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Abstract—Recently, several algorithms have been introduced
that enable real-time performance for many lights in applications
such as games. In this paper, we explore the use of hardware-
supported virtual cube-map shadows to efficiently implement
high-quality shadows from hundreds of light sources in real time
and within a bounded memory footprint. In addition, we explore
the utility of ray tracing for shadows from many lights and
present a hybrid algorithm combining ray tracing with cube
maps to exploit their respective strengths. Our solution supports
real-time performance with hundreds of lights in fully dynamic
high-detail scenes.

I. INTRODUCTION

In recent years, several techniques have been presented
that enable real-time performance for applications such as
games using hundreds to many thousands of lights. These
techniques work by binning lights into low-dimensional tiles,
which enables coherent and sequential access to lights in the
shaders [1], [2], [3]. The ability to use many simultaneous
lights enables both a higher degree of visual quality and greater
artistic freedom, and these techniques are therefore directly
applicable in the games industry [4], [5], [6].

However, this body of previous work on real-time many-light
algorithms has studied almost exclusively lights that do not cast
shadows. While such lights enable impressive dynamic effects
and more detailed lighting environments, they are not sufficient
to capture the details in geometry, but tend to yield a flat
look. Neglecting shadowing also makes placing the lights more
difficult, as light may leak through walls and similar occluding
geometry if care is not taken. Light leakage is especially
problematic for dynamic lights in interactive environments,
and for lights that are placed algorithmically as done in Instant
Radiosity [7], and other light-transport simulations.

The techniques presented in this paper aim to compute
shadows for use in real-time applications supporting several
tens to hundreds of simultaneous shadow-casting lights. The
shadows are of high and uniform quality, while staying within
a bounded memory footprint.

Computing shadow information is much more expensive
than just computing the unoccluded contribution from a light
source. Therefore, establishing the minimal set of lights needed
for shading is much more important. To this end we use
Clustered Deferred Shading [3], as our starting point. This
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algorithm offers the highest light-culling efficiency among
current real-time many-light algorithms and the most robust
shading performance. Moreover, clustered shading provides
tight 3D bounds around groups of samples in the frame
buffer and therefore can be viewed as a fast voxelization of
the visible geometry. Thus, as we will show, these clusters
provide opportunities for efficient culling of shadow casters
and allocation of shadow map memory.

A. Contributions

We contribute an efficient culling scheme, based on clusters,
which is used to render shadow-casting geometry to many cube
shadow maps. We demonstrate that this can enable real-time
rendering performance using shadow maps for hundreds of
lights, in dynamic scenes of high complexity.

In practice, a large proportion of static lights and geometry is
common. We show how exploiting this information can enable
further improvements in culling efficiency and performance,
by retaining parts of shadow maps between frames.

We also contribute a method for quickly estimating the
required resolution of the shadow map for each light. This
enables consistent shadow quality throughout the scene and
ensures shadow maps are sampled at an appropriate frequency.

To support efficient memory management, we demonstrate
how hardware-supported virtual shadow maps may be exploited
to only store relevant shadow-map samples. To this end, we
introduce an efficient way to determine the parts of each virtual
shadow map that need physical backing. We demonstrate that
these methods enable the memory requirements to stay within
a limited range, roughly proportional to the minimum number
of shadow samples needed.

Additionally, we explore the performance of ray tracing for
many lights. We demonstrate that a hybrid approach, combining
ray tracing and cube maps, offers high efficiency, in many cases
better than using either shadow maps or ray tracing individually.

We also revisit the normal clustering introduced by Ols-
son et al. [3]. This approach was not effective in their work,
but with the higher cost introduced with shadow calculations
more opportunities for savings may exist.

We contribute implementation details and detailed mea-
surements of the presented methods, showing that shadow
maps indeed can be made to scale to many lights with real-
time performance and high quality shadows. Thus, this paper
provides an important benchmark for other research into real-
time shadow algorithms for many lights.
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Fig. 1. Scenes rendered with many lights casting shadows at 1920×1080 resolution on an NVIDIA Geforce Titan. From the left: HOUSES with 1.01M
triangles and 256 lights (23ms), NECROPOLIS with 2.58M triangles and 356 lights (34ms), CRYSPONZA with 302K triangles and 65 lights (16ms).

II. PREVIOUS WORK

a) Real Time Many Light Shading: Tiled Shading is a
recent technique that supports many thousands of lights in
real-time applications [4], [1], [2]. In this technique, lights
are binned into 2D screen-space tiles that can then be queried
for shading. This is a very fast and simple process, but the
2D nature of the algorithm creates a strong view dependence,
resulting in poor worst case performance and unpredictable
frame times.

Clustered Shading extends the technique by considering
bins of higher dimensionality, which improves efficiency and
reduces view dependence significantly [3]. The clusters provide
a three-dimensional subdivision of the view frustum, defining
groups, or clusters, of samples with predictable bounds. This
provides an important building block for many of the new
techniques described in this paper, and we review this technique
in Section IV-A.

b) Shadow Algorithms: Studies on shadowing techniques
generally present results considering only a single light source,
usually with long or infinite range (e.g., the sun). Consequently,
it is unclear how these techniques scale to many light sources,
whereof a large proportion affect only a few visible samples. For
a review of shadow algorithms, refer to the very comprehensive
books by Eisemann et al. [8] or by Woo and Poulin [9]. The
shadow algorithm which is most relevant to this paper is the
industry standard Shadow Mapping (SM) algorithm due to
Williams [10].

c) Virtual Shadow Maps: Software-based virtual shadow
maps for single lights have been explored in several publica-
tions, and shown to achieve high quality shadows in bounded
memory [11], [12], [13]. Virtual texturing techniques have
also long been applied in rendering large and detailed environ-
ments [14], [15]. Recently, API and hardware extensions have
been introduced that makes it possible to support virtual textures
much more conveniently and with performance equalling that
of traditional textures [16].

d) Many light shadows: There exists a body of work in
the field of real-time global illumination that explores using
many light sources with shadow casting, for example Imperfect
Shadow Maps [17], and Many-LODs [18]. However, these
techniques assume that a large number of lights affect each
sample to conceal approximation artifacts. In other words, these
approaches are unable to produce accurate shadows for samples
lit by only a few lights.

Forsyth [19] describes a system that supports several point
lights that cast shadows. The system works on an object level,

by first fitting projections, or frustums, to shadow receivers and
then allocating shadow maps from an atlas texture to match
the on-screen shadow frequency. Fitting frustums to shadow
receivers and matching frequency enables high quality and
memory efficiency. However, by working on a per-object basis,
the system cannot handle large objects, in particular close to
the viewer where a high resolution is required, and irregularly
shaped objects degrade memory efficiency. In addition, each
projection must perform culling and rendering individually,
reducing scalability and producing seams between shadow
maps.

King and Newhall [20] describe an approach using cube
maps. They reduce the number of shadow casters rendered by
testing on an object level whether they cast shadows into the
view frustum. The effectiveness of the culling is limited by
neglecting to make use of information about shadow receivers.
Lacking information about receivers also means that, contrary to
Forsyth, they do not attempt to calculate the required resolution.
This generally leads to overestimation of the shadow map
resolution, which combined with the omni-directional nature
of cube maps, leads to very high memory requirements.

e) Ray Traced Shadows: Recently, Harada et al. [21]
described integrating ray traced shadows into a Tiled Forward
Shading system. They demonstrate that it can be feasible to
ray trace shadows for many lights in a static scene, but do not
report any analysis or comparison to other techniques. While
ray tracing can support real-time shadow queries today, the cost
of constructing high-quality acceleration structures put its use
beyond the reach of practical real-time use for dynamic scenes.
Karras and Aila [22] present a comprehensive evaluation of
the trade-off between fast construction and ray tracing.

III. PROBLEM OVERVIEW

In this paper, we limit the study to omni-directional point
lights with a finite sphere of influence (or range) and with
some fall-off such that the influence of the light becomes zero
at the boundary. This is the prevalent light model for real-time
applications, as it makes it easy to control the number of lights
affecting each part of the scene, which in turn dictates shading
performance at run time. Other distributions, such as spotlights
and diffuse lights, can be considered a special case of the
omni-light, and the implementation of these types of lights
would not affect our findings.

The standard shadow algorithm for practically all real-time
rendering is some variation on the classical Shadow-Map (SM)
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algorithm. There are many reasons for this popularity, despite
the sampling issues inherent in the technique. First, hardware
support is abundant and offers high performance; secondly,
arbitrary geometry is supported; thirdly, filtering can be used to
produce smooth shadows boundaries; and lastly, no expensive
acceleration structure is required. Hence, we explore the design
and implementation of a system using shadow maps with many
lights. To support omni-directional lights, we make use of cube
shadow maps.

In general, the problems that need to be solved when using
shadow maps with many lights are to:

• determine which lights cast any visible shadows,
• determine required resolution for each shadow map,
• allocate shadow maps,
• render shadow casting geometry to shadow maps, and
• shade scene using lights and shadow maps.
Clustered shading constructs a list of lights for each cluster.

A light that is not referenced by any list cannot cast any visible
shadow and is not considered further. Section IV-A provides
an overview of the clustered shading algorithm.

Ideally, we should attempt to select a resolution for each
shadow map that ensures the same density of samples in the
shadow map as of the receiving geometry samples in the frame
buffer. This can be approached if we allow very high shadow-
map resolutions and calculate the required resolution based on
the samples in the frame buffer [13]. We describe our approach
to this problem for many lights in Section IV-B.

For regular shadow maps, storage is tightly coupled with
resolution, and therefore, they cannot be used with a resolution
selection scheme that attempts to maintain constant quality. We
therefore turn to virtual shadow maps, which allow physical
memory requirements to be correlated with the number of
samples requiring shading. Virtual, or sparse, textures have
recently become supported by hardware and APIs. We present
our design of a memory-efficient and high-performance virtual
shadow-mapping algorithm in Section IV-C.

Rendering geometry to shadow maps efficiently requires
culling. When supporting many lights, each light only affects a
small portion of the scene, and culling must be performed with
a finer granularity than for a single, scene-wide, light. Therefore,
our algorithm must minimize the amount of geometry drawn
to each shadow map. In particular, we should try to avoid
drawing geometry that does not produce any visible shadow,
while at the same time keeping the overhead for culling low.
Details of our design for culling shadow casters are presented
in Section IV-D.

The final step, to shade the scene using the corresponding
shadow map for each light, is straightforward with modern
rendering APIs. Array textures can be used to enable access to
many simultaneous shadow maps. See Section IV-F for details.

IV. BASIC ALGORITHM

Our basic algorithm is shown below. The algorithm is
constructed from clustered deferred shading (reviewed in
Section IV-A), with shadows added as outlined in the previous
section. Steps that are inherited from ordinary clustered deferred
shading are shown in gray.

1) Render scene to G-Buffers.
2) Cluster assignment – calculating the cluster keys of each

view sample.
3) Find unique clusters – finding the compact list of unique

cluster keys.
4) Assign lights to clusters – creating a list of influencing

lights for each cluster.
5) Select shadow map resolution for each light.
6) Allocate shadow maps.
7) Cull shadow casting geometry for each light.
8) Rasterize shadow maps.
9) Shade samples.

A. Clustered Shading Overview

In clustered shading the view volume is subdivided into a grid
of self-similar sub-volumes (clusters), by starting from a regular
2D grid in screen space, e.g., using tiles of 32 × 32 pixels,
and splitting exponentially along the depth direction. Next, all
visible geometry samples are used to determine which of the
clusters contain visible geometry. Once the set of occupied
clusters has been found, the algorithm assigns lights to these
by intersecting the light volumes with the bounding box of
each cluster. This yields a list of cluster/light pairs, associating
each cluster with all lights that may affect a sample within
(see Fig. 2). Finally, each visible sample is shaded by looking
up the lights for the cluster it is within and summing their
contributions.
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Fig. 2. Illustration of the depth subdivisions into clusters and light assignment.
Clusters containing some geometry are shown in blue.

The key pieces of information this process yields are a set
of occupied clusters with associated bounding volumes (that
approximate the visible geometry), and the near-minimal set
of lights for each cluster. Intuitively, this information should
be possible to exploit for efficient shadow computations, and
this is exactly what we aim to do in the following sections.

B. Shadow Map Resolution Selection

A fairly common way to calculate the required resolution for
point-light shadow maps is to use the screen-space coverage
of the lights’ bounding sphere [20]. While very cheap to
compute, this produces vast overestimates whenever the camera
is near, or within, the light volume. To calculate a more
precisely matching resolution, one might follow the approach in
Resolution Matched Shadow Maps (RMSM) [13], and compute
shadow-map space derivatives for each view sample. However,



1077-2626 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2015.2418772, IEEE Transactions on Visualization and Computer Graphics

4

Cluster

Light Source

α

(a) (b)

Fig. 3. (a), the solid angle of cluster, with respect to the light source, α,
subtended by the cluster, illustrated in 2D. (b), example of undersampling due
to an oblique surface violating assumptions in Equation 1, shown with and
without textures and PCF.

applying this naı̈vely would be expensive, as the calculations
must be repeated for each sample/light pair and requires
derivatives to be stored in the G-Buffer. Our goal is not to
attempt alias-free shadows, but to quickly compute a reasonable
estimate. Therefore, we base our calculations on the bounding
boxes of the clusters, which are typically several orders of
magnitude fewer than the samples.

The required resolution, R, for each cluster is estimated as
the number of pixels covered by the cluster in screen space, S,
divided by the proportion of the unit sphere subtended by the
solid angle, α, of the cluster bounding sphere, and distributed
over the six cube faces (see Fig. 3(a) and Equation 1).

R =

√
S/(α/4π)

6
(1)

This calculation is making several simplifying assumptions.
The most significant is that we assume that the distribution of
the samples is the same in shadow-map space as in screen space.
This leads to an underestimate of the required resolution when
the light is at an oblique angle to the surface (see Fig. 3(b)).
A more detailed calculation might reduce these errors, but
we opted to use this simple metric, which works well for the
majority of cases.

For each cluster/light pair, we evaluate Equation 1 and retain
the maximum R for each light as the shadow map resolution,
i.e., a cube map with faces of resolution R×R.

Fig. 4. The projected footprint (purple) of an AABB of either a batch or a
cluster (orange), projected onto the cube map (green). The tiles on the cube
map represent either virtual texture pages or projection map bits, depending
on application.

C. Shadow Map Allocation

Using the resolutions computed in the previous step, we can
allocate one virtual cube shadow map for each light with a
non-zero resolution. This does not allocate any actual physical
memory backing the texture, just the virtual range.

In virtual textures, the pages are laid out as tiles of a certain
size (e.g., 256× 128 texels), covering the texture. Before we
can render into the shadow map we must commit physical
memory for those pages that will be sampled during shading.
The pages to commit could be established by projecting each
sample onto the cube map, i.e., performing a shadow lookup,
and recording the requested page.

Again, the cost can be reduced substantially by using
cluster/light pairs in place of sample/light pairs. This requires
projecting the cluster bounding boxes onto the cube maps,
which is more complex than point lookups (see Fig. 4).
Fortunately, by transforming the cluster bounding box to
the same space as the cube map, we arrive at very simple
calculation (see Listing 1). This transformation is conservative,
but as the cluster bounding boxes are roughly cube shaped by
design, the bounding box inflation is acceptable. We calculate
the projection for each cluster/light pair and build up a mask
for each light representing the affected tiles that we call the
virtual-page mask.

D. Culling Shadow-Casting Geometry

Culling is a vital component of any real time rendering
system and refers to the elimination of groups, or batches of
triangles that are outside a viewing volume. This is typically
achieved by querying an acceleration structure representing
the scene geometry with the view volume. Intuitively, effective
culling requires some correlation between the size of the view
volume and the geometry batches. If the batches are too large,
many triangles that are outside the view volume will be drawn.

In our application, the view volumes are the bounding
spheres of the lights. These volumes are much smaller than
what is common for a primary view frustum, and therefore
requires smaller triangle batches. To explore this, we make
use of a bounding volume hierarchy (BVH), storing triangle
batches at the leaves. Each batch has an axis aligned bounding
box (AABB), which is updated at run time, and contains a fixed
maximum number of triangles. By changing the batch size we
can explore which granularity offers the best performance for
our use case. The hierarchy is queried for each light, producing
a list of batches to be drawn into each cube shadow map. For
each element, we also store a mask with six bits that we call
the cube-face mask (CFM), which indicates which cube faces
the batch must be drawn into. See Fig. 5 for a two-dimensional
illustration.

E. Rasterizing Shadow Caster Geometry

The best way to render the batches to the shadow maps is
mostly down to implementation details. Our design is covered
in Section VI-D.
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Fig. 5. Illustration of batch hierarchy traversal. The AABBs of batches 1 and
2 intersect the light sphere, and are tested against the culling planes, which
determine the cube faces the batch must be rendered to.

F. Shading

Shading is computed as a full-screen pass. For each sample,
the shader loops over the list of lights in the cluster and
accumulates shading. To sample shadow maps we use the
index of the light to also look up a shadow map. Using a
texture array with cube maps this is can simply be a direct
mapping. However, to enable many simultaneous cube shadow
maps with different resolutions is somewhat more complex,
see Section VI-C for implementation details.

V. ALGORITHM EXTENSIONS

In the previous section we detailed the basic algorithm. This
section presents a number of improvements and extensions
which expand the efficiency and capacity of the algorithm to
handle more complex scenes.

A. Projection Maps

To improve culling efficiency the system should avoid
drawing geometry into unsampled regions of the shadow
map. In other words, we require something that identifies
where shadow receivers are located. This is similar in spirit to
projection maps, which are used to guide photon distribution
in photon maps, and we adopt this name.

Fortunately, this is the same problem as establishing the
needed pages for virtual textures (Section IV-C), and we reuse
the method of projecting AABBs onto the cube faces. To
represent the shadow receivers, each cube face stores a 32×32
bit mask (in contrast to the virtual page masks, which vary
with resolution), and we project the bounding boxes of the
clusters as before.

We then perform the same projection for each batch AABB
that was found during the culling, to produce a mask for each
shadow caster. If the logical intersection between these two
masks is zero for any cube face, we do not need to draw
the batch into this cube face. In addition to testing the mask,
we also compute the maximum depth for each cube face and
compare these to the minimum depth of each batch. This
enables discarding shadow casters that lie behind any visible
shadow receiver. For each batch, we update the cube-face mask
to prune non-shadowing batches.

B. Non-uniform Light Sizes

The resolution selection presented in Section IV-B uses the
maximum sample density required by a cluster affected by
a light. If the light is large and the view contains samples
requiring very different densities, this can be a large over-
estimate. This occurs when a large light affects not only some,
relatively few, samples nearby the viewer but also a large
portion of the visible scene further away (see Fig. 6). The
nearby samples dictate the resolution of the shadow map, which
then must be used by all samples. The result is oversampling
for the majority of the visible samples and a high storage cost.

Fig. 6. Illustration of light requiring different sample densities within the
view frustum. The nearby, high density, clusters dictate the resolution for the
entire light.

If there are only uniformly sized lights and we are comfort-
able with clamping the maximum allowed resolution, then this
is not a significant problem. However, as our results show, if
we have a scene with both large and small lights, then this can
come to dominate the memory allocation requirements (see
Fig. 16).

To eliminate this issue, we allow each light to allocate a
number of shadow maps. We use a fixed number, as this
allows fast and simple implementation, in our tests ranging
from 1 to 16 shadow maps per light. To allocate the shadow
maps, we add a step where we build a histogram over the
resolutions requested by the clusters affected by each light.
The maximum value within each histogram bucket is then used
to allocate a distinct shadow map. When the shadow-map index
is established, we replace the light index in the cluster light
list with this index. Then, culling and drawing can remain the
same, except that we sometimes must take care to separate the
light index from the shadow-map index.

C. Level of Detail

For high-resolution shadow maps that are used for many
view samples, we expect that rasterizing triangles is efficient,
producing many samples for each triangle. However, low-
resolution shadow maps sample the shadow-casting geometry
sparsely, generating few samples per triangle. To maintain
efficiency in these cases, some form of Level of Detail (LOD)
is required.

In the limit, a light might only affect a single visible sample.
Thus, it is clear that no amount of polygon-based LOD will
suffice by itself. Consequently, we explore the use of ray tracing,
which enable efficient random access to scene geometry. To
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Fig. 7. Stages (rounded) and data (square) in the algorithm implementation. Stage colors correspond to those used in Fig. 12. All computationally demanding
stages are executed on the GPU, with sequencing and command issue performed by the CPU.

decide when ray tracing should be used, we simply use a
threshold (in our tests we used 96 texels as the limit) on the
resolution of the shadow map. Those shadow maps that are
below the threshold are not further processed and are replaced
by directly ray tracing the shadows in a separate shading pass.
We refer to this as the hybrid algorithm. We also evaluate using
ray tracing for all shadows to determine the cross-over point
in efficiency versus shadow maps.

Since we aim to use the ray tracing for LOD purposes, we
chose to use a voxel representation, which has an inherent
polygon-agnostic LOD and enables a much smaller memory
footprint than would be possible using triangles. We use
the technique described by Kämpe et al. [23], which offers
performance comparable to state of the art polygon ray tracers
and has a very compact representation.

A key difficulty with ray tracing is that building efficient
acceleration structures is still a relatively slow process, at best
offering interactive performance, and dynamically updating
the structure is both costly and complex to implement [22].
We therefore only explore using a static acceleration structure,
enabling correct occlusion from the static scene geometry,
which often has the highest visual importance. As we aim
to use the ray tracing for lights far away (and therefore low
resolution), we consider this a practical use case to evaluate. For
highly dynamic scenes, our results that use ray tracing are not
directly applicable. Nevertheless, by using a high-performance
accelerations structure, we aim to explore the upper bound for
potential ray tracing performance.

To explore the use of polygon-based LOD, we constructed
a low-polygon version of the HOUSES scene (see Section VII).
This is done in lieu of a full blown LOD system to attempt
to establish an upper bound for shadow-mapping performance
when LOD is used.

D. Exploiting Static Scene Elements
The system for shadow maps presented thus far is entirely

dynamic, and makes no attempts to exploit that part of the scene
is static. In practice, coherent and gradually changing views
combined with static lights and geometry is quite common
in many scenes. In addition, modern shading approaches, like
tiled and clustered shading, require that all the shadow maps
must exist before the shading pass. This makes it very easy to
preserve the contents of the shadow maps between frames, at
no additional storage cost.

To explore this, our aim is to avoid drawing any geometry
that will not produce any change in the shadow map. We can
discard any batch which meets the below criteria.

1) The light is static.
2) The batch is static.
3) The batch was drawn last frame.
4) The batch projection does not overlap that of any dynamic

batch drawn the previous frame.
5) The batch projection does not overlap any virtual page

that is committed this frame.
6) The shadow-map resolution is unchanged.
The first step is to simply flag lights and batches as dynamic

or static, which can be done based on the scene animation.
Next we must detect whether a batch was drawn into a shadow
map the previous frame, which is done by testing overlap
against the projection map from the previous frame. To test
conditions 4 and 5 efficiently, we construct a mask with a bit
set for any part of the shadow map that needs to be cleared,
i.e., either freshly committed or containing dynamic geometry
the last frame. All bits in this mask are set if the resolution
has changed, which means everything must be drawn. These
conditions and masks are tested in addition to the projection
map as described in Section V-A.

Finally, we must also clear the regions of the shadow map
marked in the clear mask. This is not directly supported by any
existing rendering API, and we therefore generate and draw
point sprites at the far plane, with the depth test set to pass
anything.

Note that to support batches that transition between dynamic
and static status over time requires special care. If a batch
changes status from static to dynamic, then it will not be in the
dynamic map of the previous frame, and therefore the region
may not be cleared correctly. In our implementation, the status
is simply not allowed to change. Lights, however, are allowed
to change status.

E. Explicit Cluster Bounds

As clusters are defined by a location in a regular grid within
the view frustum, there is an associated bounding volume
that is implied by this location. Computing explicit bounds,
i.e., tightly fitting the samples within the cluster, was found
by Olsson et al. [3] to improve light-culling efficiency, but
it also incurred too much overhead to be worthwhile. When
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introducing shadows and virtual shadow map allocation, there
is more to gain from tighter bounds. We therefore present a
novel design that computes approximate explicit bounds with
very little overhead on modern GPUs.

We store one additional 32-bit integer for each cluster, which
is logically divided into three 10-bit fields. Each of these
represent the range of possible positions within the implicit
AABB. With this scheme, the explicit bounding box can be
constructed using a single 32-bit atomicOr reduction for each
sample.

To reconstruct the bounding box, we make use of intrinsic
bit-wise functions to count zeros from both directions in each
10-bit field, see __clz and __ffs in Fig. 8. These bit positions
are then used to resize the implicit AABB in each axis direction.

__ffs__clz

0 1 0 1 1 0 0 0 0 0

0

0

0

0

1

1

1

0

0

0 Implicit

Explicit

Fig. 8. The computation of explicit bounds, illustrated in 2D. __clz and
__ffs are the CUDA operations Count Leading Zeroes and Find First Set.

F. Backface Culling

Olsson et al. [3] explore clustering based on both position
and normal direction of fragments. By testing a normal cone
in addition to the bounding box, lights can be removed from
clusters that face away from the light. While they observed a
significant reduction in the number of lighting computations,
the overhead arising from the increased number of clusters
due to the normal clustering, overshadow the gains in shading
performance.

With shadows, which introduce much higher total cost for
each shaded sample, the potential performance improvements
are correspondingly greater. Culling additional lights would
not only reduce the number of lights that are to be considered
during shading, but also potentially the number of shadow map
texels that need to be stored. There is no need to store shadow
maps towards surfaces that are back-facing with respect to a
light source (illustrated in Fig. 9), unless other visible light–
front-facing surfaces project to the same parts of the shadow
map.

VI. IMPLEMENTATION

We implemented the algorithm and variants above using
OpenGL and CUDA. All computationally intensive stages
are implemented on the GPU, and in general, we attempt to
minimize stalls and GPU to CPU memory transfers. However,
draw calls and rendering state changes are still necessary to
invoke from the CPU, and thus, we must transfer some key
information from the GPU. The system is illustrated in Fig. 7.

Light Frontfacing

Light Backfacing

Fig. 9. Backface culling of lights. The fragments generated by the vertical wall
(purple box) are back-facing with respect to the light source. Normal clustering
can detect this, and will not assign the light to these clusters (despite their
bounding volumes overlapping the light’s bounding sphere). No shadow maps
are requried in the direction of these clusters, unless other light front-facing
clusters (red box) project to the same parts of the shadow map.

A. Shadow Map Resolution Selection

The implementation of shadow-map resolution selection is a
set of CUDA kernels, launched with one thread per cluster/light
pair. These kernels compute the resolution, cube-face mask,
virtual-page mask, and also the projection map, for each shadow
map. To reduce the final histograms and bit masks, we use
atomic operations, which provide adequate performance for
current GPUs. The resulting array of shadow-map resolutions
and the array of virtual-page masks are transferred to the CPU
using an asynchronous copy. For details on the projection see
Appendix A.

B. Culling Shadow-Casting Geometry

In the implementation, we perform culling before allocating
shadow maps, as this allows a greater degree of asynchronous
overlap, and also minimizes transitions between CUDA and
OpenGL operation.

1) Batch Hierarchy Construction: Each batch is a range of
triangle indices and an AABB, constructed such that all the
vertices share the transformation matrix1 and are located close
together, to ensure coherency under animation. The batches
are created off-line, using a bottom-up agglomerative tree-
construction algorithm over the scene triangles, similar to that
described by Walter et al. [24]. Unlike them, who use the
surface area as the dissimilarity function, we use the length
of the diagonal of the new cluster, as this produces more
localized clusters (by considering all three dimensions). After
tree construction, we create the batches by gathering leaves in
sub-trees below some predefined size, e.g., 128 triangles (we
tested several sizes, as reported below). The batches are stored
in a flat array and loaded at run time.

At run time, we re-calculate each batch AABB from the
transformed vertices every frame to support animation. The
resulting list is sorted along the Morton curve, and we then
build an implicit left balanced 32-way BVH by recursively
grouping 32 consecutive AABBs into a parent node. This
is the same type of hierarchy that was used for hierarchical

1We only implement support for a single transform per vertex, but this is
trivially extended to more general transformations, e.g., skinning.



1077-2626 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2015.2418772, IEEE Transactions on Visualization and Computer Graphics

8

light assignment in clustered shading, and has been shown to
perform well for many light sources [3].

2) Hierarchy Traversal: To gather the batches for each
shadow map, we launch a kernel with a CUDA block for each
shadow map. The reason for using blocks is that a modern
GPU is not fully utilized when launching just a warp per light
(as would be natural with our 32-way trees). The block uses
a cooperative depth-first stack to utilize all warps within the
block. We run this kernel in two passes to first count the
number of batches for each shadow map and allocate storage,
and then to output the array of batch indices. In between, we
also perform a prefix sum to calculate the offsets of the batches
belonging to each shadow map in the result array. We also
output the cube-face mask for each batch. This mask is the
bitwise and between the cube-face mask of the shadow map
and that of the batch. The counts and offsets are copied back
to the CPU asynchronously at this stage, as they are needed
to issue drawing commands.

To further prune the list of batches, we launch another
kernel that calculates the projection-map overlap for each
batch in the output array and updates the cube-face mask
(see Section V-A). If static geometry optimizations are enabled,
this kernel performs the tests described in Section V-D, and
also builds up the projection map containing dynamic geometry
for next frame.

The final step in the culling process is to gener-
ate a list of draw commands for OpenGL to render.
We use the OpenGL 4.3 multi-draw indirect feature
(glMultiDrawElementsIndirect), which allows the con-
struction of draw commands on the GPU. We map a buffer
from OpenGL to CUDA and launch a kernel where each thread
transforms a batch index and cube-face mask output by the
culling into a drawing command. The vertex count and offset
is provided by the batch definition, and the instance count is
the number of set bits in the cube-face mask.

C. Shadow Map Allocation

To implement the virtual shadow maps, we make use
of the OpenGL 4.4 ARB extension for sparse textures
(ARB_sparse_texture). The extension exposes vendor-
specific page sizes and requires the size of textures with sparse
storage to be multiples of these. On our target hardware, the
page size is 256 × 128 texels for 16-bit depth textures (i.e.,
64kb), which means that our square cube-map faces must be
aligned to the larger value. For our implementation, the logical
page granularity is therefore 256×256 texels, which also limits
the maximum resolution of our shadow maps to 8K×8K texels,
as we use up to 32× 32 bits in the virtual-page masks.

Thus, for each non-zero value in the array of shadow map
resolutions, we round the requested resolution up to the next
page boundary and then use this value to allocate a texture
with virtual storage specified. Next, we iterate the virtual-page
mask for each face and commit physical pages. If the requested
resolution is small, in our implementation below 64×64 texels,
we use an ordinary physical cube map instead.

In practice, creating and destroying textures is a slow
operation in OpenGL, and we therefore create just a single

virtual 2D-array texture. At run time, we allocate chunks of
six layers from this to act as cube shadow maps as needed.
We allocate the maximum resolution as all layers must have
the same size, and use just the portion that is required to
support the resolution of the given shadow map. This precludes
using hardware supported cube shadow lookup, as this maps
the direction vector to the entire texture surface. Instead, we
implement the face selection and 2D coordinate conversion
manually in the shader. The overhead for this is small, on
modern hardware.

However, using array textures we are currently limited to
b2048/6c shadow maps, where 2048 is the maximal number
of layers supported by most OpenGL drivers. In previous work
this limitation was avoided by using so called bindless textures,
which enable limitless numbers of textures. Unfortunately,
random accessing bindless textures is not allowed by the
standard, and was found to be very slow on NVIDIA hardware
(see Fig. 14).

D. Rasterizing Shadow Caster Geometry

With the set up work done previously, preparing
drawing commands in GPU-buffers, the actual drawing
is straightforward. For each shadow map, we invoke
glMultiDrawElementsIndirect once, using the count and
offset shipped back to the CPU during the culling. To route
the batches to the needed cube map faces, we use layered
rendering and a geometry shader. The geometry shader uses
the instance index and the cube-face mask (which we supply
as a per-instance vertex attribute) to compute the correct layer.

The sparse textures, when used as a frame buffer target,
quietly drop any fragments that end up in uncommitted areas.
This matches our expectations well, as such areas will not
be used for shadow look ups. Compared to previous work on
software virtual shadow maps, this is an enormous advantage,
as we sidestep the issues of fine-grained binning, clipping and
copying and also do not have to allocate temporary rendering
buffers.

We did not implement support for different materials (e.g.,
to support alpha masking). To do so, one draw call per shadow
material type would be needed instead.

1) Workarounds: When rendering to sparse shadow maps,
we expected that clearing the render target should take time
proportional to the number of committed pages. However, we
observed cost proportional to the size of the render target
(despite setting both viewport and scissor rectangle). This was
particularly as all render targets in our 2D-array are of the maxi-
mum resolution. Furthermore, using glClearTexSubImage to
clear just the used portion exhibited even worse performance.

The best performing workaround we found was to draw
a point sprite covering each committed page, which offered
consistent and scalable performance. This is an area where
future drivers ought to be able to offer improved performance,
by clearing only what is committed.

VII. RESULTS AND DISCUSSION

All experiments were conducted on an NVIDIA GTX Titan
GPU. We used three scenes (see Fig. 1). HOUSES is designed
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Fig. 10. Wall-to-wall frame times from the scene animations, for different algorithm variations. The times exclude time to commit physical memory. For all
except ’PMCD-EB-SO’ this is achieved by measuring each frame multiple times and retaining the median time. As ’PMCD-EB-SO’ makes use of frame to
frame coherency, we instead subtract the time to commit physcal memory measured.

to be used to illustrate the scaling in a scene where all lights
have a similar size and uniform distribution. NECROPOLIS is
derived from the Unreal SDK, with some lights moved slightly
and all ranges doubled. We added several animated cannons
shooting lights across the main central area, and a number of
moving objects. The scene contains 275 static lights and peaks
at 376 lights. CRYSPONZA is derived from the Crytek version
of the Sponza atrium scene, with 65 light sources added. Each
scene has a camera animation, which is used in performance
graphs (see the supplementary video).
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Fig. 11. Number of pages commited and cost of each call over the
NECROPOLIS animation.

We evaluate several algorithm variants with different modifi-
cations: Shadow maps with projection map culling (PMC), and
with added depth culling (PMCD); with explicit bounds (EB);
with static geometry optimizations (SO); with normal clustering
(Nk); only using cluster face mask culling (CFM); Ray Tracing;
and Hybrid, which uses PMCD-EB. Unless otherwise indicated,
four cube shadow maps per light is used. For the normal
clustering, we report times for using 3 × 3 directions per
cube face. This corresponds to the Nk3 clustering by Olsson
et al. [3] (we do not compute explicit bounding cones in this
implementation).

Committing physical storage is still relatively slow and
unpredictable on current drivers2. Fig. 11, shows that the
average cost is quite low, 7µs, and usable for real-time
applications. However, the peak cost coincides with the highest
commit rates, perhaps indicating some issue with batching or
coherency in the driver. This leads to large spikes, up to over
100ms, just to commit physical memory. We therefore subtract

2The NVIDIA driver version 344.65 was used in our measurements.

this overhead from our measurements, unless otherwise stated,
as it introduces too much noise and does not represent useful
work.

All reported figures are using a batch size of up to 128
triangles. We evaluated several other batch sizes and found that
performance was similar in the range 32 to 512 triangles per
batch, but was significantly worse for larger batches. This is
expected, as larger batches lead to more triangles being drawn,
and rasterization is already a larger cost than culling in the
algorithm (see Fig. 12).

a) Performance: We report the wall-to-wall frame times
for our main algorithm variants in Fig. 10. These are the times
between consecutive frames and thus include all rendering
activity needed to produce each frame, as well as any stalls.
From these results, it is clear that virtual shadow maps with
projection-map culling offer robust and scalable performance
and that real-time performance with many lights and dynamic
scenes is achievable. Comparing these to the breakdown in
Fig. 12, where individual stages are measured, we see that for
the lighter scenes (Fig. 12(f)), a greater proportion of the time
is lost to stalls, leaving room for performance improvements
with better scheduling. Fig. 12(d) demonstrates that well over
30 FPS is achievable in NECROPOLIS, if all stalls and other
overheads were removed (for example switching render targets
and similar), and CRYSPONZA could run at over 100 FPS with
65 lights.

As expected, ray tracing offers better scaling when the shad-
ows require fewer samples, with consistently better performance
in the first part of the zooming animations in NECROPOLIS
and HOUSES (Fig. 10). When the lights require more samples,
shadow maps generally win, and also provide better quality,
as the voxel representation used for ray tracing is quite coarse.

The hybrid method is able to make use of this advantage
and provides substantially better performance early in the
NECROPOLIS animation (Fig. 12(c)). However, it fails to
improve worst-case performance because there are always a
few small lights visible, and our implementation runs a separate
full-screen pass in CUDA to shade these. Thus, efficiency in
these cases is low, and we would likely see better results if
the ray tracing better integrated with the other shading. An
improved selection criterion, based on the estimated cost of
the methods rather than just shadow-map resolution, could also
improve performance. For example, the LOD version of the
HOUSES scene (Fig. 10(a)) highlights that the cost of shadow
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Fig. 12. Performance timings broken down into the principal stages of the algorithms, measured individually, from the NECROPOLIS scene animation, for
different algorithms. Note that for (b) and (c), the ray tracing time forms part of the shading. Bottom row shows the breakdown with further non-intrinsic
overhead removed, e.g., the cost for switching render targets.

mapping is correlated to the number of polygons rendered. The
LOD version also demonstrates that there exists a potential for
performance improvements using traditional polygon LOD, as
an alternative or in addition to ray tracing.

The largest cost in the batch culling comes from updating
the batch AABBs and re-building the hierarchy (Fig. 13).
In practice, these costs can be reduced significantly as only
dynamic geometry needs to be updated, rather than all scene
geometry as done in our implementation. The static geometry
optimizations implement the former of this optimizations
as well as reducing the number of triangles drawn. This
yields substantial performance improvements in HOUSES
and NECROPOLIS, while for the CRYSPONZA scene any
improvement is likely absorbed by stalls. Fig. 12(e) shows
the breakdown of this optimization for NECROPOLIS, demon-
strating large improvements in triangle drawing times overall,
and a small increase in batch culling cost due to the added
steps to compute the new masks. Worst case performance is
not improved significantly, indicating that in this part of the
animation the cost is dominated by dynamic lights and objects.

Shading performance (Fig. 14) depends on several factors.
The use of bindless textures with incoherent accesses can
be expensive. The switch to a 2D array texture, yields a
significant performance improvement, especially of the worst
case. Incoherent access is still an issue, though much less
significant, and is unfortunately increased when using normal
cone culling. Some improvement can be seen from reordering
the light lists to increase coherency.

Although the back-face culling reduces the shading time in
some parts, it increases when many shadow maps are active.
We suspect that this is again due to incoherent shadow map
accesses, where the problem is exacerbated by the larger
number of smaller clusters arising from normal clustering.

Similar to the results of Olsson et al. [3], any performance
gains from back-face culling with normal clustering are offset
by the overheads incurred from performing the finer clustering
and working with the additional clusters during the different
phases of the method. The reason that the relatively large
reduction in lighting computations shown in Fig. 16 fails to
translate into large performance improvements, is that those
are the lights that will be discarded after an initial back-facing
test in the shader, before any expensive operations.
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BuildCubeMapProjections
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Fig. 13. Timing breakdown of the steps involved in culling batches. The
displayed percentage represents the maximum time for each of the steps over
the entire animation.

Shadow filtering, in our implementation a simple nine-tap
Percentage-Closer filter (PCF), makes up a sizeable proportion
of the total cost, especially in the scenes with relatively many
lights affecting each sample (Fig. 10). Thus, techniques that
reduce this cost, for example using pre-filtering, could be a
useful addition.

b) Culling Efficiency: Culling efficiency is greatly im-
proved by our new methods exploiting information about
shadow receivers inherent in the cluster, as shown in Fig. 15.
Compared to naı̈vely culling using the light sphere and drawing
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Fig. 14. Shading performance for different methods. We also show mea-
surements when reordering the light lists such that fragments from a single
screen-space tile access shared lights in the same order (‘-LR’).

to all six cube faces, our method is always at least six times
more efficient.

When adding the max-depth culling for each cube face,
the additional improvement is not as significant. This is not
unexpected as the single depth is a very coarse representation,
most lights are relatively short range, and the scene is mostly
open with little occlusion. Towards the end of the animation,
where the camera is inside a building, the proportion that is
culled by the depth test increases somewhat. The cost of adding
this test is very small (see Fig. 13: ’ProjectionMapCull’).

Adding the static scene element optimizations (Section V-D)
improves efficiency significantly across the relatively smooth
camera animation. Despite a large proportion of dynamic lights
in the most intensive part of the animation, peak triangle rate
is reduced by around 40 percent. This demonstrates that this
approach has a large potential for improving performance in
many cases. However, as with all methods exploiting frame-
to-frame coherency, for rapidly changing views there is no
improvement. Our system is oriented towards minimal memory
usage, releasing physical pages as soon as possible. This means
that higher efficiency could potentially be achieved by retaining
physical memory in static areas for longer, especially when
shadow maps are small.
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Fig. 15. Triangles drawn each frame in the NECROPOLIS animation with
different culling methods. The naı̈ve method, that is, not using the information
about clusters to improve culling, is not included in the graph to improve
presentation. It renders between 40 and 126 million triangles per frame and
never less than six times the number of PMCD.

The back-face culling using the normal clustering results
in a slight reduction in the number triangles that need to be
drawn (Fig. 15). The reductions are measurable but not very

significant, since most lights are found in the large main areas
of the our test scenes - which is also where the camera passes
through.

c) Memory Usage: As expected, using only a single
shadow map per light has a very high worst case cost
for NECROPOLIS, which contains a few very large lights,
(Fig. 16:’PMCD-EB-1SM’). With four shadow maps per light,
we get a better correspondence between lighting computations
(i.e., the number of light/sample pairs shaded) and number
of shadow-map texels allocated. This indicates that peak
shadow-map usage is correlated to the density of lights in
the scene, which is a very useful property when budgeting
rendering resources. The largest number of shadow-map texels
per lighting computation occurs when shadow maps are low
resolution, early in the animation, and does not coincide with
peak memory usage. We tested up to 16 shadow maps per
light, and observed that above four, the number of texels rises
again. The best value is likely to be scene dependent.

The back-face culling using the normal clustering results,
as predicted, in a slight reduction in the number of shadow
map texels (Fig. 16) that need to be allocated. The contrast
between the substantial reduction in Lighting Computations
and the modest reduction in committed texels indicates that
the problem illustrated in Fig. 9 is common in our test scenes.

d) Explicit bounds: The explicit bounds provide improved
efficiency for both the number of shadow-map texels allo-
cated and number of triangles drawn by 8 − 35% over the
NECROPOLIS animation. The greatest improvement is seen
near the start of the animation, where many clusters are
far away and thus have large implicit bounds in view space
(see Fig. 15). The overhead for the explicit bounds reduction
roughly doubles the cost of finding unique clusters. While an
improvement over previous work, yet higher performance for
full-precision explicit bounds was recently demonstrated by
Sintorn et al. [25].

e) Quality: As shown in Fig. 3(b), sampling artifacts
occur due to our choice of resolution calculations. However, as
we recalculate the required resolutions continuously and select
the maximum for each shadow map, we expect these errors
to be stable and consistent. In the supplementary video, it is
difficult to notice any artifacts caused by switching between
shadow-map resolutions.

The cost of calculating the estimated shadow-map resolution
is a very small part of the frame time (Fig. 13). Therefore,
it could be worthwhile exploring more complex methods, to
improve quality further.

We also added a global parameter controlling undersampling
to enable trading visual quality for lower memory usage (see
Fig. 16). This enables a lower peak memory demand with
uniform reduction in quality. For a visual comparison, see the
supplementary video.

VIII. CONCLUSION

We presented several new ways of exploiting the information
inherent in the clusters, provided by clustered shading, to
enable very efficient and effective culling of shadow casting
geometry. With these techniques, we have demonstrated that
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Fig. 16. Allocated shadow-map texels for various scenarios over the
NECROPOLIS animation. Shows the performance with a varying number
of shadow maps per light, the effect of the global undersampling parameter
(u2|u4 suffix), and also plots the number of Lighting Computations for each
frame (secondary axis). The number of Lighting Computations is lower for
the Nk3-method.

using hardware-supported virtual cube shadow maps is a viable
method for achieving high-quality real-time shadows, scaling
to hundreds of lights.

In addition, we show that memory requirements when using
virtual cube shadow maps as described in this paper is roughly
proportional to the number of shaded samples. This is again
enabled by utilizing clusters to quickly determine both the
resolution and coverage of the shadow maps.

We also demonstrate that using ray tracing can be more
efficient than shadow maps for shadows with few samples and
that a hybrid method building on the strength of both is a
promising possibility.

The implementation of ARB_sparse_texture used in our
evaluation does offers real-time performance for many cases,
but is not yet stable. However, we expect that future revisions,
perhaps combined with new extensions, will continue to
improve performance. In addition, on platforms and modern
APIs with more direct control over resources, such as game
consoles, this problem should be greatly mitigated.

The limitation of the number of array texture layers to 2048
limits future scalability of the approach using a global 2D
array. This restriction will hopefully be lifted for virtual array
textures in the future. Alternatively, bindless textures offer
a straightforward solution but is currently hampered by the
requirement of coherent access and lower performance. Again,
future hardware may well improve performance and capabilities
to make this a viable alternative.

IX. FUTURE WORK

In the future, we would like to explore even more aggressive
culling schemes, for example using better max-depth culling.
We also would like to explore other light distributions, which
might be supported by pre-defined masks, yielding high flexi-
bility in distribution. Further exploiting information about static
geometry and lights could be used to improve performance, in
particular by retaining static information for longer – trading
memory for performance. There also seems to exist a promising
opportunity to apply the techniques described to global shadow
maps, replacing the commonly used cascaded shadow maps.
As noted, a more detailed estimation of the required resolution
could improve visual quality in some cases.
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APPENDIX

To compute the cube-face mask, virtual-page mask, and the
projection map, we designed a coarse but very cheap method to
project an AABB to a cube-map face. By choosing to align the
cube shadow maps with the world-space axes and transforming
the cluster bounds to world space, computing the projection
becomes very simple

Listing 1 shows pseudo code for one cube face. The other
five are computed in the same fashion.

Rect xPlus(Aabb aabb)
{

float rdMin = 1.0/max(Epsilon, aabb.min.x);
float rdMax = 1.0/max(Epsilon, aabb.max.x);

float sMin = min(-aabb.max.z * rdMin,
-aabb.max.z * rdMax);

float sMax = max(-aabb.min.z * rdMin,
-aabb.min.z * rdMax);

float tMin = min(-aabb.max.y * rdMin,
-aabb.max.y * rdMax);

float tMax = max(-aabb.min.y * rdMin,
-aabb.min.y * rdMax);

Rect r;

r.min = clamp(float2(sMin, tMin),-1.0,1.0);
r.max = clamp(float2(sMax, tMax),-1.0,1.0);

return r;
}

Listing 1. Pseudo code for calculating the bounding box projection on the +X
cube map face. Assuming cube map and bounding box in the same coordinate
system, e.g. world space.


