
ODEion - User Guide∗

Peter Gennemark and Dag Wedelin

February 8, 2013

1 Introduction

ODEion is a software module for structural identification of ordinary differential

equations (ODEs), where the model space is implicitly defined by arbitrary user-

defined functions that can be non-linear in both variables and parameters, such as

for example chemical rate reactions. The program searches for possible interac-

tions between the variables and suggests a suitable form of the ODEs, including

estimates of the parameters. The system has originally been developed for prob-

lems in systems biology but can be used for other applications. The name ODEion

is an acronym for ODE IdentificatiON.

The program inputs a problem file in form of a standard text file. Input data ma-

nipulation is implemented in Java for flexibility, and time-critical code is generated

in Fortran to allow for best performance and access to efficient numerical libraries.

The Java Runtime Environment and a Fortran compiler are required. ODEion is

distributed under the GNU general public license.

There are four basic functionalities:

• Verify syntax and consistency of a problem. Potential errors and reasonable

solutions to these are reported.

• Visualize data from an experiment of a problem and adjusting parameters of

the smoothing spline interpolation.

• Generate a Fortran program designed to solve a specific problem. The re-

sulting program is self-contained, and can be compiled and run immediately,

or saved for future execution.

∗For formal reference please refer to Gennemark and Wedelin (submitted 2013). Software avail-

able at http://odeidentification.org.

1

http://odeidentification.org

• Generate a Systems Biology Markup Language (SBML) file of the solution

model, allowing for visualization, simulation and further analysis on a range

of softwares. Output is also given in a simple human readable format.

2 Program set-up

Requirements:

• Java Runtime Environment (version 1.6.0 17 used in program development).

• A Fortran compiler (gfortran, gcc version 4.4.4 used in development;

http://gcc.gnu.org).

Besides, Perl (http://www.perl.org) may be useful for file manipulation.

Download the program to any directory on your computer. Go to the main directory

”ODEion 1 1”.

On a Windows system, it can be useful to work in the Cygwin environment where

gfortran, the Java Runtime Environment and Perl are available. Cygwin is free of

charge and can be downloaded at http://www.cygwin.com.

The Java program is pre-compiled. Potential recompiling of the program can be

done by

javac Java/*.java

Documentation of the java classes contained in ODEion is available in the directory

ODEion/Java/JavaDoc.

In the main directory of ODEion there is one library for problems, PROBLEMS,

one library with sample scripts for generating new problems, GenerateProblem.

The libraries starting by “F ” contain Fortran code, and the library OUTPUT is

the default storage place for output files when running problems using one of the

included scripts.

3 Running the program step by step

We will first describe how ODEion can be run step by step from the command

line. In practice, it is useful to collect several calls in one single script, and this is

described in the next section. For a quick start, readers that have Perl installed may

choose to go directly to the next section.

2

Read a problem file and check its syntax

java Java/VerifyProblem aProblemFile

Several sample problems are available in the PROBLEMS directory. Example:

java Java/VerifyProblem PROBLEMS/simpleLin1

If the problem file is found feasible, only one single line is output, echoing the read

file, e.g:

Java.problem.Problem.read - File:\ODEion_1_0\PROBLEMS\simpleLin1

To get additional debug output, add the flag -d as a second argument. Example:

java Java/VerifyProblem PROBLEMS/simpleLin1 -d

In this case, details of the reading and verification are reported on several output

lines.

View time-series data of an experiment

java Java/PlotExperiment aProblemFile experiment_number

For example, plot experiment 5 in the problem simpleLin2 by

java Java/PlotExperiment PROBLEMS/simpleLin2 5

A window should occur with the plot to the left and with check boxes to the right.

Using the check boxes one can select which variables to view. Experimental data is

interpolated by smoothing spline interpolation, and the effect of various smoothing

parameters can be investigated by a slider in the window.

Create Fortran program for solving an identification problem

java Java/GenerateProgram aProblemFile

For example, generate a program for solving the problem simpleLin1 by

java Java/GenerateProgram PROBLEMS/simpleLin1

3

The generated code is saved in the directory F generatedCode as the following

Fortran files:

alg.f, alg_paraest.f, err.f, est.f, estvar.f, estvars.f, exp.f,

funjac1.f, funjac1general.f, funjac4.f, funjac4general.f,

main.f, model.f, reactions.f, readProblem.f, sim.f, spline.f

supportRoutine_dlsode.f, supportRoutine_dn2gb.f

supportRoutine_misc.f, supportRoutine_pppack.f

supportRoutine_zufall.f

The files with names starting by ’supportRoutine ’ are constant for all problems,

while all other files are problem specific. This can be confirmed by observing the

modification times of the files by:

ls -l F_generatedCode

Compile and run Fortran program

Compile:

gfortran -o fprogram -w F_generatedCode/*.f

The flag -o is followed by the name of the executable program, and the flag -w

indicates that no warning messages are printed.

Run:

./fprogram < PROBLEMS/simpleLin1

The solution file is saved as OUT simpleLin1 1. This file is a standard human

readable text file.

Program debug printouts are output on standard output, and can be captured, e.g.,

by:

./a.out < PROBLEMS/simpleLin1 > Run_simpleLin1_1

Create an SBML file from solution file

java Java/MakeSBML aProblemFile aSolutionFile theSBMLFile

Example:

java Java/MakeSBML PROBLEMS/simpleLin1 OUT_simpleLin1_1 OUT_simpleLin1.xml

The resulting SBML file can be simulated by standard SBML tools, see http://sbml.org.

For example, an online service for verification and simulation: http://www.sys-

bio.org/index.htm

4

4 Running the program from a script

We will now describe how ODEion can be run using a script that collects several

calls.

A simple test script for one problem

A simple Perl test script for running problem simpleLin1 is given in the file script test1.pl.

It is executed by

perl script_test1.pl

The script can easily be modified to solve other problems.

The script executes four basic commands for (1) generating the Fortran program,

(2) comiling the Fortran program, (3) running it, and finally (4) generating a SBML

output file of the solution model. The individual calls are as follows:

java Java/GenerateProgram PROBLEMS/simpleLin1

gfortran -o F_program -w F_generatedCode/*.f

./F_program < PROBLEMS/simpleLin1 > Run_simpleLin1.txt

java Java/MakeSBML PROBLEMS/simpleLin1 OUT_simpleLin1_1 OUT_simpleLin1.xml

The perl script also reports some output in the following way:

$ perl script_test1.pl

Generate Fortran program.

OK.

Compile.

OK.

Run.

OK

FinalError = 8.0000...

t_sec = 18.5...

Create SBML file.

OK

Here, FinalError refers to the value of the error function obtained for the solution

model, and t sec refers to the execution time in seconds (this problem should take

less than 60 seconds on a standard computer).

A script for running several problems

A more advanced Perl test script for running several problems is given in the file

script test2.pl. Each problem may be run several times and with different seed to

the random number generator. The script is executed by

5

perl script_test2.pl

By default, this script solves the problems SimpleLin1 and pe 3genes1. Each of

the problems is executed with two different random seeds. Hence, in total there are

four runs.

The output files for the two problems are stored in OUTPUT/RES simpleLin1 and

OUTPUT/RES pe 3genes1, respectively.

It is easy to modify this script for user specific needs.

Partial derivatives

The program requires partial derivatives of the user-defined functions of M, both

with respect to the parameters θ and with respect to the variables X . By default,

numerical derivatives are used and the user does not have to calculate and input

any derivatives. However, the user can optionally define explicit derivatives for

all functions of a problem. For this reason, a library of common functions (i.e.,

reaction kinetics) is maintained within the software in an ordinary text file: REAC-

TIONS.txt. For example, the partial derivatives of reaction M2 from Eq. 2 in the

paper is included in the library in the following form:

name = michaelisMenten

equation = k1*X1/(k2+X1)

dfdk1 = X1/(k2+X1)

dfdk2 = -k1*X1/(k2+X1)ˆ2

dfdX1 = k1/(k2+X1)-k1*X1/(k2+X1)ˆ2

Here, dfdk1, dfdk2 and dfdX1 correspond to the partial derivatives of the func-

tion, ∂M3/∂θ21, ∂M3/∂θ22, and ∂M3/∂Xk, respectively. New functions can

easily be added to the library using the same syntax. The use of explicit deriva-

tives may improve accuracy of the solution and the computational speed to solve a

problem.

5 Format used to specify the problems

This document details the format used to specify the benchmarks problems for

identification of ordinary differential equations given at

http://www.odeidentification.org.

We will first describe some general characteristics of the format, and then walk

through the details of the identification file format, using the problem metabol2 as

an example.

6

5.1 General structure of the format

With the exception of the begin..end construction at the beginning and the end of

the file, the format consists of statements organized in paragraphs. A paragraph

can consist of one or several statements. A typical paragraph has some similarity

to a record or class in a programming language:

person_7

has name = mary

has telephoneNumber = 1234567

has child_ = person_5 person_14

is female

which can be understood as the single statements

name of person_7 = mary

telephoneNumber of person_7 = 1234567

child of person_7 = person_5 person_14

person_7 is female

In principle, every single statement is independent of every other statement, so the

meaning of the statements is independent of their order. The indices used are all

arbitrary and may be permuted. When a list is assigned (such as for child in the

example above), it is assumed to end at the end of the line.

The particular format for identification problems follows this general structure, but

has its own kinds of paragraphs, specialized to the purpose of this application.

A simple reader for identification problems will then only be able to read these

particular paragraphs for this application.

The format has been designed to be easy to parse in the following way. The syn-

tax of a single paragraph is keyword based, in that you read the first identifier of

the paragraph (before the ’ ’, which is ”person” in the example above), and then

you know how to straightforwardly parse the entire paragraph. This can then be

repeated over and over again until the end of the file.

All objects are referred to with a role and an index, eg. ”variable 4”. The indices

are for each category consecutive beginning with 1. This means that you can easily

read the file and directly place in suitable program data structures without the use of

any hash tables. Dynamic arrays can however be useful, unless the file is read twice

to check required array sizes. Not having such redundant size information in the file

makes it easy to manually edit and modify the file without causing inconsistencies.

A simple example parser for identification problems is available on the web site.

It is written in C and should be possible to compile and run on any computer with

a C compiler. As it stands, it parses the identification problem file and prints it

again. It can therefore be used directly as a simple verifier in that if the input and

7

the output are identical, the file can be considered to be correct. When used in

another program, the print statements can be replaced with code that loads the data

into appropriate data structures.

5.2 Details about the format

We will now look at problem metabol2 in more detail. Our ambition is to make

this documentation self-contained, but it can be useful to look at the full problem

specification to get an impression of how all parts are combined. Finally, a general

remark: ’//’ indicates that the rest of a line is a comment.

5.2.1 Header

format version = 1.0

begin problem metabol2

type = reactionKinetics

date = 5-Aug-08 09:27:04

url = http://www.cs.chalmers.se/˜dag/identification/

The current and first format version is called 1.0. The problem is encapsulated by

’begin’ and ’end’. ’problem’ is a keyword followed by the name of the problem,

which typically but not necessarily is the same as the name of the file.

There are two available types of problems: reactionKinetics and SSystem. Date

and url specify when the problem was formulated and the address to the on-line

information, respectively.

5.2.2 Reaction types

The reaction types specify the building blocks of the model space for a certain

problem. Note that the model space is specified subsequently.

reaction_1

has name = uniMolecularMassAction

has localVariableName_1 = X1

has localParameterName_1 = k1

has equation = k1*X1

reaction_2

has name = biMolecularMassAction

has localVariableName_1 = X1

has localVariableName_2 = X2

has localParameterName_1 = k1

has equation = k1*X1*X2

8

reaction_3

has name = michaelisMenten

has localVariableName_1 = X1

has localParameterName_1 = k1

has localParameterName_2 = k2

has equation = k1*X1/(k2+X1)

reaction_4

has name = michaelisMentenNonCompInhib

has localVariableName_1 = X1

has localVariableName_2 = X2

has localParameterName_1 = k1

has localParameterName_2 = k2

has localParameterName_3 = k3

has equation = k1*X1/(k2 +X1)/(1+X2/k3)

A new reaction type begins with the keyword ’reaction ’ followed by an integer.

Each type has a unique name (used as reference in subsequent sections), a list of

local variable names, a list of local parameter names and a rate equation. In the

first example above, the rate equation is

k1X1

where k1 is a local parameter and X1 is a local variable. In the second reaction

type, ’biMolecularMassAction’, the rate equations is

k1X1X2

where k1 is a local parameters and X1 and X2 are local variables. In the third

reaction type, ’michaelisMenten’, the rate equations is

k1X1

k2 +X1

where k1 and k2 are local parameters and X1 is a local variable. In the fourth

reaction type, ’michaelisMentenNonCompInh’, the rate equations is

k1X1

(k2 +X1)
(

1 + X2
k3

)

where k1, k2 and k3 are local parameters and X1 and X2 are local variables.

9

5.2.3 Variables

Each variable has a name and is either an inputVariable or a dependent variable.

variable_1 has name = x1 is inputVariable

variable_2 has name = x2 is inputVariable

variable_3 has name = x3 is dependent

variable_4 has name = x4 is dependent

variable_5 has name = x5 is dependent

variable_6 has name = x6 is dependent

variable_7 has name = x7 is dependent

For each dependent variable there is a corresponding ODE. Hence, in the above

example the system of ODEs to consider is:

x′3(t) = f3(x1, x2, x3, x4, x5, x6, x7, p, t)

x′4(t) = f4(x1, x2, x3, x4, x5, x6, x7, p, t)

x5(t) = f5(x1, x2, x3, x4, x5, x6, x7, p, t)

x′6(t) = f6(x1, x2, x3, x4, x5, x6, x7, p, t)

x′7(t) = f7(x1, x2, x3, x4, x5, x6, x7, p, t)

where the f ’s are functions defined by the model space, p is a vector of parameters

and t is time.

5.2.4 Ranges

A range is specified by a lower and an upper bound on the real line. Ranges are

subsequently referred to when defining parameter bounds.

To specify a range we begin with the keyword ’range ’ followed by an integer.

Each range has a lower and upper bound.

range_1 has lowerBound = 0.000E+00 has upperBound = 0.500E+02

range_2 has lowerBound = -0.500E+02 has upperBound = 0.000E+00

range_3 has lowerBound = 0.100E+00 has upperBound = 0.500E+02

5.2.5 Variable sets

A variable set contains a set of variables. Variable sets are subsequently referred

to when defining model space. A new variable set begins with the keyword ’mem-

berOfSet ’ followed by an integer, and finally a list of variables.

10

memberOfSet_1 variable_1 variable_2 variable_3 variable_4 variable_5

variable_6 variable_7

memberOfSet_2 variable_4 variable_5 variable_6 variable_7

memberOfSet_3 variable_3 variable_5 variable_6 variable_7

memberOfSet_4 variable_3 variable_4 variable_6 variable_7

memberOfSet_5 variable_3 variable_4 variable_5 variable_7

memberOfSet_6 variable_3 variable_4 variable_5 variable_6

Note that the line break between ’variable 5’ and ’variable 6’ for ’memberOfSet 1’

above is for display purpose and not part of the correct syntax.

5.2.6 Model space

The model space is defined separately for each dependent variable (ODE). Note

that the model space may differ between the variables.

For each dependent variable there may be several possible reactions. A new pos-

sible reaction begins with the keyword possibleReaction followed by an integer,

and then followed by ’of’ and the variable to consider. Each possible reaction has

a type (must be one of the pre-specified types above), a space of allowed variables

for each local variable, and ranges for all parameters.

possibleReaction_1 of variable_3

has type = uniMolecularMassAction

has spaceOfVariable X1 = memberOfSet_2

has rangeOfParameter k1 = range_1

possibleReaction_2 of variable_3

has type = uniMolecularMassAction

has spaceOfVariable X1 = variable_3

has rangeOfParameter k1 = range_2

possibleReaction_3 of variable_3

has type = biMolecularMassAction

has spaceOfVariable X1 = memberOfSet_2

has spaceOfVariable X2 = memberOfSet_1

has rangeOfParameter k1 = range_1

possibleReaction_4 of variable_3

has type = biMolecularMassAction

has spaceOfVariable X1 = variable_3

has spaceOfVariable X2 = memberOfSet_1

has rangeOfParameter k1 = range_2

possibleReaction_5 of variable_3

has type = michaelisMenten

has spaceOfVariable X1 = memberOfSet_2

has rangeOfParameter k1 = range_1

has rangeOfParameter k2 = range_3

possibleReaction_6 of variable_3

has type = michaelisMenten

has spaceOfVariable X1 = variable_3

has rangeOfParameter k1 = range_2

11

has rangeOfParameter k2 = range_3

possibleReaction_7 of variable_3

has type = michaelisMentenNonCompInhib

has spaceOfVariable X1 = memberOfSet_2

has spaceOfVariable X2 = memberOfSet_1

has rangeOfParameter k1 = range_1

has rangeOfParameter k2 = range_3

has rangeOfParameter k3 = range_3

possibleReaction_8 of variable_3

has type = michaelisMentenNonCompInhib

has spaceOfVariable X1 = variable_3

has spaceOfVariable X2 = memberOfSet_1

has rangeOfParameter k1 = range_2

has rangeOfParameter k2 = range_3

has rangeOfParameter k3 = range_3

The above text specifies the possible reactions of variable 3. A summary is given

in table 1.

Rate equation Variable space Parameter range

k1X1 X1 ∈ {x4, x5, x6, x7} k1 ∈ [0.0, 50.0]

k1X1 X1 ∈ {x3} k1 ∈ [−50.0, 0.0]

k1X1X2 X1 ∈ {x4, x5, x6, x7} k1 ∈ [0.0, 50.0]
X2 ∈ {x1, x2, x3, x4, x5, x6, x7}

k1X1X2 X1 ∈ {x3} k1 ∈ [−50.0, 0.0]
X2 ∈ {x1, x2, x3, x4, x5, x6, x7}

k1X1
k2+X1

X1 ∈ {x4, x5, x6, x7} k1 ∈ [0.0, 50.0]

k2 ∈ [0.10, 50.0]

k1X1
k2+X1

X1 ∈ {x3} k1 ∈ [−50.0, 0.0]

k2 ∈ [0.10, 50.0]

k1X1

(k2+X1)

(

1+
X2
k3

) X1 ∈ {x4, x5, x6, x7} k1 ∈ [0.0, 50.0]

X2 ∈ {x1, x2, x3, x4, x5, x6, x7} k2 ∈ [0.10, 50.0]
k3 ∈ [0.10, 50.0]

k1X1

(k2+X1)

(

1+
X2
k3

) X1 ∈ {x3} k1 ∈ [−50.0, 0.0]

X2 ∈ {x1, x2, x3, x4, x5, x6, x7} k2 ∈ [0.10, 50.0]
k3 ∈ [0.10, 50.0]

Table 1: Summary of possible reactions of variable 3 in the problem metabol2

Note that is assumed that Xi 6= Xj . For example, the following ’michaelisMenten-

12

NonCompInhib’ reaction is not part of the above model space

k1X3

(k2 +X3)
(

1 + X3
k3

)

Also note that some combinations of the biMolecularMassAction reaction are equiv-

alent, e.g. k1x5x6 and k1x6x5. Hence, in practice, one of them can be ignored.

Table 2 gives the list of possible reactions explicitly written out (this time without

ranges for the parameters).

k1x4 k1x5 k1x6 k1x7 k1x3

k1x4x1 k1x4x2 k1x4x5 k1x4x6 k1x4x7

k1x5x1 k1x5x2 k1x5x6 k1x5x7 k1x6x1

k1x6x2 k1x6x7 k1x7x1 k1x7x2 k1x3x1

k1x3x2 k1x3x4 k1x3x5 k1x3x6

k1x4

k2+x4

k1x5

k2+x5

k1x6

k2+x6

k1x7

k2+x7

k1x3

k2+x3

k1x4

(k2+x4)
(

1+
x1

k3

)

k1x4

(k2+x4)
(

1+
x2

k3

)

k1x4

(k2+x4)
(

1+
x3

k3

)

k1x4

(k2+x4)
(

1+
x5

k3

)

k1x4

(k2+x4)
(

1+
x6

k3

)

k1x4

(k2+x4)
(

1+
x7

k3

)

k1x5

(k2+x5)
(

1+
x1

k3

)

k1x5

(k2+x5)
(

1+
x2

k3

)

k1x5

(k2+x5)
(

1+
x3

k3

)

k1x5

(k2+x5)
(

1+
x4

k3

)

k1x5

(k2+x5)
(

1+
x6

k3

)

k1x5

(k2+x5)
(

1+
x7

k3

)

k1x6

(k2+x6)
(

1+
x1

k3

)

k1x6

(k2+x6)
(

1+
x2

k3

)

k1x6

(k2+x6)
(

1+
x3

k3

)

k1x6

(k2+x6)
(

1+
x4

k3

)

k1x6

(k2+x6)
(

1+
x5

k3

)

k1x6

(k2+x6)
(

1+
x7

k3

)

k1x7

(k2+x7)
(

1+
x1

k3

)

k1x7

(k2+x7)
(

1+
x2

k3

)

k1x7

(k2+x7)
(

1+
x3

k3

)

k1x7

(k2+x7)
(

1+
x4

k3

)

k1x7

(k2+x7)
(

1+
x5

k3

)

k1x7

(k2+x7)
(

1+
x6

k3

)

k1x3

(k2+x3)
(

1+
x1

k3

)

k1x3

(k2+x3)
(

1+
x2

k3

)

k1x3

(k2+x3)
(

1+
x4

k3

)

k1x3

(k2+x3)
(

1+
x5

k3

)

k1x3

(k2+x3)
(

1+
x6

k3

)

k1x3

(k2+x3)
(

1+
x7

k3

)

Table 2: List of all possible reactions of variable 3 in the problem metabol2

The ODE for variable 3 should be selected from any subset of the above 59 reaction

terms. For the problem we consider as example, metabol2, the true ODE is

x′3(t) =
k1x3

(k2 + x3)
(

1 + x1
k3

) +
k4x3

(k5 + x3)
(

1 + x2
k6

) +
k7x4

(k8 + x4)
+

k9x5
(k10 + x5)

For S-systems, the model space is simply defined by bounds for the parameters.

13

alpha has defaultLowerBound = 0.

alpha has defaultUpperBound = 20.

beta has defaultLowerBound = 0.

beta has defaultUpperBound = 20.

g has defaultLowerBound = -4.

g_1_1 has lowerBound = 0.

g_2_2 has lowerBound = 0.

g_3_3 has lowerBound = 0.

g has defaultUpperBound = 4.

g_1_1 has upperBound = 0.

g_2_2 has upperBound = 0.

g_3_3 has upperBound = 0.

h has defaultLowerBound = -4.

h_1_1 has lowerBound = 1.E-15

h_2_2 has lowerBound = 1.E-15

h_3_3 has lowerBound = 1.E-15

h has defaultUpperBound = 4.

The keywords ’defaultLowerBound’ and ’defaultUpperBound’ can be used to as-

sign one value to all elements in a vector or matrix. Naturally, subsequent assign-

ments of specific elements overwrites the default value.

Besides, one of the benchmark problems include an additional constraint of type

{gi,j ∈ [−3, 3], gi,j 6= 0}. This means that there is an interaction between variable

i and j but the direction is unknown. We use the following syntax to constrain the

value to non-zero:

g_2_1 is nonZero

h_5_5 is nonZero

5.2.7 Error function

The error function is defined by the keyword ’errorFunction’. The error function is

generally defined as

−L(X̂| θ) + h (λ,K,N) . (1)

The first term is the negative log-likelihood of the experimental data (X̂ denotes

experimental data, θ is a vector of parameters), and the second term penalizes

structural complexity of the model (h is an arbitrary function, λ is a local parameter

in the h function, K is the number of model parameters, and N is the number of

data points). Common choices of h include AIC and BIC/MDL.

14

For identification of both structure and parameters we may, for instance, use the

error function

−L(X̂|k) + λK

coded as

errorFunction

has type = minusLogLikelihoodPlusLambdaK

has equation = -L+lambda*K

has lambda = 1.

Similarly, the error function

−L(X̂|k) + λKlog(N)

is coded as

errorFunction

has type = minusLogLikelihoodPlusLambdaKlogN

has equation = -L+lambda*K*log(N)

has lambda = 1.

For identification of parameters (fixed structure) one can use:

errorFunction

has type = minusLogLikelihood

has equation = -L

The parser in ODEion uses the information in the equation field to define the error

function. The string in the type field is considered a name and is not parsed.

The log-likelihood is calculated by assuming independent and normally distributed

measurement errors and disregarding constant terms. We express the log-likelihood

for one time series as

L(X̂j |k) = −
1

2

∑

i

(

Xj(ti)− X̂j(ti)

σj(ti)

)2

where i indexes the measurement points, and where Xj , X̂j and σj denotes sim-

ulated data, experimental data and standard deviation for variable j, respectively.

The total log-likelihood L(X̂|k) is defined by summing over all variables and all

experiments.

For models based on chemical rate equations the number of parameters, K, is

simply the total number of parameters on the right-hand side of the ODEs. For

S-systems, it is natural to define K as the total number of non-zero elements in g
and h plus the parameters in α and β.

15

5.2.8 Experiments

General information about the experiments are given in the following form.

experiment_1 has name = exp1

experiment_2 has name = exp2

experiment_3 has name = exp3

experiment_4 has name = exp4

Each experiment has a number and a name. For perfect data (no noise), ’has per-

fectData’ can be added.

experiment_1 has name = exp1 has perfectData

experiment_2 has name = exp2 has perfectData

experiment_3 has name = exp3 has perfectData

experiment_4 has name = exp4 has perfectData

Then, details about each experiment are given.

sample_1 of experiment_1

has time = 0.0E+00

has variable_ = 0.200E+01 0.300E+02 0.1202588848674883E+01 ...

has sdev of variable_ = 0.0E+00 0.0E+00 0.53781408E-01 ...

sample_2 of experiment_1

has time = 0.75000000E+01

has variable_ = 0.200E+01 0.300E+02 0.9256634735714073E+01 ...

has sdev of variable_ = 0.0E+00 0.0E+00 0.92566347E+00 ...

...

21 of experiment_1

has time = 0.15000000E+03

has variable_ = 0.200E+01 0.300E+02 0.7581719037437853E+01 ...

has sdev of variable_ = 0.0E+00 0.0E+00 0.75817190E+00 ...

The keyword ’sample ’ followed by an integer begins description of one sample.

The rest of the line ’of experiment 1’ states from which experiment the sample is

taken. Each sample has a time-point, a vector of variables, and a vector of standard

deviations. The vectors have the same length as the number of variables.

This compact form is useful when we have fully observed variables. In general,

the sampled variables can be given individually as

sample_1 of experiment_1

has time = 0.0E+00

has variable_1 = 0.200E+01

has variable_2 = 0.300E+02

has variable_3 = 0.1202588848674883E+01

...

has sdev of variable_1 = 0.0E+00

has sdev of variable_2 = 0.0E+00

has sdev of variable_3 = 0.53781408E-01

...

16

5.2.9 Initial bounds

Initial bounds are given for each dependent variable in each experiments. The key-

words ’variable ’ and ’experiment ’ followed by integers specify which variable

and experiment to consider.

variable_3 of experiment_1

has lowerInitialBound = 0.1091E+01

has upperInitialBound = 0.1314E+01

variable_4 of experiment_1

has lowerInitialBound = 0.4505E+02

has upperInitialBound = 0.5388E+02

variable_5 of experiment_1

has lowerInitialBound = 0.4428E+02

has upperInitialBound = 0.5311E+02

variable_6 of experiment_1

has lowerInitialBound = 0.9109E+02

has upperInitialBound = 0.1087E+03

variable_7 of experiment_1

has lowerInitialBound = 0.1283E+01

has upperInitialBound = 0.1527E+01

variable_3 of experiment_2

has lowerInitialBound = 0.1139E+01

has upperInitialBound = 0.1363E+01

Note that information about initial bounds is unnecessary for perfect data.

5.2.10 Initial solution

The right-hand sides of all ODEs are by default assigned zero.

The initial solution specify a potential starting model other than zero. The syntax is

similar to the one used to describe the model space. Instead of ’possibleReaction’

we now write ’reaction’, and instead of ’spaceOfVariable’ we now write ’variable’.

Here is an example for the case when the true structure is known for variable 3 of

the problem ’metabol2’.

reaction_1 of variable_3

has type = michaelisMentenNonCompInhib

has variable X1 = variable_3

has variable X2 = variable_2

has rangeOfParameter k1 = range_2

has rangeOfParameter k2 = range_3

has rangeOfParameter k3 = range_3

reaction_2 of variable_3

has type = michaelisMentenNonCompInhib

17

has variable X1 = variable_3

has variable X2 = variable_1

has rangeOfParameter k1 = range_2

has rangeOfParameter k2 = range_3

has rangeOfParameter k3 = range_3

reaction_3 of variable_3

has type = michaelisMenten

has variable X1 = variable_4

has rangeOfParameter k1 = range_1

has rangeOfParameter k2 = range_3

reaction_4 of variable_3

has type = michaelisMenten

has variable X1 = variable_5

has rangeOfParameter k1 = range_1

has rangeOfParameter k2 = range_3

For S-systems, an initial solution is easily defined with similar syntax as used to

define the model space. The keyword ’initialValue’ is used to assign a specific el-

ement. The keyword ’defaultInitialValue’ is used to assign all elements in a vector

or matrix.

alpha has defaultInitialValue = 1

beta has defaultInitialValue = 1

beta_2 has initialValue = 0.

g has defaultInitialValue = 0

g_2_3 has initialValue = 2.

h has defaultInitialValue = 0

h_1_1 has initialValue = 1.

h_2_2 has initialValue = 1.

h_3_3 has initialValue = 1.

For a problem with 3 dependent variables this gives:

α =
[

1 1 1
]

β =
[

1 0 1
]

g =







0 0 0
0 0 2
0 0 0







h =







1 0 0
0 1 0
0 0 1






.

18

5.2.11 End of problem

The problem ends in the following way:

end problem metabol2

19

	Introduction
	Program set-up
	Running the program step by step
	Running the program from a script
	Format used to specify the problems
	General structure of the format
	Details about the format
	Header
	Reaction types
	Variables
	Ranges
	Variable sets
	Model space
	Error function
	Experiments
	Initial bounds
	Initial solution
	End of problem

