict the behavior of the real system. When manually building a
model one usually starts from a simple model and then incrementally adds
details to the model, intuitively matching the complexity of the model with
its purpose and available data.

In general, a too simple model lacks validity and fails to capture the trends
in data. We refer to this as underfitting to data. On the other hand, a too
complex model, e.g. including several parameters, tends to have a good fit
to data, since it has many degrees of freedom and can be fitted to noise as
well as to regularities in data. We refer to this as overfitting to data and
note that these models typically give weak predictions.

There are different ways of dealing with model complexity. Cross-validation
and bootstrapping are both methods for estimating the error based on re-
sampling (Zucchini 2000). In k-fold cross-validation, the data set is divided
into k subsets of equal size. The model error is then calculated & times, each
time leaving out one of the subsets in the parameter estimation, but using
only the omitted subset to calculate the error function. In bootstrapping,
instead of repeatedly analyzing subsets of the data, we repeatedly analyze
subsamples of the data. Here, each subsample is a random sample with
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replacement from the complete data set.

A different approach to avoid unnecessarily complex models is to penalize
complexity in the error function. A common way is to add a penalty term
that is typically a function of the number of parameters and/or the number
of data-points (Zucchini 2000). Tt is an open research question how to choose
this function in a best way for a particular application (Crampin et al.
2004). Common examples include Akaike Information Criteria (AIC, Akaike
1973), Minimum Description Length (MDL, Rissanen 1978) and Bayesian
Information Criteria (BIC, Schwarz 1978). In Paper 1, we use the following
error function for a single time series

~L+)\K (17)

where L is the log likelihood according to (12), AK is the penalty term in-
cluding a problem-specific parameter A and the number of model parameters
K. In model selection, the effect of this penalty can be observed by assign-
ing a very low or high value to A, typically resulting in over- or underfitting,
respectively.

5.2 Model structure ambiguity

In model selection it is important to be aware of the problem of ambiguity in
the model structure. We illustrate this point by presenting examples when
two different biological models create the same or similar experimental data.

The first example considers the biochemical models presented in Figure 9.
In model I, two compounds (A3 and Bj) both activate compound C, while
in model II only By activates C'. As indicated in the figure, the parameter
(k) of the catalysed reaction from C; to Cy in model II is the sum of the
corresponding parameters (k3 and k4) in model 1. All other parameters are
the same in the two models. If we consider a wild-type experiment, the two
models will produce exactly the same experimental data for the variables.
That is, the data does not unambiguously derive from one model and it is
impossible to distinguish the true model.

However, by including an additional experiment where either A or B is
deleted, the set of all data will unambiguously derive from either model I or
model II. This is a powerful experimental technique that for instance was
used to reveal the basic structure of the HOG signaling pathway in yeast
(Maeda et al. 1995).

Another example of models that output similar data for an experiment are
models that differ in reaction mechanisms. For instance, we reconsider the
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Figure 9: Ezperimental data of models I and II are identical. Compounds
A, B and C all exist in two different states and all reactions are assumed
linear or bilinear and the reaction constants are indicated as k’s.

model given in (6) together with a modified version of that model where I
is squared. The modified model reads

AY(t) = — A () = k1 AL (8) I () — ko A(t) (18)

where k1 = 0.05 and ky = 0.02 are the same for both models.

These two models output very similar data for certain input signals. For
instance, the input function (9) is depicted as Input I in Figure 10. Data
is similar but there are actually two kind of differences: the initial steady
states and the form of the rising curves of the two models differ slightly.
However, for moderate levels of measurement noise, it becomes very difficult
to uniquely distinguish them from each other.

On the other hand, by applying a different input signal we can obtain data
with much better discriminating power. As an example, an input function
that steps from 0.01 to 0.2 is illustrated as Input II in Figure 10. In this
case, the separation of the curves is evident, and at the end of the simulation
Aj of the original model (6) has more than four times higher concentration
than Ay of the modified model (18).

To conclude, we have shown two examples where models output equal or
similar data and cannot be distinguished from each other using the given
data. One possible solution is to provide a more extensive data set, for
instance by using a different choice of input function and/or a modified
system. However, we note that it is non-trivial to determine how much and
what kind of data is needed to give uniqueness.

In the first example, the ambiguity could also be resolved mathematically
by using an error function penalizing model complexity such as (17). In the
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Figure 10: Simulation of variable As in the models given in (6) (dashed
lines) and (18) (solid lines) using two different input signals: Input I steps
from 0.01 to 1 at t =20 and Input II steps from 0.01 to 0.2 at t = 20.

second example, however, this is hardly sufficient since both models have
the same complexity according to (17).

5.3 Manual model selection

A common approach in modeling is to manually select the model structure
and parameter constraints and then estimating the parameters automati-
cally. In principle, when manually creating an ODE model of a biochemical
system, one can consider any form of equations in the model structure.
However, usually the modeler tries to employ standard reaction types (like
the Michaelis-Menten kinetics) that can be derived from plausible reaction
mechanisms of the considered interactions. We note that S-systems are an
exception to this.

It is difficult to present a general methodology for how to construct a model
of a particular system. Instead, we exemplify by giving a brief description
of the methodology used when modeling the osmoregulation system. In
very simple terms, this system involves a signaling pathway working as an
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information carrier in the cell. The sensor of the pathway is activated by
reduced turgor pressure and the output of the pathway initiates glycerol
production that works as a feedback loop and causes turgor pressure to
regain. For an overview of our models we refer to Section 6 and for a more
elaborate description we refer to Papers 2 and 3.

Initially, our objective was to model the signaling pathway in isolation. The
basic structure of this signaling pathway was described in the literature.
Besides, we found models in the literature of similar systems in evolutionary
closely related species. Given this information we could assign plausible
kinetic equations to the reactions. However, since the signaling pathway
interacts with other systems it was difficult to model the pathway in isolation
and we therefore had to extend our modeling scope.

One point of interaction involves an environmental stimulus that serves as
input signals to the signaling pathway. In the beginning of the project, the
exact nature of this environmental stimulus was not known. Among others,
Gustin (1998) speculated in turgor pressure and this was later experimen-
tally verified by Reiser et al. (2003). From thermodynamics it is known that
turgor pressure is related to osmotic pressure and volume. Hence, in order
to model the input signal in a realistic way, a biophysical model including
at least these variables should be considered.

Another point of interaction exists between the output of the signaling path-
way and metabolic pathways of glycerol production. In principle, it is easy
to include metabolic pathways in a model, since a lot of modeling efforts
have been done in that field. A challenge, however, is to select a proper
modeling scope and level of detail. In Paper 2 we use an existing model
from the literature.

To conclude, in order to model the signaling pathway it was necessary to
extend the modeling scope by including two additional modules: one repre-
senting the biophysical changes of the cell and one representing the glycerol
production. Given the biophysical description we could explicitly link glyc-
erol production to the turgor pressure and consequently to the input signal
of the pathway. Once this was established we could simulate various exper-
iments in the computer.

Since we propose two different models of the same system it is interesting to
compare these with each other. The models share the main characteristics
and give the same qualitative predictions. Instead, the difference lies in the
level of detail at which the processes are modeled. In the simple model
hardly no molecular details are included, while the detailed model takes
into account a considerable amount of available structural information of
the pathways. We refer to Paper 3 for a discussion of qualitative aspects of
the models with respect to their different complexities.
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In principle, it would be interesting to perform quantitative comparative
analyses of different models, using a complexity measure like AIC, BIC or
MDL. Such a measure would reveal to what price of increased complexity
it is reasonable to increase the goodness-of-fit to data. Unfortunately, there
is no single accepted measure for this kind of problems. Besides, it is very
difficult to compare models when different data sets have been employed in
the construction of the models. For instance, the detailed model of Paper
2 is based on the currently identified structure of the system, and hence,
implicitly uses the data from which the structure is determined. Such data
is typically not obtained from time-series experiments of protein concentra-
tions but rather from protein-protein interaction experiments and experi-
ments measuring cell growth in various mutant strains. Although this kind
of data can be directly employed in model identification, it may be difficult
and tedious to extract the data from the literature. We would also like to
point out that the structural information obtained from these experiments
only tells whether variables interact, not the mechanism of interaction.

5.4 Automatic model selection

We will now describe some general principles for automatic model selection
algorithms. Typically, the inputs to a model selection algorithm are:

e Time course data for the variables. In Paper 1, we consider the same
input of data as previously described for the parameter estimation.
However, we note that different types of data, like steady-state data
or protein interaction data, can be employed as well.

e An initial structure including all variables and potentially known in-
teractions. As a base case, the initial structure can be assumed empty,
and hence, all interactions should be identified. As an example, for the
metabolic test system we would have S5 = S) = St = S¢ = S, = 0.

To define the model selection problem we must also specify an error func-
tion, like (17), and a search domain or model space, which defines the
space of possible models. The search domain can be obtained by defin-
ing reaction building blocks that may be used in the model. For instance,
the metabolic test system in Figure 5 contains two different types of reac-
tions: the Michaelis-Menten reaction (4) and the Michaelis-Menten reaction
with non-competitive inhibition (5). Therefore, to identify correctly the
metabolic test system the search domain must at least contain these two
reaction types. In Paper 1, we consider not only these two types, but also a
spontaneous state transition with linear kinetics (2) and an enzymatic reac-
tion with bilinear kinetics (3). The resulting search domain is given in Table
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1. We note that the identification problem becomes more difficult for a large
search domain. In a real situation, the true reaction types are unknown and
a plausible guess of the search domain must be made.

Possible reactions for S3, S; and Ss
S(S3) S(S4) S(S5) B(Ss,I1) B(Ss,l5) B(S3,5)
B(S5,85)  B(S3,9) B(S53,S7) B(Ss,/1)  B(Ss12)  B(S4,53)
B(S4,55) B(S4,5) B(S4,57) B(S5,[1) B(S5.l2) B(Ss5, S3)
B(Ss, S4) B(Ss, S6) B(S5,S7) M(S3) M(Sy) M(S5)

(S3.I1) 1(S3,12) 1(S5,54)  I(S3,55) I1(S3,56) 1(S3,57)
1(S0,0)  1(Seds)  1(S0,S5)  1(84.85)  1(S4,S6)  1(Su.7)
(S5, I1)  1(S5,12) I(S5, S3)  I(Ss, Sa) I(Ss, Se) 1(S5,S7)

Possible reactions for Sg and S7

S(Se) S(S7) B(Ss,I1) B(Se,I2) B(S6,S3) B(S,54)
B(S6,55)  B(S6.57)  B(S7,51)  B(Sr.I)  B(S7,53) B(S7,54)
B(S7,55)  B(S7,9)  M(Ss) M(S7)  I(Se,01)  1(Se,12)
I(S6,593)  1(S6,S4)  I(S6,S5) I(S6,S7) I(S7,01) 1(S7,I2)
1(57.53)  1(S7,54)  1(S7,85)  1(S7.5)

Notation
S(A) Linear transition (2) with substrate A
B(A,FE) Bilinear reaction (3) with substrate A and enzyme E
M(A) Michaelis-Menten reaction (4) with substrate A

I(A,B) Michaelis-Menten reaction (5) non-competitively
inhibited by B having the substrate A

Table 1: The search domain for the metabolic test system. We assume that
mass conservation constraints are known, that is the sum of S3, S4 and Sy

as well as the sum of Sg¢ and St are constant. In this notation, the true
ODE of variable 4 is S)(t) = I(Ss, 1) — M(S4).

For problems of realistic size an exhaustive search over all possible model
structures is not feasible due to the combinatorial explosion of possible model
structures. For instance, given an upper limit of four reactions per variable
(something that we do not assume in Paper 1) there are about 2.7 * 10°
possible structures only for variable S3 in the metabolic test system. For this
reason, it is very difficult to find algorithms that solve the model selection
problem in realistic time. To make the best of the situation, one typically
employs heuristic algorithms that at least are able to propose a model that
is close to the real system.
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In order to reduce the complexity of model identification we can constrain
the problem in different ways. For instance, we can include verified inter-
actions in the initial structure of the model and we can restrict the search
domain in different ways. Besides, the search space for the parameters can be
restricted as discussed in the previous section. We also note that identifica-
tion becomes easier the more the system has been experimentally disturbed
by various input signals and system modifications.

A general heuristic way of searching the best model is to divide the search
into two steps: (1) a structure search and (2) a parameter estimation method
for a given structure. In this way, we obtain the following approach:

1. Try a structure from the search domain.

2. Estimate the parameters in this structure and evaluate the error func-
tion.

3. Update the structure according to some rule and then repeat from step
2 until termination according to some criterion.

The model selection algorithm that we propose in Paper 1 is based on this
approach.

Finally, we want to remind the importance of distinguishing between what
information is possible to extract from a given data set and how well the
algorithm performs on that data set. In particular, given sufficient data
to unambiguously define the correct model and an ideal identification algo-
rithm, one can find the correct model. However, for this kind of problems, a
heuristic approach may fail since it does not perform an exhaustive search.
Hence, the heuristic nature of an algorithm may give an attractive compu-
tational time but also limits the performance on data sets that are small but
nevertheless unambiguously define the correct model.

5.5 Our model selection algorithm

In Paper 1 we suggest a model selection algorithm, in which we employ
the general heuristic method presented in 5.4 and consider one variable at
a time, as also done in our parameter estimation algorithm. We build the
structure incrementally and always maintain a current model with structure
and parameters. As a base case, the initial model is trivial with all variables
independent of each other. Our model selection algorithm can be described
as follows.

For each variable we do the following:
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1. Calculate the error of the initial model.
2. For each possible test reaction from the search domain:

(a) Temporarily add the reaction to the model.
(b) Estimate the parameters.

(c) Calculate the error.

3. If a better model was found in step 2, use this model as the new best
model.

4. Remove reactions if this results in a lower error.

This process of considering all variables in turn is repeated until no better
model is obtained. Hence, for each iteration over all variables, a reaction
may be added to each equation and any of the existing reactions might be
removed. A reaction is removed if it improves the fit to data (measured
by the first term of (17)) less than it increases the complexity of the model
(measured by the penalty term of (17)). We note that this heuristic algo-
rithm can not guarantee a global minimum of the error function, and hence,
as in the parameter estimation we may obtain a local minimum, where the
structure and/or parameters are incorrect.

In an attempt to illustrate the progress of the model selection algorithm
we consider the metabolic test system for the noise-free data set of 12 ex-
periments employed in Paper 1. We consider the search domain given in
Table 1 and we also use the same notation as in that table. The true model
structure that we search for is

S5(t) = M(S4) + M(S5) — I1(Ss,I1) — I(Ss, I3) (19)
Si(t) = —M(S4) + I(Ss, 11) (20)
S5(t) = —M(S5) + I(Ss, I) (21)
Sg(t) = ~S7(t) = ~M(Se) + I(S7,53) (22)

However, this model is from now considered unknown to the algorithm, and
the initial structure is empty, that is S§ = S} = Sf = S§ = S, = 0. The
only information we use is the set of time series experiments (data from
simulation of the true model) with various input functions I; and I5.

After one iteration over all variables the following model is obtained:
S5(t) = —B(S3. S7) (23)
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Sy(t) =1(Ss3, 1) (24)

S5(t) = =B(S5, 1) (25)
Si(t) = I1(S7, S3) (26)
Sy(t) = —1(S7, S3) (27)

We note that the ODE of S3 includes a bilinear reaction that does not belong
to the true structure. The same holds for the ODE of S5 where B(S5, I5) is

a false positive reaction, while true positive reactions are added to all other
ODE:s.

We repeat the procedure for all variables and obtain:

S5(t) = —B(Ss, S7) + B(S4, I1) (28)
Si(t) = I(Ss, I) — M(S4) (29)
Si(t) = —B(Ss, Is) + 1(Ss, I) (30)
S (t) = I1(S7,S3) — M(S6) (31)
S7(t) = —1(S7, S3) + M (S6) (32)

Hence, after the second iteration, the ODE of S5 contains two false positive
reactions, the ODE of S5 contains one false positive and one true positive
reaction and the structure of the other ODEs are correctly identified.

Iteration 3 gives:

S4(1) = B(S4, 1) — 1(S3, ) (33)
S4(t) = I(S5. 1) — M(84) (34)
S4(t) = I(S5. In) — M(S5) (35)
Sg(t) = I(S7,S3) — M(Se) (36)
Sy(t) = ~1(S7,S3) + M(Ss) (37)
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Here we make two observations: First, the addition of the true positive
reaction (S3, I2) to the ODE of S5 results in a model in which the previously
added reaction B(S3, S7) was unnecessary and could be removed. This is due
to the non-greedy strategy of the search: a reaction that has been added
might fall off in later stages. Similarly, the addition of the true positive
reaction M (S5) to the ODE of S5 pushed out the false reaction B(Ss, I2).
Second, no reactions were added to the ODEs of Sy, S¢ and S7. In other
words, the cost in increased complexity of an additional reaction was higher
than the (potential) gain in goodness-of-fit due to more parameters.

In the following iterations only the structure of S5 is modified. The true
model is obtained after a total of 7 iterations.

This example illustrates how the heuristic search incrementally builds up
the true structure of the metabolic test system. We note that the search
route is not only dependent on the error function and parameter estimation
routine but also on the specific data set employed.

5.6 Model identification algorithms in experimental plan-
ning

In this section we consider the potential use of model identification algo-
rithms in experimental planning. Specifically, we outline a computer-based
planning methodology where a model identification algorithm plays an im-
portant role.

In the area of molecular biology experimental plans are traditionally made
manually by professionals with great biological insight and experience. Ba-
sically, the next experiment is determined by the current knowledge of the
system, the current hypotheses about the system and the currently avail-
able experimental techniques. Based on the outcome of the experiment, the
knowledge of the system as well as the hypotheses are modified and new
experiments are thus iteratively proposed and executed. Our computer-
based experimental planning method mimics this iterative exploration of a
biological system.

We assume the functionality illustrated in Figure 2, in which we can both
simulate data from a model and identify a model from data. Before we
discuss experimental planning we note that this functionality also offers
several more elementary operations:

¢ Simulation of one or several models, e.g. for manual evaluation of their
quality.

e Evaluation of the error function to determine to what extent a new
experiment provides new information.
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e Using the identification method we can ask what type of experiments
and what amount and accuracy of data are needed in order to identify
a certain model.

Our experimental planning method more or less includes these elementary
operations and we will now describe the method in more detail.

We exemplify the method on an artificial cell signaling pathway presented
in Figure 11. This model corresponds to the true system that we aim at
finding.

Input Input

Figure 11: Model of a signaling pathway used to illustrate the experimental
planning method. The model includes ten proteins, each of them existing in
two different states (inactive and active), and several interactions including
positive and negative feedback loops.

We consider the following scenario:

e We have a minimal base model, M", containing all compounds of
interest connected by previously verified interactions. This model cor-
responds to our current knowledge of the system. In our example, M
does not contain any reactions at all, see the left part of Figure 12.

e We have performed a set of experiments, E°. Typically, an experiment
is a certain genomic background in combination with a certain input
function. For instance, we have performed one experiment on a wild-
type cell using a step input signal.

e We have the potential of executing several experiments, denoted F,
see Table 2.
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e We have a hypothetical model, M, that differs from M. In our ex-
ample, the hypothetical model is given in the right part of Figure 12.
We want to test this hypothesis experimentally.

© @® &
)

Figure 12: Left: base model M°. Right: Hypothetical model M.

Experiment Genomic background Input signal

1 wild-type pulse
2 AA step
3 AB pulse
4 AD step
5

ACAJT pulse

Table 2: An example of E, the set of possible experiments to perform.

We specify the experimental planning problem as follows: extend the data
set E° by the smallest possible set of experiments from E such that we can
reject or verify our hypothesis M. To reject M it is enough to execute an
experiment for which data is sufficiently distinct, measured by some metric,
from simulated data of M. Verifying that M is the unique model from a
given data set is a much more difficult task.

A powerful approach to deal with this problem is to employ the model
identification algorithm. In this way, we can search a set of experiments that
uniquely identifies the hypothetical model. The method works as follows.

For every possible experiment e € E, we do the following:

1. Simulate e from M.
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2. Temporarily merge simulated data from 1 with the real data set EY.

3. Run the model identification algorithm with the initial model and the
extended data set.

4. Evaluate how close the output model from step 3 is to M. A very
simple measure of similarity is the number of similar interactions minus
the number of non-similar interactions.

The experiment from FE corresponding to the best result in step 4 is the
suggested experiment to perform. Ideally, this experiment is executed in
the laboratory and we can either reject M or we have uniquely identified
M. We note that any simulated experiment in step 1 obviously implies M,
but that only some experiments may uniquely identify M.

The procedure above can be generalized in the following ways:

e [t cannot generally be assumed that one single experiment from FE is
enough to uniquely identify M. Therefore, the test set £ can be ex-
tended by including not only single experiments but also combinations
of for example two experiments from F. One test case could then in-
clude both experiment 1 and experiment 2 from Table 2. However, if
all possible combinations are to be tested, this also implies an expo-
nential increase in the number of test cases and thereby computational
time.

e The procedure can be repeated for a number of hypothetical models.
In this case, the experiments suggested is the union of the experiments
suggested for each hypothetical model.

e We can assign costs to the experiments (e.g. corresponding to time or
labor) and also include that in the evaluation function of step 4.

To conclude, we suggest a way of generating more efficient experimental
plans by including a model identification algorithm in an automatic deci-
sion process. In principle, such a planning method would take advantage
of the integrated data simulation and model identification functionality pre-
sented in Figure 2. We also note that other functionality, such as testing
for algebraic observability, would be a valuable complement to simulation
and identification. The planning method would probably prove helpful not
only in research, but also as a pedagogical tool in education for biologists, as
well as for mathematicians and computer scientists. Besides, it could help
people from these disciplines to learn more about the other subjects and
also facilitate communication between these groups when exchanging ideas.
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6 Modeling osmoregulation in yeast

In this section we present our modeling work on osmoregulation in the yeast
Saccharomyces cerevisiae, which is one of the most well-studied eukaryotic
organisms (Sherman 2002).

To understand osmoregulation it is useful to consider a simplified cell, con-
taining a water solution of large molecules (e.g. proteins and sugars) and
small inorganic ions. We further assume that the cell membrane is semi-
permeable, such that the large molecules are unable to pass the membrane,
while water and the small ions can freely pass. In principle, the ions would
then have equal concentration inside and outside the cell at equilibrium.
However, the large molecules in the cell are often highly charged and attract
many small inorganic ions. Therefore, the concentration of ions is greater in-
side than outside the cell at equilibrium (the Donnan effect, see e.g. Alberts
et al. 1994).

Based on this simple cell model we can give a conceptual explanation of
two fundamental variables in osmoregulation: osmotic pressure and turgor
pressure. On a basic level, osmotic pressure is proportional to the concen-
tration of molecules other than water in a solution. Hence, a large protein
contributes as much as a small ion to the osmotic pressure. Since the con-
centration of ions is greater inside than outside the cell at equilibrium, the
cell has a higher intra-cellular than extra-cellular osmotic pressure. This
causes an outward pressure on the plasma membrane. Due to this difference
water will flow into the cell. In isolation, this would cause the cell to swell
and potentially lead to cell rupture. This is a fundamental problem that any
cell must master. Basic solutions are to actively pump out ions, to actively
extrude water or to prevent the cell to swell by a cell wall.

The yeast cell uses the latter solution and has a cell wall with less elasticity
than the plasma membrane. Basically, the cell wall resists the expansion of
the cell, and creates an inward pressure on the cell contents. This pressure
is called the turgor pressure, defined as the difference in the hydrostatic
pressure between the inside and the outside of the cell. At equilibrium, the
osmotic pressure difference is balanced by the turgor pressure and the cell
volume is constant with no net flow of water.

An osmotic shock is a sudden increase in the extra-cellular osmotic pressure,
for instance due to the addition of salt to the cell medium. The immediate
effect on yeast to an osmotic shock involves water outflow and decreasing
volume. In this way, a new equilibrium is reached, in which the higher extra-
cellular osmotic pressure is balanced by an increased intra-cellular osmotic
pressure (due to the reduced volume), and reduction of turgor pressure (due
to reduced size of the cell wall). We will refer to these processes as the
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biophysical system of the cell.

Generally, the cell strives to keep volume, turgor pressure and relative water
content constant and independent of environmental changes. It therefore has
a control system responding to these changes by accumulating glycerol and
thereby increasing the intra-cellular osmotic pressure in order to regain its
previous size (Gervais et al. 2001, Hohmann 2002, de Nadal et al. 2002).

The control system consists of two main components, as illustrated in Fig-
ure 13. First, the aquaglyceroporin Fpsl closes upon hyper-osmotic shock
preventing the outflow of glycerol (Tamas et al. 1999, Tamas et al. 2000).
Second, the glycerol production is increased in the following way: The os-
motic shock activates the High Osmolarity Glycerol (HOG) pathway, see
Figure 1. This pathway belongs to the class of Mitogen Activated Protein
Kinase (MAPK) pathways that are found in all eukaryotic organisms and are
important for transmitting and processing signals from the cell membrane
into the cell. Typically, a MAPK pathway consists of a sensing system, a
cascade of three tiers of protein kinases and output systems such as tran-
scriptional regulators. Upon activation the MAPK, i.e. the last kinase in the
pathway, enters the nucleus and induces transcription. For the HOG path-
way, there are at least two independent sensors and one of them, Slnl, has
been shown to respond to changes in turgor pressure (Reiser et al. 2003).
The other sensor of the HOG pathway, the so-called Shol-branch, is not
identified. Active Hogl accumulates in the nucleus where it interacts with
transcription factors and actively participates in transcriptional activation
of target genes. One effect of HOG pathway activity is a metabolic shift
towards production of glycerol to balance osmotic changes.

To analyze the different aspects of osmoregulation, genetics and molecular
biology are used in numerous ways. Cells are exposed to high osmolarity
medium and the response to the hyper-osmotic stress is analyzed. The phos-
phorylation (activation) state of Hogl is measured to elucidate the kinetics
and the duration of the response. mRNA expression patterns of a few genes
dependent on activated Hogl (such as GPD1 and STL1) are also studied.
In order to understand the physiological response to the stress, intra-cellular
and total amount of glycerol are measured.

The osmoregulation system in yeast is an interesting target for mathematical
modeling for several reasons:

e The system is relatively well-characterized. Several key components
are identified, e.g. in the HOG signaling pathway, although we note
that other parts are described in less detail, e.g. the transcriptional
response.
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Figure 13: Key components in osmoregulation in S. cerevisiae. The bio-
physical system accounts for changes in volume and osmotic pressure. This
system can be experimentally disturbed by adding an osmolyte (e.g. NaCl)
to the medium. The control system involves the activation of the HOG sig-
naling pathway and the closure of Fpsl. Subsequent glycerol accumulation
constitutes a feedback loop to balance osmotic changes.

e The complexity of the system is non-trivial and challenging for mod-
eling studies. In particular, the down-regulation of the HOG pathway
has been an open question.

e Basic strategies of cellular adaptation are conserved from bacteria to
humans (Somero et al. 1997). Therefore, the system involves sev-
eral components that are of general biological and medical interest
(osmosensors, signaling pathways et.c.).

To mathematically model yeast osmoregulation, it is natural to divide the
model into two components. The first component considers the biophysical
system, involving the changes in osmotic pressure and volume. This com-
ponent is described in the two following sections. The second component
involves the control system, such as the HOG signaling pathway and glycerol
accumulation, and is covered in Sections 6.3 and 6.4.
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6.1 Physics behind osmoregulation

In order to describe the biophysical system mathematically we need proper
definitions of the different pressures involved. Therefore, this section intro-
duces the physics behind osmoregulation in a formal way and thus serves as
a background to Papers 2 and 3.

The chemical potential of water can be seen as a measure of the effective
water concentration in a given area. The value of the water potential is
influenced by two factors: (1) the osmotic potential and (2) the pressure
potential. The first is affected by the concentration of dissolved molecules
of solutes. As the concentration of solute molecules increases, the water
potential decreases. The latter takes into account the hydrostatic pressure.
If a solution is put under pressure, the water potential increases.

Formally, the chemical potential of a compound describes how the Gibbs
energy’® changes in a system when the compound is added to it (Atkins
1994). The chemical potential for water can be derived as (Levin 1979)

Hw = :U‘;ku (T) + 0y p+ RT In ay (38)

where ) (T) is the chemical potential of pure water at temperature T, 7,
is the apparent molar volume of water [dm® mol~'], p is the hydrostatic
pressure [Pa], R the universal molar gas constant [J K~ mol™!], T is the
temperature [K], and a,, is the water activity in the solution. The latter is
defined as (Atkins 1994)

_ Dw
Qw = —
w

(39)

where p; is the vapor pressure of pure water and p,, is vapor pressure of
water when it is a component of a solution.

If two regions of water with different potential are separated from each other
by a membrane permeable to water but not to the solute (a semi-permeable
membrane), there will be a water flow to the region of lower potential (Atkins
1994). This process is called osmosis and the water flow, .J,, [mol dm~2 s 1],
is given as (Levin 1979)

T = 22 (i~ ) (40)

w

3Gibbs energy is defined as G = H — T'S where H is the enthalpy, S is the entropy and
T is temperature (Atkins 1994).
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where L, is the hydraulic water permeability coefficient [dm? s kg™,
and p are, respectively, the chemical potentials of water on the inside and
outside of the membrane [kg dm? s=2 mol'].

The osmotic pressure, II, of a solution is the force per unit of surface exerted
by the flow of water moving by osmosis from a region containing distilled
water to a region containing the solution, the two regions being separated by
a semi-permeable membrane (Eckert et al. 1997). For very dilute solutions
in which ideal behavior can be assumed, van’t Hoff equation relates II for
a solute in a solution to solute concentration and water activity as (Levin

1979, Atkins 1994)

T
H:RTCI)Bn:—IE—lnaw (41)

UV

where ® is the osmotic coefficient, B is the concentration of the solute, and
n is number of particles that dissociated from the solute molecule. Taking
more than one solute into consideration gives (Eckert et al. 1997)

M=RT} & Bjn, (42)
j

where j indexes the solutes and ®; is the osmotic coefficient of solute j.
By dividing the above equation by RT we obtain the osmotic pressure in
the unit Osm instead of Pa. For example, a solution containing 0.1 M
glucose, 0.3 M KCI, and 0.4 M MgCly has an approximate osmolarity of
0.14+0.3%2+40.4%3 = 1.9 Osm assuming osmotic coefficients of 1.

Given the above expressions for chemical potential, low of water and os-
motic pressure, we can derive an expression for the flow of water over a cell
membrane in terms of osmotic pressure and turgor pressure (Levin 1979).
First of all, (38), (40) and (41) can be combined and simplified to

ﬁ'wa = Lp (Hf + He - H?) (43)

where II, and II; are, respectively, the external and internal osmotic pressure
and IT; is the difference in hydrostatic pressure over the membrane (p; — pe),
also called turgor pressure.

Turgor pressure can be seen as the outward hydrostatic pressure exerted
against the inside surface of a cell wall as water tries to flow into the cell by
osmosis. If the cell membrane is not stabilized by the presence of a cell wall,
the cell will expand and eventually burst. For a walled cell (like S. cerevisiae)
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at equilibrium (eq), the turgor pressure is balanced by the osmotic pressure
difference between the internal and external medium (Smith et al. 2000)

7 = — (TMe9 — T19). (44)

7

If the concentration of the external medium is increased, its osmotic pressure
increases, and water flows out of the cell. A new equilibrium is established
and the cell turgor pressure is reduced. At a certain point the external
concentration will be large enough to abolish the cell turgor pressure (I1; =
0), and hence (Smith et al. 2000)

Tie=0 — =0, (45)

If [T, is increased further, the turgor pressure is assumed to remain negligible.
In an ideal and dilute system? the cell will behave as an ideal osmometer and
the van’t Hoff relationship holds, so that at constant temperature (Smith et
al. 2000)

i (V = b) =T (V=0 — v (46)

where V is the volume of the cell and V}, is the so-called intra-cellular non-
osmotic volume, which is the sum of the volumes of hydrophobic cellular
components (such as lipid bilayers) that are osmotically unresponsive.

To obtain an explicit expression for the transient behavior of turgor pressure
under a varying volume, we assume that changes in p; are related to the
fractional changes in cell volume (dV/V') by a volumetric elastic modulus e
as (Levin 1979)

dp;
= V=, 47
€ G (47)

By integrating the above equation and approximating In(V (¢)/V?) by the
linear expression (V (¢)/V? — 1), we obtain (Levin 1979)

V(#)

IL(t) =€ <W — > + 11, (48)

‘T, < 13 MPa (Martinez de Marafion 1997).
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6.2 The biophysical model

We obtained the biophysical model for osmoregulation in Paper 2 and 3 from
(42), (43), (46) and (48) in combination with the following assumptions:

e The cell volume only changes due to in- and outflow of water. This is a
reasonable assumption for the rapid changes upon osmotic shock and
a first approximation for longer time intervals. Besides, for simplicity,
the cell surface area is assumed constant.

e Other variables than volume and pressure are assumed constant. Ex-
amples of such possible variables are cell surface area, cell wall thick-
ness, membrane composition and vacuole volume, which all are affected
by osmotic stress, see e.g. Hohmann (2002). However, the importance
of these responses is difficult to judge and these processes are typi-
cally non-trivial to include in a model, mainly due to lack of data.
Therefore, we disregard them in our current models.

e We consider glycerol as the sole osmolyte and, hence, ions and other
small molecules that have been reported to change upon osmotic shock
(see e.g. Sunder et al. 1996) are not considered. This simplification is
to a certain extent motivated by experimental results from Reed et al.
(1987), who found that glycerol counter-balances in the order of 80%
of applied stress of NaCl in S. cerevisiae.

In particular, we multiply (43) by the cell surface area and obtain a relation
for the cell volume as

V'(t) oc I;(t) — Te(t) — Ty(#). (49)

The intra-cellular osmotic pressure is calculated from (42) and (46) according
to

n + Gly(t)

L) = o, (50)

where Gly [mol] is the main osmolyte glycerol and n [mol] is the number of
other osmotically active compounds in the cell.

The natural input variable of the osmoregulation system is II,. A typical
experiment involves adding 0.5M NaCl to the medium, thereby increasing
I, by 0.93 Osm (P nacr = 0.93, nyaor = 2).
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The turgor pressure is obtained from (48) as

V(t)— V=0 _
I, (t) = H?W, V(t) > V=0 | o
0, otherwise

by restricting II; to positive values. Here V*=0 is a constant for the volume
when IT; = 0.

We finally note that the order of magnitude of the parameters in the bio-
physical model can be found directly or indirectly in the literature.

6.3 A first control model

In order to get an intuitive understanding of the osmoregulation system, we
now describe a first simple model of how the cell controls the biophysical
system when exposed to an osmotic shock. This first control model is simpler
than the models presented in Paper 2 and 3.

As illustrated in Figure 13, the trans-membrane sensor proteins Slnl and
Fpsl are dependent on the biophysical variable 1I;. In this first model we
only consider Slnl and its effect on intra-cellular glycerol production. We
note that accumulation of glycerol works as a feedback response to osmotic
shock, since the biophysical variable II; is dependent on intra-cellular glyc-
erol, as given by (50). An overview of the model is given in Figure 14.

Reference signal

Disturbance signal
Turgor pressure

External osmotic pressure

e u Time v Glycerol Gly ) )
———= Controller ,y Biophysical model
delay adjustment

Turgor pressure

Figure 14: A first model controlling the biophysical model. The glycerol
level is adjusted by a proportional and time-delayed controller.

To model the turgor sensor Slnl, the HOG pathway, transcription and trans-
lation in a very simple way, we consider a single time-delayed control func-
tion corresponding to all these steps. We let the difference between II; and
a reference level TIY be the input (e) to this controller as

e(t) = T1§ — TL(t). (52)
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We consider the simplest possible controller (u) that adjusts e by a constant
K as

u(t) = K e(t). (53)

To make the model more realistic, we also include a time-delay (¢4) corre-
sponding to the time it takes to initiate glycerol accumulation, e.g. tran-
scription and translation of enzymes. The time-delayed control signal (v) is
obtained as

olt) = ult — tg) (54)

Finally, we let the rate of change of glycerol, Gly, be dependent on the
control signal as

Gly'(t) = v. (55)

We use this model to simulate an experiment where the input signal is an
osmotic shock of 0.5M NaCl, see Figure 15. We note the input signal of
increased Il at £ = 0, followed by the rapid changes towards a new equilib-
rium in the biophysical variables. First, the imbalance in (49) causes a drop
in volume, which leads to a decrease in turgor pressure (51) and an increase
in intra-cellular osmotic pressure (50). Turgor pressure is abolished and the
system reaches a new equilibrium where II; = I, only a few seconds after
the applied stress. The control model initiates glycerol production imme-
diately after the time-delay has expired (10 minutes after the stress in this
simulation), which in turn results in increasing intra-cellular osmotic pres-
sure. As a consequence, water flows back into the cell and both volume and
turgor pressure are slowly increasing to their original values. In particular,
about 33 minutes after stress volume is recovered above V!1*=0 and turgor
pressure starts to increase, while the increase in volume slows down. At this
point we also see a slight increase in the rate of glycerol accumulation. This
is because glycerol is plotted as concentration and therefore is dependent on
volume.

The model presented in Paper 3 involves further refinements of this first
control model:

e Both intra- and extra-cellular glycerol are considered in the model.
Diffusion of glycerol molecules over the cell membrane is assumed to
follow Fick’s law (Gervais et al. 2001). Hence, the glycerol diffusion
rate is proportional to the difference between intra-cellular and extra-
cellular glycerol concentration.
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Figure 15: Simulated data from the biophysical model in combination with
(55). The input signal is an osmotic shock of 0.5M NaCl and reasonable
model parameters are taken from Paper 3.

e Changes in turgor pressure is independently sensed by SInl and Fpsl.
The second affects the diffusion constant for glycerol over the cell mem-
brane.

Using the simplest possible sensor mechanisms (linear dependence on the
difference between II; and IIY) we obtain reasonable time series for both
intra- and extra-cellular glycerol. Hence, the model in Paper 3 captures the
fundamental processes that are discovered in yeast osmoregulation hitherto.

6.4 A more detailed control model

We continue to refine the model we have developed in order to approach
the more detailed model considered in Paper 2. In particular, the molecular
details of the control system are further analyzed, starting with the HOG sig-
naling pathway and continuing with transcription/translation, metabolism
and glycerol production.

The key components and interactions of the HOG signaling pathway have
been identified during the last decade, see Figure 1 for an overview. To

45



model the HOG pathway we make the following assumptions:

e Reactions are modeled with linear (2) and bilinear kinetics (3). We
note that detailed analyses of the mechanisms of isolated signaling
reactions have been presented (Ferrell et al. 1997), while linear and
bilinear kinetics usually have been employed in models of entire sig-
naling pathways (Schoeberl et al. 2002, Swameye 2003). The main
reason for this is that data typically is sparse and incomplete.

e The SInl-branch of the pathway in isolation gives a similar response as
the complete pathway including the Shol-branch (O’Rourke 2004). We
can therefore exclude the Shol-branch from the model, something that
is very useful since the sensor protein of that branch is not identified.

e The cell contains two compartments, the nucleus and the cytosol. Dou-
ble phosphorylated Hogl may enter the nucleus and is considered to
be a transcription factor in the nucleus compartment. Furthermore,
dephosphorylated Hogl can leave the nucleus.

e The transmembrane protein Slnl senses turgor pressure by adjusting
its rate of auto-phosphorylation as

(1)
rate of Slnl auto-phosphorylation o < 0 ) (56)
t

where [ is a constant.

We note that the auto-phosphorylation of Slnl is needed to keep the
HOG pathway inactive under normal conditions and that the exact
sensor mechanism of Slnl is unknown.

e All phosphorylated compounds are dephosphorylated by protein phos-
phatases. The rate of dephosphorylation is dependent on Hogl-induced
protein synthesis of phosphatases. This realizes a negative feedback
loop on the activation of the HOG signaling pathway. However, we
note that there is always a basal level of phosphatases (Ghaemmaghami
et al. 2003).

e This has to do with so called scaffold proteins, which are able to bind
several (different) other proteins. They might facilitate signal trans-
duction by forming multi-molecular complexes that can be rapidly
activated by an incoming signal. In the HOG pathway, Pbs2 is be-
lieved to act as a scaffold protein (Posas et al. 1997). One detailed
way of modeling scaffold complexes is discussed in Levchenko et al.
(2000). However, due to lack of data we have not been able to include
this aspect in our model.
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e The number of signaling molecules are assumed to be sufficient for
allowing deterministic simulation. A recent study suggests that the
number of signaling molecules ranges from about 300 (Ssk2) to about
7000 (Hogl) for the proteins in the HOG pathway (Ghaemmaghami
et al. 2003).

The parameters of the HOG signaling pathway were obtained taking into
account experimental data on the response time of the pathway and the
amplification of the signal. Here we note that the structure of a signaling
MAPK cascade allows for signal amplification (Heinrich et al. 2002) as well
as switch-like response of the kinases in the end of the cascade (Huang et al.
1996, Ferrell 1998). In our model, we also note that the sensor contributes
to the switch-like behavior when § > 1 in (56).

The HOG signaling pathway triggers transcription and translation of several
genes as indicated in Figure 13. The biochemical details of this activation
are not understood to the same degree as the HOG signaling pathway, al-
though there are ongoing research in this area (de Nadal et al. 2004). These
processes are therefore simplified and we consider only two types of mRNA
species and two types of proteins. The first type corresponds to metabolic
enzymes, such as GLK1, GPD1 and GPD2, and the second corresponds to
phosphatases, such as PTP2 and PTPS3. Transcription is assumed linearly
dependent on active Hogl in the nucleus and translation is assumed linearly
dependent on mRNA in the cytoplasm.

To model carbohydrate metabolism and glycerol production we considered
previously published models (Hynne et al. 2001, Teusink et al. 2000, Rizzi
et al. 1997) and adjusted the kinetics to allow for stable steady state con-
centrations and flows as determined by Rizzi et al. (1997) and Theobald
et al. (1997). The dependence of carbohydrate metabolism and glycerol
production on the HOG signaling pathway was included by letting the rates
of several reactions be linearly dependent on the Hogl-induced protein. Be-
sides, in order to include the dependence of glycerol transport on Fpsl, we
assume the following sensor mechanism

. e . I (¢)\”
Fickean diffusion coefficient o 0 (57)
t

where the exponent -y is a constant.

Finally, in order to obtain a complete model we also let the concentrations
of all species in the cytosol be dependent on the cell volume (which is a
dependent variable in the biophysical model). The complete model as given
in Paper 2 includes 35 ODEs and 70 parameters.
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6.5 Discussion

The detailed model of Paper 2 and the simpler model of Paper 3 share
some main characteristics. Both models include two parallel ways of control
in the cell, since these seem to be necessary to explain experimental data.
The first control way is the ability of the cell to increase the intra-cellular
concentration of glycerol, and the second control way is the ability to control
the glycerol diffusion rate over the membrane. If any of these two control
ways is absent, the cell fails to counter-balance an osmotic shock in an
efficient way. A slight difference between the models is that the detailed
model takes Hogl-induced up-regulation of phosphatases into account and
thereby closes a negative feedback loop on the HOG signaling pathway.
However, considering realistic induction of the phosphatases, this feedback
plays no important role in pathway down-regulation.

To realize the models mathematically it is essential to combine a biophys-
ical description with a description of the cellular control mechanisms. We
generally note that our mathematical models are important not only for sim-
ulations but also for communicating the system in a compact and precise
way.

In combination with new experimental results, our models have improved
the biological understanding of osmoregulation in yeast and we exemplify
this in two different ways. The first example concerns glycerol accumulation
and Fpsl. It is generally assumed that stimulated expression of GPD1 and
GPP2 and the resulting increased glycerol production capacity accounts for
the increase in intra-cellular glycerol level upon osmotic shock. However,
our results indicate that this effect is only important for the long-term ac-
cumulation of glycerol. We suggest that a rapid closure of Fpsl leads to
an initial glycerol accumulation that, in turn, accounts for HOG pathway
down-regulation. This also implies that down-regulation of the HOG path-
way occurs before intra-cellular glycerol peaks and hence before cells have
fully adapted to the osmotic stress. Consequently, a strain expressing an
Fpsl that cannot close should result in a strongly prolonged HOG pathway
activation. This has also been experimentally verified.

The second example concerns feedback control of the HOG pathway in
osmotic adaptation. It has been suggested that enhanced expression of
genes encoding phosphatases accounts for feedback control (Hohmann 2002).
However, our data suggests that an increase in the level of phosphatases is
not necessary to down-regulate the pathway. Instead, the input signal to the
HOG pathway is decreasing as turgor pressure is recovered. The phospho-
rylated kinases of the pathway are then dephosphorylated by phosphatases
at a basal level. This view is supported by experimental results indicating
that the pathway can be fully reactivated by a second osmotic shock.
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The simple and detailed models of osmoregulation have been constructed in
parallel. Notably, it can be useful to consider a simple model when develop-
ing a more detailed model, since the main characteristics of the system can
more easily be observed and since the simple model can be parameterized
with higher confidence than the detailed model. For instance, data from
the simple model has suggested how to adjust the detailed model to give
realistic output on intra-cellular glycerol.

In order to further develop our models of osmoregulation several experiments
could be performed. Naturally, quantitative time series data are of particular
interest. Below we give some examples of potential experiments for future
studies:

e To investigate the roles of the two input branches of the HOG signaling
pathway one can consider mutants with only one branch active and
an input signal of various salt concentrations. In this way we obtain
the dose-response characteristics for the different branches. This has
already been done for one branch, but can be repeated for the other.
Also for these experiments it can be useful to follow glycerol in time
series.

e Concerning the mutant with an open Fpsl one could think of experi-
ments with different combinations of salt and glycerol/sorbitol stress,
e.g. 25% salt and 75% glycerol. This kind of experiments can be
important in order to reveal the exact relationship between the two
control functions.

e The osmotic pressures and turgor pressure of the biophysical model
are difficult to measure experimentally. However, the volume can be
measured by different techniques. Ideally, one could follow one in-
dividual cell in time series using state-of-the-art micro-fluid systems.
This would significantly increase the measurement precision compared
to data on a cell population.

A general observation of the experiments that have been performed hith-
erto is that the collection of possible system modifications using genetically
modified strains is very rich and advanced. Such modifications give valuable
insights into the system and can actually be necessary in order to completely
understand certain systems, e.g. systems with mixed fast and slow kinetics
and systems including feedback loops. However, one should not forget that
variations of the input signal can be employed in combination with these
modifications in order to identify the system. The standard step function of
0.5M NaCl could be complemented by other functions, e.g. a steady increase
in NaCl from 0 to 1M.
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7 Main contributions

In this section the main contributions of the three papers are listed. Besides,
my contribution to each paper is listed.

Paper 1
Efficient ODE model identification for biological applications.
Gennemark P. and Wedelin D.

A parameter estimation algorithm. An algorithm that estimates the
parameters of an ODE model from time series data has been devised. It
considers one equation at a time and combines least-squares estimation
with simulation of a single ODE to obtain both computational efficiency
and accuracy. Our results suggest that the method is more accurate and
considerably faster compared to other published methods.

A model selection algorithm. An algorithm that identifies both struc-
ture and parameters of an ODE model from time series data has been de-
vised. It is designed to handle problems of realistic size, where reactions can
be non-linear in the parameters and where data can be sparse and noisy. The
model selection is done in an efficient heuristic way, where the structure is
built incrementally. The method is evaluated on two previously published
models using artificial data. In comparison to other methods that were used
for these test systems, the main strength of the algorithm is that a complete
model, and not only a structure, is identified, and that it is more accurate
and considerably faster compared to other identification algorithms.

My contribution: literature studies and all implementation. Development
of the basic ideas for both parameter estimation and model selection in
cooperation with DW.

Paper 2
Integrative model of the response of yeast to osmotic shock.
Klipp E., Nordlander B., Kriiger R., Gennemark P. and Hohmann S.

A mathematical model of yeast osmoregulation. The ODE model
includes receptor stimulation, a MAP kinase cascade, activation of gene
expression and adaptation of cellular metabolism as well as a biophysical
description of volume regulation and osmotic pressure. Simulations agree
well with experimental results obtained under different stress conditions or
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with certain mutants. The model is predictive since it suggests previously
unrecognized features of the system with respect to osmolyte accumulation
and feedback control, which we confirm experimentally.

Improved understanding of Glycerol accumulation and Fpsl. It is
generally assumed that stimulated expression of GPD1 and GPP2 and the
resulting increased glycerol production capacity accounts for the increase
in intra-cellular glycerol level upon osmotic shock. However, our results
indicate that this effect is only important for the long-term accumulation of
glycerol. We suggest that a rapid closure of Fpsl leads to an initial glycerol
accumulation that, in turn, accounts for HOG pathway down-regulation.
This also implies that down-regulation of the HOG pathway occurs before
intra-cellular glycerol peaks and hence before cells have fully adapted to the
osmotic stress. Consequently, a strain expressing an Fpsl that can not close
should result in a strongly prolonged HOG pathway activation.

Improved understanding of feedback control of the HOG path-
way. It has been suggested that enhanced expression of genes encoding
phosphatases accounts for feedback control (Hohmann 2002). However, our
data suggests that an increase in the level of phosphatases is not necessary
to down-regulate the pathway. Instead, the input signal to the HOG path-
way decreases as turgor pressure is recovered. The phosphorylated kinases
of the pathway are then dephosphorylated by phosphatases at basal level.
This view is supported by experimental results indicating that the pathway
can be fully reactivated by a second osmotic shock.

My contribution:

1. Original idea and first models of combining a biophysical description
with a control model of osmoregulation. This idea was presented on
a talk and poster together with BN at the Functional Genomics con-
ference in Goteborg 2001. This biophysical model has been further
developed in collaboration with EK.

2. Work on the basic model of the HOG signaling pathway (including the
two-compartment model cytosol/nucleus) together with RK and EK.

3. My results from the simple model in Paper 3 have suggested how
to adjust the detailed model to give realistic output on intra-cellular
glycerol.

4. Suggestion of an experiment with different magnitude of osmotic shock
in order to study the pathway sensor mechanism.
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Paper 3
A simple mathematical model of adaptation to high osmolarity in yeast.
Gennemark P. and Nordlander B.

A mathematical model of yeast osmoregulation. This model com-
plements the detailed model of Paper 2. Compared to the detailed model,
the main strength of this model is its lower complexity, contributing to a
better understanding of osmoregulation by focusing on relationships which
are obscured in the more detailed model. The ten parameters of this simple
model were constrained by data from various literature sources as well as
our own data and estimated from absolute time series data on glycerol. The
low complexity makes it possible to parameterize the model from absolute
data. The qualitative behavior of the model has been successfully tested
on data from other genetically modified strains as well as data for different
input signals.

Improved understanding of osmoregulation. The model strengthen
the hypothesis that at least two ways of control are required in order to
efficiently counter-balance an osmotic shock in the cell. The first control
way is the ability of the cell to adjust the intra-cellular concentration of
glycerol, and the second control way is the ability to control the glycerol
diffusion rate over the membrane.

My contribution: All work, based on experimental data supplied by BN.
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