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Abstract—Stochastic transparency provides a unified approach to order-independent transparency, antialiasing, and deep shadow
maps. It augments screen-door transparency using a random sub-pixel stipple pattern, where each fragment of transparent geometry
covers a random subset of pixel samples of size proportional to alpha. This results in correct alpha-blended colors on average, in a
single render pass with fixed memory size and no sorting, but introduces noise. We reduce this noise by an alpha correction pass, and
by an accumulation pass that uses a stochastic shadow map from the camera. At the pixel level, the algorithm does not branch and
contains no read-modify-write loops, other than traditional z-buffer blend operations. This makes it an excellent match for modern
massively parallel GPU hardware. Stochastic transparency is very simple to implement and supports all types of transparent geometry,
able without coding for special cases to mix hair, smoke, foliage, windows, and transparent cloth in a single scene.

Index Terms—Rendering, transparency, shadow maps, deep shadow maps, stochastic sampling.
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1 INTRODUCTION

INTERACTIVE rendering of complex natural phenomena such
as hair, smoke, or foliage may require many thousands of

semitransparent elements. Architectural and CAD visualiza-
tions often depend on transparency as well. While the
ubiquitous hardware z-buffer allows programmers to render
opaque triangles efficiently and in any order, order-
independent transparency (OIT) remains a difficult but
highly desirable goal. Sorting transparent geometry at the
object level results in artifacts when objects overlap in depth,
while sorting at the fragment level is computationally
expensive. Combining multiple approaches, each suitable
to a different category of geometry, adds onerous complexity
to interactive applications. Shadows cast by semitransparent
objects present an additional challenge. Such shadows are in
fact a version of the OIT problem, as they require some data
structure that encodes opacity behavior.

We revisit the old-fashioned technique of screen-door
transparency, describing algorithmic extensions that make
it a practical interactive OIT method for both shadows and
visible surfaces. Among its natural advantages, traditional
screen-door transparency unifies all transparent geometry
types in a single algorithm, works well with multisample
antialiasing (MSAA), requires no sorting, requires no
additional memory beyond the MSAA z-buffer, and is
ideally suited to massively parallel hardware. (Indeed, it
has been supported to some degree by multisample z-buffer
hardware since the early 1990s [1], although modern GPUs
have introduced more flexible support.) Furthermore, the
technique easily extends to transparency shadow maps.

Stochastic transparency extends screen-door transpar-
ency with randomly chosen subpixel stipple patterns. For
example, a full-pixel fragment with an opacity of 50 percent

will randomly cover half of the subpixel samples; for those
samples, it is fully opaque. Conventional z-buffering does
the rest. If another 50 percent opaque fragment is closer to
the camera, then the first fragment’s color may end up in
only 25 percent of the total samples, regardless of which
triangle is rasterized first. Handling all transparent geome-
try this way results in the correct alpha-blended color on
average, but introduces noise.

We explore several methods for reducing that noise. In
particular, we borrow the alpha correction and accumula-
tion pass methods of Sintorn and Assarsson [32] to
formulate depth-based stochastic transparency, which stores
only z values during the stochastic render pass and yields
more accurate transparent sampling. We also discuss
connections to Monte Carlo ray tracing and explore the
statistical properties of our algorithm and extensions. Our
interactive implementation shows visually pleasing results
at encouraging frame rates.

No fragments were sorted in the making of these pictures.

2 PRIOR WORK

The A-buffer [9] achieves order-independent transparency
by storing a list of transparent surfaces per pixel. It has long
been a staple of offline rendering and can now be
implemented on recent graphics hardware. However, the
A-buffer must store all transparent fragments at once,
resulting in unpredictable and virtually unbounded storage
requirements. This requires either dynamic memory alloca-
tion or dynamic tile sizing to keep the memory requirement
below a fixed limit. Both are challenging to make efficient in
a massively parallel computational environment, such as
modern GPUs.

Depth peeling [7], [14], [20] uses dual depth comparisons
per sample to extract and composite each semitransparent
layer in a separate rendering pass. It makes efficient use of
rasterization hardware, but requires an unbounded number
of rendering passes (enough to reach the maximum depth
complexity of the transparent image regions). Complex
geometry, tessellation, skinning, scene traversal, and CPU
speed limitations can all combine to make each rendering
pass quite expensive, feasible only a few times per frame.
Depth peeling can also be applied to fragments bucketed by
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depth [21]; this works well, but the number of passes still
varies with the maximum number of collisions.

Billboard sorting renders the objects in sorted order. This
is efficient and can be done entirely on the GPU [31], but is
only appropriate for geometry types that don’t overlap in
depth. When approximate results are acceptable, a partially
sorted list of objects can be rendered with the help of a k-
buffer for good results [6].

Screen-door transparency replaces transparent surfaces
with a set of pixels that are fully on or off [16]. The choice
of stipple patterns can be optimized so they are more
visually pleasing to viewers [26]. The idea of random
stipple patterns per polygon has also been long known, and
was dubbed cheesy translucency in the original OpenGL “red
book” [27]. The subpixel variation of screen-door transpar-
ency that has been implemented in hardware is alpha-to-
coverage, which turns samples on or off to implicitly encode
alpha. Because alpha-to-coverage uses a fixed dithering
pattern, multiple layers occlude each other instead of
blending correctly, leading to visual artifacts.

This paper develops the combination of the “random”
and “subpixel” ideas together with efficient hardware
multisampling, as well as recent GPU features that allow
the fragment shader to discard individual samples [5].

Random subpixel screen-door transparency is exactly
analogous to using Russian roulette to decide ray absorp-
tion during batch ray tracing [25]. As an object-level analogy
to screen-door transparency, triangles can be dropped from
a mesh in proportion to transparency [30], but this can
require a dynamic tessellation as an object changes size on
screen. In order to keep rendering times in proportion to
screen size, Callahan et al. drop some polygons and increase
the opacity of the remaining ones [8]. Finally, recent
deferred shading schemes [19] can combine a transparent
object with opaque objects by using a stipple pattern in the
G-buffer and searching for appropriate samples during the
deferred shading pass.

A variety of techniques has been used to account for
shadows cast on and by transparent objects. In the film
industry the most common method is deep shadow maps [22].
These, like the A-buffer, require a variable length list per
sample while the map is constructed. For interactive
graphics, several recent techniques collect per-pixel statis-
tics in a small fixed number of passes using fixed space,
sacrificing perfect accuracy in exchange for predictable
performance. Our method continues the work in this
category. Deep opacity maps [33] have clear visual artifacts
unless a very large number of layers are used. Occupancy
maps are promising but are so far applicable only to objects
of uniform alpha [13], [32]. Both these methods use a
uniform subdivision of the depth range, creating accuracy
issues for scenes with highly nonuniform distributions of
transparency. Fourier opacity maps [17] are more robust to
nonuniform distributions, but, since they represent only
low-frequency changes in visibility, they are chiefly
effective for clouds and smoke and can have ringing
artifacts for discrete transparent surfaces.

Our technique combines several features not addressed
together in prior approaches. Stochastic transparency uses
fixed memory, renders a fixed number of passes, adapts to
the precise location of layers, and scales in effectiveness with

MSAA hardware improvements. The main tradeoff for these
features is the amount of time and memory required to
compute and store many samples. In hardware terms, this
translates to very aggressive MSAA buffer use. Despite this
drawback, we argue that the robustness and simplicity of

stochastic transparency make it an attractive option when
designing interactive graphics software systems that must
handle transparency.

3 STOCHASTIC TRANSPARENCY

Stochastic transparency is simply screen-door transparency
that uses a randomized subpixel version of the “screen-door”

stipple pattern. As with most stochastic methods, the main
problem is noise. Section 3.1 describes the basic method for
rendering transparent objects, and shows that Monte Carlo
stratification can be used to reduce the noise. Section 3.2
introduces the use of stochastic transparency for shadows of
transparent objects. In Section 3.3, we describe how to apply

alpha correction for noise reduction, and in Section 3.4, we
describe a three-pass but still order-independent method to
reduce noise further. In Section 3.5, we show how our
methods can be implemented efficiently using the multi-
sample antialiasing features on modern hardware. Section 3.6
returns to the topic of stochastic shadow maps, using the

refinements in the previous sections. Throughout the
discussion we refer to “triangles,” but the ideas extend
naturally to other primitives. We also often use “fragment,”
which refers to the part of the triangle inside a given pixel.

3.1 Sampling Transparency

We assume a collection of triangles, where the ith triangle
has color ci, opacity �i, and depth zi. The desired final color

for a pixel is given by the Porter-Duff “over” operator [29]:

C ¼ �1c1 þ ð1� �1Þð�2c2 þ ð1� �2Þð�3c3 þ � � �ÞÞ; ð1Þ

which can be rearranged as

C ¼
X
i

Y
zj<zi

ð1� �jÞ
 !

�ici; ð2Þ

showing that a triangle’s contribution to a pixel is �ici
modulated by the transparency of the triangles in front of it.
We introduce two running examples.

Example 1. Consider a pure red (c0 ¼ ð1; 0; 0Þ) triangle in
front of a pure green (c1 ¼ ð0; 1; 0Þ) triangle, each with an
opacity of 0.45 (�0 ¼ �1 ¼ 0:45Þ. If the background is
pure blue (cb ¼ ð0; 0; 1Þ) then the resulting pixel color is:

c ¼ �c0 þ ð1� �Þ�c1 þ ð1� �Þ2cb ¼ ð0:45; 0:2475; 0:3025Þ:

This simple artificial example isolates contributions from
each triangle and the background into separate color
channels.

Example 2. Consider N triangles each with � ¼ 1=N and
color cf . The resulting pixel color is:

c ¼ ð1� �ÞNcb þ
XN�1

i¼0

ð1� �Þi�cf :
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Here, we consider a 25 percent gray background (cb ¼
ð0:25; 0:25; 0:25Þ) with N ¼ 4 white triangles (cf ¼
ð1; 1; 1Þ). This example resembles the situation when
multiple thin, softly lit, partially transparent “smoke
blobbies” overlap in screen space, and helps illustrate the
inherent complexity of transparency; the color contrib-
uted by a triangle depends on � of all closer triangles at
that pixel.

Consider an ordinary z-buffer, where each pixel in the
frame buffer consists of a number of samples S. During
rasterization, a fragment covers some or all of those samples.
Each sample retains the depth and color of the front-most
fragment that has covered it. For our purposes, we want to
encode transparency for a fragment, using the percentage of
samples we enable during rasterization, so we begin by
considering all S samples to be located at the center of the
pixel. In this case, an opaque fragment will cover all the
samples, or none.

A transparent fragment will cover a stochastic subset of
R samples, resulting in an effective � of R=S. We choose
these subsets such that the expected (i.e., average) value of
R=S is the fragment �, or in other words, the probability
that a sample is covered is �. For example, for one of the
fragments in Example 1 with S ¼ 4 and � ¼ 0:45 R might
take on any value of 0, 1, 2, 3, or 4, but on average, it should
be 0:45S ¼ 1:8.

Each sample does ordinary z-buffer comparisons, retain-
ing the front-most fragment it sees, in a “winner take all”
process. In this way, a fragment may lose some of its R
samples to fragments in front of it. The fragment will end up
occupying only the samples that belong to its subset and
belong to the complement of the subset of each fragment in
front of it. The accuracy of the method depends on those
subsets being uncorrelated. If they are, then the expected size
of that set intersection is simply the product of the expected
set sizes (proportional to S). Restating this for a particular
sample, the probability of fragment i occupying the sample in
the end is the product of �i and ð1� �jÞ for all fragments j in
front of this fragment. Since the pixel’s displayed color is the
average1 of the sample color values, this probability is the
expected contribution of ci to the final pixel color. This
expected contribution matches (2), proving that each sample
is an unbiased estimator of the correct pixel color. This means
that with increased samples per pixel, pixel colors approach
the correct values.2 It also means that, as in half-toning, a
region of pixels will tend to average out to the correct color.

There will of course be some variance, i.e., random noise,
around the correct value. Reducing that noise can be
achieved by increasing the number of samples S, but for a
given triangle, this will have the classic Monte Carlo
problem of diminishing returns, where halving the average
error requires quadrupling S. The standard way to attack
diminishing returns is to use stratified sampling. That can be
accomplished here by setting the R samples as a group
rather than independently. One approach is to first set R:

Ri ¼ b�iS þ �c;

where � is a “canonical” random number (uniform in ½0; 1Þ).
For example, with S ¼ 4 and �0 ¼ 0:45, we have a 20 percent

chance of using R0 ¼ 1 and an 80 percent chance of using

R0 ¼ 2. (Or R could be dithered across a tile, for further

stratification.) We then choose a random subset of size R

samples. This allows the error for one fragment to decrease

linearly, thus avoiding diminishing returns. All the images

in this paper use stratified sampling (see Fig. 2).
Put differently, naive sampling flips an �-weighted coin

for each sample, while stratified sampling randomly selects
one of the S-choose-R possible subsets of samples. We
illustrate the practical impact of this difference with the two
examples at the beginning of the section with S ¼ 4 samples
per pixel. For Example 1, the RMS error (standard
deviation) rounded to hundredths per RGB channel is:

�naive ¼ ð0:25; 0:21; 0:23Þ:

When stratified sampling is used, each of the triangles will
have one or two samples representing them. For the front
triangle, all samples will count, while for the back triangle,
they will count only if not also covered by the front triangle.
This introduces more stability:

�stratified ¼ ð0:10; 0:17; 0:18Þ:

For Example 2 with S ¼ 4, we have for each RGB channel:

�naive ¼ 0:35;

�stratified ¼ 0:12:

This example shows that although we do not have

stratification between the fragments, we do still benefit

significantly from the stratification within a pixel. The actual

number is also interesting, because the example resembles

cloudy sprites on a dark background. An RMS error of 0.12 in

this situation, while somewhat higher than practical, is

approaching a usable level.
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1. In Section 3.5, a possibly weighted average.
2. Assuming the variance of R=S approaches zero. See Section 4.

Fig. 1. 15,000 transparent hairs, 6,000 transparency-mapped cards,
transparent cloth, and opaque models all composite properly and
shadow each other, rendering at 26 frames per second with only four
order-independent render passes over the transparent geometry. Note,
for example, the grass blades visible behind and in front of the scarf.



The benefit of stratification in the “one opaque sample per

fragment” example raises the question of whether in all cases

stochastic transparency has error that decreases with 1=S

and thus avoids the law of diminishing returns. Unfortu-

nately, this is not the case. Our example with S fragments,

each with one opaque sample, becomes a version of the “balls

and bins” problem (droppingM balls at random into S bins),

where the number of nonempty bins determines total alpha.

The asymptotic variance in the number of empty bins

increases linearly with M [15]. When M ¼ S (the “thin

media” case), and we normalize by S to get our opacity, this

implies variance decreases as 1=S, and thus the RMS error

decreases as 1=
ffiffiffiffi
S
p

. So the benefit of stratification for the thin

media case comes in the constant factor. This behavior is

similar in spirit to jittered sampling for opaque surfaces,

where the error varies between Oð1=
ffiffiffiffi
S
p
Þ and Oð1=SÞ,

depending on the details of the fragments in the pixel [23].

3.2 Stochastic Shadow Maps

A transparent shadow map can be rendered in exactly the

same way, by stochastically discarding fragments and

storing only depth. The goal of any transparent shadow

map technique is to estimate visðzÞ, the visibility along the

ray (or beam) through a shadow map pixel. Put another

way, visðzÞ represents the proportion of the light that

reaches depth z. Since each surface diminishes the light by

one minus the alpha for that surface, the correct visibility is

a product of surface intersections:

visðzÞ ¼
Y
zi<z

ð1� �iÞ: ð3Þ

From the discussion in the previous section, it follows that
the approximation of this function for some fragment at
depth z is obtained by simply taking S samples from the
stochastic shadow map within some small filter region and
counting how many samples are closer than z:

svisðzÞ ¼ countðz � ziÞ=S � visðzÞ: ð4Þ

In other words, the visibility at any depth is obtained from
a stochastic shadow map by simple percentage closer
filtering (PCF).

Fig. 3 illustrates that the approximation of svis converges
to the true function as S goes to infinity. Contrasted with
deep shadow maps [22], the approximation is crude—it is
quantized to 1=S, and must consider many samples for tight
convergence—but it is compact, regular, and parallel-
friendly. The z values need never be sorted. We discuss
ways to improve the approximation in Section 3.6.

3.3 Alpha Correction

The correct (nonstochastic) total alpha of the transparent
fragments covering a pixel is

�total ¼ 1�
Y
ð1� �iÞ: ð5Þ

(This is 1� visð1Þ, or one minus the contribution of the
background color.) Since the product is independent of the
order of the fragments, this equation can be evaluated in a
single render pass, without sorting. Ordinary alpha blend-
ing leaves this result in the alpha channel. It is only the color
channels that depend on proper depth ordering.

Following Sintorn and Assarsson [32], we can use total
alpha as a correction factor. We multiply our average color
of stochastic samples by �total=ðR=SÞ. For pixels with a
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Fig. 2. Basic stochastic transparency with (a) 8, (b) 16, and (c) 64 samples per pixel, plus (d) a reference image from depth peeling. All images with

no antialiasing, alpha 30 percent. Model contains 322K triangles.

Fig. 3. The red line is the true visibility function visðzÞ for a random set of blockers. In the leftmost plot, two possible stochastic visibility functions

svisðzÞ are shown (in blue and green) when visibility is estimated with eight samples. In the remaining plots, hundreds of stochastic visibility functions

have been superimposed to show the probability distribution for 8, 32, 256, and 1,024 samples.



single transparent layer, the result is now exact. Empirically,
the error in multilayer pixels is reduced overall, though for
some pixels it is increased (see Fig. 4). This technique does
add bias (see Section 4).

For our two examples from the last section, the effects of
alpha correction are instructive. The RMS error for Example 1
changes as:

� ¼ ð0:10; 0:17; 0:18Þ ! ð0:17; 0:14; 0:0Þ:

Note that the error associated with the first triangle goes up.
This is to be expected because the contribution from the first
visible triangle is optimally stratified, and changes due to
other triangles can easily make it worse. The background
(blue) component error goes to zero as expected, and the
back triangle’s contribution is improved. In less pathologi-
cal examples, the error in each component is a mixture of
errors from all contributors, so as long as error is usually
reduced per fragment, it should improve per pixel. For the
more naturalistic Example 2, the error goes to zero because
the fragment colors are all the same:

� ¼ 0:12! 0:0:

While this extreme case is unusual, whenever fragments
have similar colors we will get some of this benefit.

3.4 Depth-Based Stochastic Transparency

One source of error in stochastic transparency is that each
fragment is weighted only by how many of its samples are
finally visible. With one additional order-independent
render pass, we can improve these weights significantly.

Looking at (2) and (3), we see that visðzÞ is not only the
light reaching depth z from a light, it is also the light
reaching the camera from a fragment at depth z:

C ¼
X

visðziÞ�ici: ð6Þ

In words, each fragment contributes in proportion to its
visibility and its opacity.

Given an oracle that estimates visðzÞ, we can estimate (6)
using a single additive render pass over all fragments, in
any order. A transparency shadow map from the camera is
such an oracle, a way of estimating visðzÞ. This is a pleasing
duality: any transparency shadow method is also an order-
independent transparency rendering method, using one

extra accumulation pass. For example, this is how Sintorn

et al. [32] use Occupancy Maps for both, shadows and

rendering. They point out that it is important to alpha-

correct the result by the ratio of the correct total alpha to the

accumulated alpha, obtained by replacing ci with 1 in (6).
In our case, the oracle is a stochastic depth buffer. Here is

the resulting method for depth-based stochastic transparency,

for samples that are all in the center of the pixel:

1. Render any opaque geometry and the background.
All further steps treat only the transparent geometry,
culling away fragments that are behind opaque
geometry.

2. Render total alpha for each pixel into a separate
buffer. (One pass.)

3. Render stochastic transparency with S samples per
camera pixel, storing only z. (One pass, multi-
sampled.)

4. Accumulate fragment colors (including alpha to be
used for alpha correction) by (6), with visibility
estimated by (4). The shader reads all S of the z
values for the pixel from the output texture of the
previous step, and compares them with the current
fragment’s z. (One pass.)

5. Composite that sum of fragments, times the alpha
correction, over the opaque image.

Note that Step 1 in this algorithm is an optimization (of both

speed and quality), and that the algorithm holds for � ¼ 1

as well.
This is almost always significantly less noisy and more

accurate than the basic stochastic transparency algorithm

(see Fig. 4). One reason is that basic stochastic transparency

effectively quantizes alpha to multiples of 1=S, while depth-

based stochastic transparency quantizes visibility but not

alpha. Another reason is that the basic method collects only

fragments that “win” and remain in the z-buffer for one or

more samples, while in the depth-based method, all

fragments contribute.
Using the depth-only pass without alpha correction

reduces the RMS error for the red and green triangles of

Example 1:

� ¼ ð0:10; 0:17; 0:18Þ ! ð0:0; 0:05; 0:18Þ:
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Fig. 4. Comparison of noise reduction methods. (a) Basic stochastic transparency has noise in all transparent regions. (b) Alpha correction

eliminates noise in areas where all layers have similar colors. (c) Depth-sampled stochastic transparency is more accurate in complex regions.

(d) Reference image from depth peeling. All images use eight samples per pixel, no antialiasing, and an alpha of 40 percent.



Note that the background’s contribution (blue) does not
change. The errors for the other channels are so low that, in
this case, alpha correction will likely do more harm than
good, which is indeed the case:

� ¼ ð0:0; 0:05; 0:18Þ ! ð0:14; 0:12; 0:0Þ:

While the example suggests that, for some cases, we may
not want to apply alpha correction, we have found it
essential for avoiding artifacts in all scenes we have tried.

For Example 2, the RMS error drops using only the depth-
only test, and adding alpha correction again drives the error
to zero because the fragments are all the same color:

� ¼ 0:12! 0:08! 0:

3.5 Spatial Antialiasing

We now consider samples that are distributed spatially over
the pixel. The resulting algorithms are surprisingly simple.

We use the multisample antialiasing (MSAA) modes
supported by current hardware graphics pipelines, where
each pixel contains several (currently up to 8) samples at
different positions within the area of the pixel, and each
rasterized fragment carries a coverage mask indicating
which of these samples lie inside it. This is efficient because
shading is per fragment, while visibility (z-buffer compar-
isons) is per sample. For display, the pixel’s samples are
averaged (in hardware), or a better filter, such as a 2� 2
Gaussian filter, can be applied (in software). The algorithms
below can work with any linear filter.

These spatial antialiasing samples can be used as our
transparency samples as well. (Philosophically, each trans-
parent surface can be considered one more dimension for
distributed ray tracing [11].) Current hardware already
supports an alpha to coverage (a2c) mode that does this. It
ands the coverage mask with a screen door mask computed
from alpha. Unfortunately, the screen door mask is always
the same; samples are added to it in a specified order as
alpha is increased. The key difference between current a2c
and our stochastic transparency approach is that we ensure
masks are uncorrelated between samples in the same pixel.

There is one subtlety. For alpha correction to produce
antialiased edges of transparent surfaces, total alpha must
be rendered with multisampling. For alpha correction of the
transparent geometry, only the filtered (per pixel) total alpha
is needed. But for compositing the background pass, the
background must be multiplied by ð1� �totalÞ sample by
sample. This is chiefly in case there is an edge in the
background pixel that corresponds to the edge of the
transparent material, which commonly happens at the edges
of a window or the silhouette of skin with hairs behind it.

The basic algorithm with alpha correction is this:

1. Render the opaque background into a multisampled
z-buffer.

2. Render total alpha into a separate multisampled
buffer. (One pass.)

3. Render the transparent primitives into a separate
multisampled buffer, culling by the opaque z-buffer,
and discarding samples by stochastic alpha-to-
coverage. (One pass.)

4. Compositing passes: First dim (multiply) the opaque
background by one minus total alpha at each
sample. Then read the filtered transparent color,
correct to the filtered total alpha, and blend over the
filtered, dimmed background.

In the depth-based algorithm, the shader no longer needs to
compare z to all S of the zi values in the transparency map,
because we can use the multisampled z-buffer hardware to
do this. We use the z-buffer to accumulate each fragment
into only those samples where z � zi. When the accumu-
lated samples are averaged for display, the effect is that the
fragment is multiplied by (4).

The final antialiased depth-based algorithm is this:

1. Render the opaque background into a multisampled
z-buffer.

2. Render total alpha into a separate multisampled
buffer. (One pass.)

3. Render the transparent primitives into the opaque z-
buffer, discarding samples by stochastic alpha-to-
coverage, and storing only z. (One pass.)

4. Accumulation pass: Render the transparent primi-
tives in additive blending mode into a separate
multisampled color buffer, comparing against the
combined z-buffer from the previous step. Starting
with black, add �ici to all samples where zfragment �
zbuffer. (One pass.)

5. Compositing passes: Dim the opaque background
by one minus total alpha at each sample. Then
read the filtered accumulated sum, correct to the
filtered total alpha, and blend over the filtered,
dimmed background.

In all, we use three passes over the transparent geometry.
To get more than eight samples per pixel (on current
hardware), the algorithm can be iterated with different
random seeds and the results averaged.3 Since true alpha is
independent of the random variables, only two extra passes
are needed for each additional eight samples, for a total of
1þ 2ðS=8Þ passes. An additional computational cost is that
shadow maps may be larger, and ideally they are
rerendered with each new seed as well.

3.6 Stochastic Shadow Maps Revisited

We can build on the ideas in the preceding sections to
improve our stochastic shadow mapping. Recall that the
light’s visibility for the fragment to be shaded is obtained by
using percentage closer filtering on a stochastic shadow map.
This map can be created by simply rendering a standard
shadow map (one sample per pixel), but discarding
fragments with probability � in the fragment shader.
However, the benefits of stratified sampling apply here as
well, and we can obtain a higher quality shadow map by
rendering an MSAA z-buffer and discarding a stochastic set
of samples, as described in Section 3.5. The shader will
usually require at least one texture lookup to obtain the
fragment’s alpha and another lookup (or some significant per
fragment computation) to obtain a random number. Since
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3. The average of two 8-sample images is noisier than one 16-sample
image, unless extra care is taken to split one stratified 16-bit sample mask
per pixel across both images.



MSAA shades only once per S samples, rendering an MSAA
stochastic shadow map is faster (although shadow lookup
can be slower). Since the MSAA render uses S-choose-R
stratification, while a one-sample shadow map uses a
separate coin toss per sample, the MSAA shadows have
somewhat less noise (see Fig. 5).

Alpha correction (Section 3.3) can be applied to transpar-
ent shadows as well. By accumulating the total drop in
visibility for each shadow map texel, dividing that by the
estimated drop and using this as a correction factor for our
estimated visibility at depth z, we have rescaled our visibility
function to better fit the true visibility function, on average.
However, the estimated visibility at a particular depth may
actually be less accurate after correction. The total-alpha
texture can also be used to obtain the correct transparent
shadow for any opaque surface. Note that alpha correcting
shadow maps require us to split the shadow maps into
opaque and transparent, losing some generality. Fig. 5 shows
a comparison of standard and alpha corrected shadows.

When soft or blurry shadows are acceptable, simply
rendering a reasonably sized nonstratified stochastic shadow
map and using a large PCF filter produces pleasing results.
Unfortunately, unless a very large number of taps are taken
(or shadows are alpha corrected) the resulting shadows will
come out grainy and unconvincing. A number of papers have
addressed the problem of prefiltering shadow maps to
improve lookup performance, but of the ones we have
considered (i.e., [12], [3], [2]) none trivially extend to
stochastic shadow maps. Randomly choosing samples per
fragment from a large filter (as suggested in [24]) improves
visual appearance by trading blur for aliasing artifacts, as the
effects of any one shadow sample are randomly distributed
over a wide area (see for example Fig. 1).

4 BIAS

We now discuss whether each of our rendering techniques
is an unbiased estimator, meaning that the expected or
average color of a pixel is the correct blended color, or if not,
whether it is at least a consistent Monte Carlo method,
meaning that the pixel color approaches the correct color in
the limit as the number of samples goes to infinity [4].

For this section, we assume the input triangles are
numbered in order of increasing depth z1 < z2 < � � � < zN ,

although they may still be drawn in any order. We recall (2)

for the correct combined color of all transparent fragments

C ¼
X
i

Y
zj<zi

ð1� �jÞ
 !

�ici;

and note that their correct combined alpha is the same but

with colors replaced by unity:

�C ¼ �total ¼
X
i

Y
zj<zi

ð1� �jÞ
 !

�i:

Further, for any sample, let w be the index of the fragment

that “wins,” that is, the fragment whose depth and color are

stored in that sample at the end of a stochastic rendering

pass. We use the Kronecker delta �wi to be 1 when w ¼ i and

0 otherwise.
In the basic stochastic transparency method, described in

Section 3.1, each sample’s color is the color of the winning

fragment,

B ¼
X

�wici:

We argue in that section that this is unbiased, that is, the

expected value is correct:

EðBÞ ¼ C:

Recall that we take S samples per pixel, and select a subset

of R samples to be opaque for a given fragment. The

assumptions we require are that the subsets (or masks) are

chosen such that:

1. they are proportional, so on average R ¼ �S,
2. they are uncorrelated, so on average the intersection

of subsets i and j has size �i�jS, and
3. they are improving, so that the variance of the

previous two quantities goes to zero in the limit as S
goes to infinity.

The first condition guarantees correctness for a single

transparent layer, while the second condition guarantees it

for two or more layers. In practice of course, randomness is

never perfect, and if too weak a random number generator (or

too small a table) is used, bias or increased noise can result.
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Fig. 5. Comparing noise reduction in stochastic shadow maps. All images are eight-sample MSAA. Shown are (a) naive sampling, (b) stratified

sampling, and (c) stratified alpha corrected shadows.



4.1 Bias of Alpha Correction

Let B1 be the occupancy of a sample, equal to one if the

sample contains a fragment, and zero otherwise. Then, B1 is

analogous to B with the colors replaced by unity:

B1 ¼
X

�wi:

Let F be the downsampling filter operator that averages

(possibly with a weighted average) its argument expression

over all the samples in a pixel. In particular, if each sample

contains the color value B, then the pixel will be displayed

with color FðBÞ. Then, the alpha-corrected pixel value is

given by

A ¼ �CFðBÞ=FðB1Þ; if FðB1Þ > 0;
0; otherwise.

�

The “otherwise” hints at a problem for convergence of this

method. Consider a pixel that contains transparent frag-

ments (so that �C > 0) and yet whose samples are all empty,

due to bad luck with stochastic sampling. Such an empty

pixel demonstrates a failure case for alpha correction, as

there is no color value to scale up to the desired total alpha.

Indeed, we find that for a single transparent layer with

� ¼ 1
2S , half the pixels have a single sample occupied while

half the pixels are empty, and the average pixel value is

EðAÞ ¼ �c=2;

half the value it should be. This counterexample shows

that alpha correction is, in general, neither unbiased nor

consistent.
How does A behave in images without empty pixels of

this kind? For instance, if every pixel has a fragment with

� � 1=S, then stratified sampling guarantees the pixels are

nonempty. For such images, A is consistent, by the same

limit-of-quotient argument we give next for the depth-

based method. However, A is still biased. This is easily

demonstrated using a two-fragment example. For example,

suppose N ¼ 2 and all �i ¼ 1=S. Then each fragment

occupies exactly one sample. With probability 1=S, these

will be the same sample, in which case

FðBÞ ¼ c1=S;

FðB1Þ ¼ 1=S;

A ¼ �Cc1:

The rest of the time, two samples are occupied, and

FðBÞ ¼ ðc1 þ c2Þ=S;
FðB1Þ ¼ 2=S;

A ¼ �Cðc1 þ c2Þ=2:

Multiplying out the expected value of A, we find it does not

match C. For S ¼ 4, c1 ¼ red, and c2 ¼ green, we calculate

EðAÞ � ð0:273; 0:164; 0Þ while

C ¼ ð0:25; 0:1875; 0Þ;

so the front fragment is biased about 10 percent too high,

while the back fragment is biased about 10 percent too low.

4.2 Bias of Depth-Based Methods

Uncorrected depth-based stochastic transparency sums the
colors of all fragments, each weighted by its alpha and its
stochastically estimated visibility:

U ¼
X

svisðziÞ�ici:

For the corrected depth-based method, the numerator of the
correction factor is again �C (total alpha), while the
denominator is again the uncorrected value with all colors
replaced by unity:

U1 ¼
X

svisðziÞ�i:

The division is done after downsampling,4 yielding final
pixels as

D ¼
�CFðUÞ=FðU1Þ; if FðU1Þ > 0;

0; otherwise:

�

The key to analyzing this is to consider the visibility
estimate of a single sample. If fragment w wins the sample,
then fragments in front of zw are fully visible, while
fragments behind zw have no visibility, and (4) reduces to

svisðziÞ ¼
1; for i � w,
0; for i > w.

�

For an empty sample, we consider w to be N þ 1 and zNþ1 to
be large. In particular, w � 1 always, and so fragment 1 is
always visible. This means that FðU1Þ cannot be zero unless
the pixel has no fragments, and so the “otherwise” case for
D does not cause the problems that it does for A.

For example, consider one sample with six fragments
where fragment 3 wins (S ¼ 1; N ¼ 6; w ¼ 3). Then the
uncorrected color, correction denominator, and corrected
color are simply

U ¼ �1c1 þ �2c2 þ �3c3;

U1 ¼ �1 þ �2 þ �3;

D ¼ �Cð�1c1 þ �2c2 þ �3c3Þ=ð�1 þ �2 þ �3Þ:

In other words, depth-based sample color is a weighted
average of fragment colors, scaled by total alpha. The
weights ignore the depth order—everyone contributes
based on their own alpha—regardless of the alpha of
fragments in front of them. For instance, c2’s relative weight
is �2, when it should correctly be ð1� �1Þ�2, which is lower.
However, the sums include only fragments 1 through w.
Fragments further from the camera are weighted too highly,
but are less likely to contribute at all.

Looking at the uncorrected color U and comparing it to
the correct color C,

C ¼ �1c1 þ ð1� �1Þ�2c2 þ � � �
þ ð1� �1Þð1� �2Þ � � � ð1� �5Þ�6c6;

we see that c1’s contribution is correct, while c2’s contribu-
tion is too high. But c1 is included in every sample,
regardless of which fragment wins, whereas c2 is included
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4. When implementing S > 8 by combining multiple hardware render
passes, there are two things to be aware of. First, when averaging across
passes, it is best to average U and U1 separately and divide at the end.
Second, results are slightly improved if the stochastic masks are stratified
across all passes, rather than across each 8 samples separately.



only ð1� �1Þ of the time, so its expected contribution is
correct. In this way, we prove that the expected value of U is

in fact C, that is, U is consistent and unbiased.
Alas,U can easily be greater than one (white), if the alphas

add up to more than one. Since the displayedU is clamped to
maxðU; 1Þ, which is in general less than U , the image is then

too dark. In practice, the displayed U is not consistent.
On the other hand, the corrected color D is equal to �C

times a convex combination of colors. That guarantees each
color channel is no more than �C , so it will not be clamped

by the display. D is also likely to be less noisy, because it

has less dynamic range, and for the following reason.
Consider the correction factor D=U ¼ �C=U1 as a function of

w. For any multilayered pixel, if w ¼ 1, then

U1 ¼ �1 < �C

and so D=U > 1. If w ¼ N , then

U1 ¼
X

�i > �C

and D=U < 1. Furthermore, it is monotonic in w. So, for
pixels where w is low for most samples, the samples will

include fewer fragments, but they will be scaled up,

whereas for pixels where w is mostly high, the samples
will include many fragments, but they will be scaled down.

Does D converge to the correct image, as samples

increase? We have just proved that EðUÞ ¼ C. Therefore,

lim
S!1

FðUÞ ¼ C:

The same proof with ci ¼ 1 shows that

EðU1Þ ¼ �C;

and therefore,

lim
S!1

FðU1Þ ¼ �C:

Since �C > 0 (in pixels of interest), the limit of the quotient
is the quotient of the limits, and

lim
S!1

D ¼ �C lim
S!1

FðUÞ= lim
S!1

FðU1Þ

¼ �CC=�C
¼ C;

that is, D is consistent.
However, D is biased. Since U is unbiased, and D

weights the fragment colors differently than U does, D

cannot also be unbiased. (For a small case, such as N ¼ 2, it
is straightforward to expand the weights of c1 and c2 in
EðDÞ, and see that they differ from C.) An interesting topic
for future research would be to analyze and bound the bias
as a function of S.

5 RESULTS

Our final antialiased depth-based algorithm can be im-
plemented on recent GPUs that support programmable
fragment coverage output, supported since DirectX 10.1 and
OpenGL shader model 4.1 (we use the ARB_sample_

shading extension [5]). All timings were measured on a
prerelease version of an NVIDIA DirectX 11-capable GPU,
code named “Fermi.” Timings were largely independent of
CPU speed.

Current hardware supports a maximum of only eight
samples per pixel (8x MSAA). To simulate more samples,
we average together multiple passes with different random
seeds. Finding an S-choose-R mask is accelerated by a
precomputed lookup table, indexed by alpha in one
dimension and a pseudorandom seed in the other. This
quantizes alpha to approximately 10 bits, acceptable in
practice. For modest S, the table can include all possible
masks; for eight samples, S-choose-R is at most 70, and
even for 16 samples, it is at most 12,870. We use instead a
fixed table width of 2,047 masks.

We have tested our implementation on a wide variety of
semitransparent geometry including hair, smoke, alpha-
mapped foliage, sheer cloth, and a CAD model, as well as
on a scene combining several of these. Table 1 shows the
execution time of each of the render passes of the antialiased
depth-based stochastic transparency algorithm, for three of
the scenes, each rendered at 500� 500 with eight samples
per pixel and 16 samples from a stochastic shadow map of
total size either 2,048� 2,048 or 4,096� 4,096. (The latter is
rendered with supersampling rather than MSAA.) We also
include for each scene a baseline time equal to the time
required for one MSAA pass over all visible transparent
geometry with full shading (including shadow lookups)
and alpha blending. This is a plausible lower bound on the
render time for antialiased transparency with any algor-
ithm—the time to draw the transparent geometry, if it were
already sorted. Each render pass is shown in milliseconds
and as a multiple of this baseline.

Our algorithm’s run time is between three and four times
the baseline, whether the depth complexity is modest (the
motor, Fig. 2) or very high (the windy hill, Fig. 1). Indeed,
each of the four passes over the transparent geometry is of a
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Run Times of the Phases of the Final Algorithm for Figs. 2, 7, and 1



similar order as the base time. Of those four passes, only
one executes the full surface shader to compute fragment
color; the other three only need to run enough of the shader
to compute fragment alpha. Computing alpha may require
a texture lookup, but it will not typically involve shadow
lookups and filtering, for instance. Two of the passes are
actually stochastic, meaning they use randomly selected
sample masks, while the other two render each transparent
fragment over the whole pixel. (In the case of the
accumulation pass, many of the samples are culled by the
stochastic z-buffer.) Note that our test scenes are dominated
by transparent geometry; in practice, the increased cost of
stochastic transparency will be less for scenes containing
significant opaque geometry.

Comparison to depth peeling. Depth peeling can
produce perfect results for visibility, but requires rendering
the scene OðDÞ times for depth complexity D. For the motor
scene, 10 peels are enough to convey the content, as the last
few layers are mostly obscured. Our straight-forward
depth-peeling implementation took 1.5 times longer to
draw 10 layers without MSAA, but also without noise, as
the stochastic transparency renderer took to draw all
layers—with MSAA and with noise. As scene complexity
increases, depth peeling becomes quadratic in the number
of primitives P (OðP Þ passes with OðP Þ primitives,
assuming depth complexity scales linearly with P ) while
stochastic transparency remains linear with P . For complex
scenes the advantage skyrockets (see Fig. 6). Furthermore,
as the view or scene moves, D can vary, with strong
influence on depth peeling render times. Stability of run
time is a major strength of stochastic transparency.

Comparison to specialized approaches. For smoke,
depth peeling is inappropriate, but sorting the particles
on the GPU can be very fast [10], [31]. Furthermore,
geometric antialiasing can be replaced by shader antialias-
ing. While a specialized smoke renderer will be faster than
stochastic transparency, the flexibility of our approach
means developers can avoid multiple transparency imple-
mentations for different scenarios. This flexibility is another
strength of stochastic transparency (see Fig. 8).

Algorithms that sample opacity in regular slices [18], [21],
[32] have had impressive results, particularly for hair. Our
randomized method resulted from an effort to overcome

limitations of these algorithms with very uneven distribu-
tions of opacity. If, for example, two puffs of smoke are
separated by a large empty space, it is difficult for a regular
sampling approach to capture the variation of light within
each puff. Unlike uniform slicing methods, stochastic
transparency depends only on the depth order of fragments,
and is insensitive to the actual depths. And unlike most bit-
mask methods, it does not depend on all fragments having
similar opacities; random sampling approaches any distribu-
tion in the limit.

Qualitative assessment. To our eyes, depth-based
stochastic transparency with eight samples is pleasant and
undistracting in the detailed naturalistic scenes (Figs. 1 and
7), while 16 samples is adequate, although not completely
satisfying, for the less detailed cloth scene and the broad
smooth surfaces of the CAD model. Recall that 16 samples
require only five passes. For basic stochastic transparency
without alpha correction, 64 samples seem like a minimum.
This may seem prohibitive today, but if graphics hardware
exploits Moore’s Law for ever-increasing hardware MSAA
sample rates, the basic algorithm may win out by (in Kurt
Akeley’s phrase) “the elegance of brute force.”
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Fig. 6. In the time that Fig. 1 was rendered with stochastic transparency,

depth peeling could only draw five layers, with surreal results. Fig. 7. A dog with 300K hairs. 26 FPS.

Fig. 8. A smoke plume with 100K particles. 38 FPS.



6 LIMITATIONS AND EXTENSIONS

Temporal coherence. When we seed the pseudorandom
number generator that selects the mask, we include pixel
(x,y) in the seed to get variation across the screen, but we
also need independent masks for each fragment within a
pixel. Seeding by fragment z is effective for still images, but
causes the noise pattern of moving objects to change
completely each frame. Seeding by primitive ID (a different
number for each triangle, line, or point drawn) is much
more stable. Where noise is visible, primitives appear to
move through a noise field fixed in screen space. The
drawback is that the noise field changes at triangle
boundaries, and these boundaries are occasionally visible
during motion. An alternative is to seed by an application-
defined object ID. However, if a curved object presents
several fragments to a pixel, these fragments’ masks will be
identical, and they will occlude each other rather than
blend. An extra seed bit for front-facing versus back-facing
triangles will avoid this in the simple cylindrical case, but
not in general. Typically, however, this method yields
satisfactory results with few animation artifacts, at the
expense of some effort by the programmer.

Uneven noise between pixels. Our noise reduction
methods make some regions noisier than others, which
may be objectionable. Stratified masks reduce noise in most
pixels, but pixels containing edges see a mix of two masks,
one from each contributing fragment, and so have increased
variance. Under specific conditions, with matching and
somewhat flat shading on both sides of the boundary, an
object boundary can cause a visible stripe of noisier pixels
even in a static image. Similarly, alpha correction eliminates
noise from regions with just one transparent layer, giving
them a different texture than adjacent regions. One option is
to forgo stratified masks or alpha correction, making all
pixels as noisy as the worst ones, and instead combat noise
with many more samples.

Adaptive sampling. Another possibility is to adaptively
render more passes for pixels showing larger variance. This
would have the great advantage of a noise level that is
uniform and under artist’s control. It would have the
disadvantage of, like depth peeling, requiring more passes
for more complex images. But the number of passes is likely
to still be fewer than for depth peeling.

Post processing. One approach to reducing stochastic
noise is to postprocess the image. The bilateral filter [28] is a
popular way to reduce noise while preserving edges. To
preserve edges from all visible layers of transparency, we
experimented with crossfiltering the transparent image with
the (nonstochastic) total alpha channel. This is inexpensive,
and blurs out noise somewhat, but also blurs surface detail in
the transparent layers. However, it is possible that there are
weighting functions that produce good results.

Mask selection. Ideally, we would also reduce the
variance of the overlap of the masks chosen for different
fragments in the same pixel, leaving just the right amount of
correlation. This can be done with two known fragments [26],
but it is not clear how to do this in general, given that we
choose each mask without knowledge of the other fragments
in the pixel. Furthermore, a pair of random S-choose-R
masks does reasonably well. For instance, with S ¼ 8 and
two fragments with � ¼ 0:5, total samples covered is within
one sample of correct 97 percent of the time. It would seem
difficult to improve on that significantly.

Gamma. Most graphics pipelines use gamma correction,
where images in both the frame buffer and image files have
a discretized nonlinear representation for image colors. In
the simplest case, the displayed intensity is I ¼ p� , where
p 2 ½0; 1� is the stored pixel color and � � 2:2. This
nonlinearity gives rise to a concern that the signed error
in our method might not average to zero in this nonlinear
space, such as when a viewer’s eye blurs together a small
region of adjacent pixels. Fortunately, this is not the case.
Like any renderer, we use linear colors in our calculations
(e.g., ci), including when averaging samples together to
form the desired (linear) pixel value (call it d). And like any
renderer, we should gamma-compress the desired pixel
value before sending it to the frame buffer:

p ¼ d1=�; so that I ¼ ðd1=�Þ� ¼ d:

Since averaging of samples occurs before the gamma
compression, and averaging of pixels (by the viewer) occurs
after the display’s gamma expansion, the intermediate
nonlinear representation does not disturb the linear nature
of the error, and its expected value remains at zero.

Leveraging Monte Carlo techniques. The stochastic
transparency algorithm is equivalent to backward Monte
Carlo ray tracing, with no changes in ray direction. At each
ray-surface intersection, Russian roulette decides whether
the ray (the sample) is absorbed or transmitted. In this view,
(6) is merely the sum over the probability distribution of
paths: visðziÞ is the probability of a ray reaching the
fragment at zi, and �i is the probability of the ray stopping
there. This explains why alpha correction is necessary in the
depth-based algorithm; since visðzi) is only approximate,
the probabilities do not sum to one.

The stratification from Section 3.1 could be achieved by
using stratified seeds between the rays. This raises the
question of whether other Monte Carlo optimization
techniques can apply, such as importance sampling. The
relative variance is highest when we have light transparent
surfaces over a dark background. Making S higher in pixels
where the background is dark would be a promising start
towards importance sampling.

7 CONCLUSION

Stochastic transparency using subpixel masks provides a
natural implementation of order-independent transparency
for both primary visibility and shadowing. It is inexact, but
with the refinements presented in the paper, it produces
pleasing results for low enough sampling rates that it is
practical for interactive systems.

The resulting algorithm has a unique combination of
desirable qualities. It uses a low, fixed number of render
passes—on current hardware, three passes for eight
samples per pixel, or five passes for 16 samples. It uses a
fairly high but fixed and predictable amount of memory,
consisting of a couple of extra MSAA z-buffers. Its run time
is fairly stable and linear with the number of fragments. It is
unaffected by uneven spatial distribution of fragments, and
responsive to uneven opacities among fragments. It is very
simple to implement. It provides a unified technique for all
types of transparent geometry, able without coding for
special cases to mix hair, smoke, foliage, windows, and
transparent cloth in a single scene.
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Stochastic transparency provides a unified approach to
order independent transparency, antialiasing, and deep
shadow maps. It is closely related to Monte Carlo ray
tracing. Yet, the algorithm does not branch and contains no
read-modify-write loops other than traditional z-buffer
blend operations. This makes it an excellent match for
modern, massively parallel GPU hardware.
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