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Abstract

Stochastic transparency provides a unified approach to order-
independent transparency, anti-aliasing, and deep shadow maps. It
augments screen-door transparency using a random sub-pixel stip-
ple pattern, where each fragment of transparent geometry covers a
random subset of pixel samples of size proportional to alpha. This
results in correct alpha-blended colors on average, in a single render
pass with fixed memory size and no sorting, but introduces noise.
We reduce this noise by an alpha correction pass, and by an accu-
mulation pass that uses a stochastic shadow map from the camera.
At the pixel level, the algorithm does not branch and contains no
read-modify-write loops other than traditional z-buffer blend oper-
ations. This makes it an excellent match for modern massively par-
allel GPU hardware. Stochastic transparency is very simple to im-
plement and supports all types of transparent geometry, able with-
out coding for special cases to mix hair, smoke, foliage, windows,
and transparent cloth in a single scene.

Keywords: rendering, order-independent transparency, deep
shadow maps, hair, smoke, foliage

1 Introduction

Interactive rendering of complex natural phenomena such as hair,
smoke, or foliage may require many thousands of semi-transparent
elements. Architectural renderings and CAD visualizations often
depend on transparency as well. While the ubiquitous hardware
z-buffer allows programmers to render opaque triangles efficiently
and in any order, order-independent transparency (OIT) remains a
difficult but highly desirable goal. Sorting transparent geometry at
the object level results in artifacts when objects overlap in depth,
while sorting at the fragment level is computationally expensive.
Combining multiple approaches, each suitable to a different cat-
egory of geometry, adds onerous complexity to interactive appli-
cations. Shadows cast by semi-transparent objects present an ad-
ditional challenge. Such shadows are in fact a version of the OIT
problem as they require some sort of transparency map that encodes
opacity behavior.

We revisit the old-fashioned technique of screen-door transparency,
describing algorithmic extensions that make it a practical interac-
tive OIT method for both shadows and visible surfaces. Among
its natural advantages, traditional screen-door transparency uni-
fies all transparent geometry types in a single algorithm; works
well with multi-sample anti-aliasing (MSAA); requires no sorting;
requires no additional memory beyond the MSAA z-buffer; and
is ideally suited to massively parallel hardware. (Indeed, it has
been supported to some degree by multi-sample z-buffer hardware
since the early 1990s [Akeley 1993], although modern GPUs have

Figure 1: 15,000 transparent hairs, 6,000 transparency-mapped
cards, transparent cloth, and opaque models all composite properly
and shadow each other with only four order-independent render
passes over the transparent geometry. Note for example the grass
blades visible behind and in front of the scarf.

introduced more flexible support.) Furthermore the technique is
easily extended to transparency shadow maps.

Stochastic transparency extends screen-door transparency with ran-
domly chosen sub-pixel stipple patterns. For example, a full-pixel
fragment with an opacity of 50% will randomly cover half of the
sub-pixel samples; for those samples, it is fully opaque. Conven-
tional z-buffering does the rest. If another 50% opaque fragment is
closer to the camera, then the first fragment’s color may end up in
only 25% of the total samples, regardless of which triangle is ras-
terized first. Handling all transparent geometry this way results in
the correct alpha-blended color on average, but introduces noise.

We explore several methods for reducing that noise. In particular,
we borrow the alpha correction and accumulation pass methods of
Sintorn and Assarsson [2009] to formulate depth-based stochastic
transparency, which stores only z values during the stochastic ren-
der pass, and yields more accurate transparent sampling. These
techniques are combined with multi-sample anti-aliasing, yet re-
main simple and unified. Our interactive implementation shows vi-
sually pleasing results at encouraging frame rates. We also discuss
connections to Monte Carlo ray tracing and to deep shadow maps.

No fragments were sorted in the making of these pictures.



Figure 2: Basic stochastic transparency with (a) 8, (b) 16, and (c) 64 samples per pixel, plus (d) a reference image from depth peeling. All
images with no anti-aliasing, alpha 30%. Model contains 322K triangles.

2 Prior Work

The A-buffer [Carpenter 1984] achieves order-independent trans-
parency by storing a list of transparent surfaces per pixel. It has
long been a staple of off-line rendering and can now be imple-
mented on recent graphics hardware. However, the A-buffer must
store all transparent fragments at once, resulting in unpredictable
and virtually unbounded storage requirements. This requires ei-
ther dynamic memory allocation, or dynamic tile sizing to keep the
memory requirement below a fixed limit. Both are challenging to
make efficient in a massively parallel computational environment
such as modern GPUs.

Depth peeling [Everitt 2001; Liu et al. 2006; Bavoil and Mey-
ers 2008] uses dual depth comparisons per sample to extract and
composite each semi-transparent layer in a separate rendering pass.
This approach makes efficient use of rasterization hardware, but re-
quires an unbounded number of rendering passes (enough to reach
the maximum depth complexity of the transparent image regions).
Complex geometry, tessellation, skinning, scene traversal, and CPU
speed limitations can all combine to make each rendering pass quite
expensive, feasible only a few times per frame. Depth peeling can
also be applied to fragments bucketed by depth [Liu et al. 2009];
this works well, but the number of passes still varies with the max-
imum number of collisions.

Billboard sorting renders the objects in sorted order. This is effi-
cient and can be done entirely on the GPU [Sintorn and Assarsson
2008], but is only appropriate for geometry types that don’t over-
lap in depth. When approximate results are acceptable, a partially
sorted list of objects can be rendered with the help of a k-buffer for
good results [Bavoil et al. 2007].

Screen-door transparency replaces transparent surfaces with a set
of pixels that are fully on or off [Fuchs et al. 1985]. The choice of
stipple patterns can be optimized so they are more visually pleas-
ing to viewers [Mulder et al. 1998]. The idea of random stipple
patterns per polygon has also been long known, and was dubbed
cheesy translucency in the original OpenGL “red book” [Neider and
Davis 1993]. The sub-pixel variation of screen-door transparency
that has been implemented in hardware is alpha-to-coverage, which
turns samples on or off to implicitly encode alpha. Because alpha-
to-coverage uses a fixed dithering pattern, multiple layers occlude
each other instead of blending correctly, leading to visual artifacts.

This paper develops the combination of the “random” and “sub-
pixel” ideas together with efficient hardware multi-sampling, as
well as recent GPU features that allow the fragment shader to dis-
card individual samples [Balci et al. 2009].

Random sub-pixel screen-door transparency is exactly analogous

to using Russian roulette to decide ray absorption during batch ray
tracing [Morley et al. 2006]. As an object-level analogy to screen-
door transparency, triangles can be dropped from a mesh in pro-
portion to transparency [Sen et al. 2003], but this can require a
dynamic tessellation as an object changes size on screen. In or-
der to keep rendering times in proportion to screen size, Callahan
et al. drop some polygons and increase the opacity of the remain-
ing ones [Callahan et al. 2005]. Finally, recent deferred shading
schemes [Kircher and Lawrance 2009] can combine a transparent
object with opaque objects using a stipple pattern in the G-buffer,
by searching for appropriate samples during the deferred shading
pass.

A variety of techniques has been used to account for shadows cast
on and by transparent objects. In the film industry the most com-
mon method is deep shadow maps [Lokovic and Veach 2000].
These, like the A-buffer, require a variable length list per sam-
ple while the map is constructed. Deep opacity maps [Yuksel and
Keyser 2008] have clear visual artifacts unless a very large number
of layers are used. Occupancy maps are promising but are so far
applicable only to objects of uniform alpha [Sintorn and Assarsson
2009; Eisemann and Décoret 2006]. All such methods that use a
uniform subdivision of the depth range suffer accuracy issues for
scenes with highly non-uniform distributions of transparency.

Our technique combines several features not addressed together in
prior approaches. Stochastic transparency uses fixed memory, ren-
ders a fixed number of passes, adapts to the precise location of
layers, and scales in effectiveness with MSAA hardware improve-
ments. The main tradeoff for these features is the amount of time
and memory required to compute and store many samples. In hard-
ware terms this translates to very aggressive MSAA buffer use. De-
spite this drawback we argue that the robustness and simplicity of
stochastic transparency make it an attractive option when design-
ing interactive graphics software systems that must handle trans-
parency.

3 Stochastic Transparency

Stochastic transparency is simply screen-door transparency using a
randomized sub-pixel version of the “screen-door” stipple pattern.
As with most stochastic methods, the main problem is noise. Sec-
tion 3.1 describes the basic method both for rendering and shadow-
ing transparent objects, and shows that Monte Carlo stratification
can be used to reduce the noise. In Section 3.2 we describe how to
apply alpha correction for noise reduction, and in Section 3.3 we
describe a three-pass but still order-independent method to reduce
noise further. In Section 3.4 we show how our methods can be im-
plemented efficiently using the multi-sample anti-aliasing features



on modern hardware. Throughout the discussion we refer to “tri-
angles”, but the ideas extend naturally to other primitives. We also
often use “fragment” which refers to the part of the triangle inside
a given pixel.

3.1 Sampling Transparency

We assume a collection of triangles where the ith triangle has color
ci and opacity αi, so that its correct contribution to a pixel is αici
modulated by the transparency of the triangles in front of it. We
introduce two running examples.

Example 1. Consider a pure red (c0 = (1, 0, 0)) triangle in front
of a pure green (c1 = (0, 1, 0)) triangle, each with an opacity of
0.45 (α0 = α1 = 0.45). If the background is pure blue (cb =
(0, 0, 1)) then the resulting pixel color is:

c = αc0 + (1− α)αc1 + (1− α)2cb = (0.45, 0.2475, 0.3025),

which corresponds to the “over” operator as defined by Porter and
Duff [1984]. This simple artificial example isolates contributions
from each triangle and the background into separate color channels.

Example 2. Consider N triangles each with α = 1/N and color
cf . The resulting pixel color is:

c = (1− α)Ncb +

N−1X
i=0

(1− α)iαcf .

Here we consider a 25% grey background (cb = (0.25, 0.25, 0.25))
with N = 4 triangles. This example resembles the situation when
multiple thin, softly lit, partially transparent “smoke blobbies” over-
lap in screen space, and helps illustrate the inherent complexity of
transparency: the color contributed by a triangle depends on α of
all closer triangles at that pixel.

Consider an ordinary z-buffer where each pixel in the frame buffer
consists of a number of samples S. During rasterization, a fragment
covers some or all of those samples. Each sample retains the depth
and color of the front-most fragment that has covered it. For our
purposes we want to encode transparency for a fragment using the
percentage of samples we enable during rasterization, so we begin
by considering all S samples to be located at the center of the pixel.
In this case, an opaque fragment will cover all the samples, or none.

A transparent fragment will cover a stochastic subset ofR samples,
resulting in an effective α = R/S. Each sample does ordinary
z-buffer comparisons, retaining the front-most fragment it sees, so
this is a “winner take all” process. The expected value of the al-
pha and color for the fragment is correct provided the probability
a sample is covered is equal to α. For example, if we make these
opacity choices independently for S = 4, then for one of the frag-
ments in Example 1 with α = 0.45 , R might take on any value of
0, 1, 2, 3, 4 but on average it should be 0.45S = 1.8.

For a fragment that is not in front, its effective α is the product
of its own α and (1 − αi) for all triangles i in front of this frag-
ment. The expected product of two random variables is the product
of the expected values, if the variables are uncorrelated. Thus us-
ing stochastic subsets for each triangle works correctly, provided
that our method for selecting those subsets ensures no correlation.
There will of course be some variance, i.e., random noise, around
the correct value. Reducing that noise can be achieved by increas-
ing the number of samples S, but for a given triangle this will have
the classic Monte Carlo problem of diminishing returns where halv-
ing the average error requires quadrupling S.

The standard way to attack diminishing returns is to use stratified
sampling. That can be accomplished here by setting the R samples
as a group rather than independently. One approach is to first setR:

Ri = bαiS + ξc
where ξ is a “canonical” random number (uniform in [0, 1)). For
example, with S = 4 and α0 = 0.45, we have a 20% chance
of using R0 = 1 and an 80% chance of using R0 = 2. (Or R
could be dithered across a tile, for further stratification.) We then
choose a random subset ofR samples. This allows the error for one
fragment to decrease linearly, thus avoiding diminishing returns.
All the images in this paper use stratified sampling. See Figure 2.

Put differently, naive sampling flips an α-weighted coin for each
sample, while stratified sampling randomly selects one of the S-
choose-R possible subsets of samples. We illustrate the practical
impact of this difference with the two examples at the beginning of
the section with S = 4 samples per pixel. For Example 1, the RMS
error (standard deviation) rounded to hundredths per RGB channel
is:

σnaive = (0.25, 0.21, 0.23).

When stratified sampling is used, each of the triangles will have 1
or 2 samples representing them. For the front triangle all samples
will count, while for the back triangle they will count only if not
also covered by the front triangle. This introduces more stability:

σstratified = (0.10, 0.17, 0.18).

For Example 2 with S = 4, we have for each RGB channel:

σnaive = 0.35,

σstratified = 0.12.

This example shows that although we do not have stratification
between the fragments, we do still benefit significantly from the
stratification within a pixel. The actual number is also interest-
ing because the example resembles cloudy sprites on a dark back-
ground. An RMS error of 0.12 in this situation, while somewhat
higher than practical, is approaching a usable level.

The benefits of the stratification in the “one opaque sample per frag-
ment” example raises the question of whether in all cases stochastic
transparency has error that decreases with 1/S and thus avoids the
law of diminishing returns. Unfortunately this is not the case. Our
example with S fragments each with 1 opaque sample becomes a
version of the “balls and bins” problem (dropping M balls at ran-
dom into S bins), where the number of empty bins determines al-
pha. The asymptotic variance in the number of empty bins increases
linearly with M [Flajolet and Sedgewick 2009]. When M = S
(the “thin media” case) and we normalize by S to get our opac-
ity, this implies variance decreases as 1/S and thus the RMS error
decreases as 1/

√
S. So the benefits of stratification for the thin

media case comes in the constant factor. This behavior is similar
in spirit to jittered sampling for opaque surfaces where the error
varies between O(1/

√
S) and O(1/S) depending on the details of

the fragments in the pixel [Mitchell 1996].

A transparent shadow map can also be rendered by stochastically
discarding fragments and storing only depth. The simplest case is
one sample per pixel, at a high resolution. Percentage closer filter-
ing then approximates the transparent shadow map value. Alterna-
tively, several depths can be stored at each pixel. This can be viewed
as a Deep Shadow Map [Lokovic and Veach 2000] that encodes
each ray’s visibility function using S depth values z1, z2, ...zS . Vis-
ibility is approximated by

vis(z) ≈ count(z ≤ zi)/S. (1)

This is crude but compact and regular, and the z’s need never be
sorted.



Figure 3: Comparison of noise reduction methods. (a) Basic stochastic transparency has noise in all transparent regions. (b) Alpha
correction eliminates noise in areas where all layers have similar colors. (c) Depth-sampled stochastic transparency is more accurate in
complex regions. (d) Reference image from depth peeling. All images use 8 samples per pixel, no anti-aliasing, and an alpha of 40%.

3.2 Alpha Correction

The exact (non-stochastic) total alpha of the transparent fragments
covering a pixel is

αtotal = 1−
Y

(1− αi) (2)

Since this equation is independent of the order of the fragments, it
can be evaluated in a single render pass, without sorting. Ordinary
alpha blending leaves this result in the alpha channel. It is only the
color channels that depend on proper depth ordering.

Following Sintorn and Assarsson [2009], we can use total alpha
as a correction factor. We multiply our (stochastic) average color
of samples by αtotal/(R/S). For pixels with a single transparent
layer, the result is now exact. Empirically, the error in multi-layer
pixels is reduced overall, though for some pixels it is increased;
see Figure 3. This technique does add bias, but in a way that van-
ishes as S increases, so it is technically a consistent Monte Carlo
method [Arvo and Kirk 1990].

For our two examples from the last section, the effects of alpha
correction are instructive. The RMS error for Example 1 changes
as:

σ = (0.10, 0.17, 0.18)→ (0.17, 0.14, 0.0)

Note that the error associated with the first triangle goes up. This is
to be expected because the contribution from the first visible trian-
gle is optimally stratified and changes due to other triangles can eas-
ily make it worse. The background (blue) component error goes to
zero as expected, and the back triangle’s contribution is improved.
In less pathological examples, the error in each component is a mix-
ture of errors from all contributors, so as long as error is usually
reduced per fragment it should improve per pixel. For the more
naturalistic Example 2, the error goes to zero because the fragment
colors are all the same:

σ = 0.12→ 0.0

While this extreme case is unusual, whenever fragments have simi-
lar colors we will get some of this benefit.

Stochastic shadow maps may be alpha corrected by storing total al-
pha per pixel, and filtering it with the same kernel as the percentage
closer filter. This eliminates quantization effects, particularly for
shadows thrown onto opaque objects.

3.3 Depth-based Stochastic Transparency

One source of error in stochastic transparency is that each fragment
is weighted only by how many of its samples are finally visible.

With one additional order-independent render pass, we can improve
these weights significantly. We first describe the formula for the
weights in exact (non-stochastic) alpha blending, followed by our
approximation.

Let vis(z) be the visibility along a sample ray, that is, the propor-
tion of the light that reaches depth z. Since each surface diminishes
the light by one minus its alpha, visibility is a product of surface
intersections:

vis(z) =
Y

zi<z

(1− αi). (3)

(This is αtotal at the first opaque surface, and zero beyond that.)
The standard alpha blending formula can then be rearranged to
identify the contribution of each fragment to the final composited
pixel:

Final color =
X

vis(zi)αici. (4)

In words, each fragment contributes in proportion to its visibility
and its opacity.

Given an oracle that estimates vis(z), we can estimate Equation 4
using a single additive render pass over all fragments, in any or-
der. A transparency shadow map from the camera is such an oracle,
a way of estimating vis(z). This is a pleasing duality: any trans-
parency shadow method is also an order-independent transparency
rendering method, using one extra accumulation pass. For exam-
ple, this is how Sintorn et al. [2009] use Occupancy Maps for both
shadows and rendering. They point out that it is important to alpha-
correct the result by the ratio of the exact total alpha to the accumu-
lated alpha, obtained by replacing ci with 1 in Equation 4.

In our case, the oracle is a stochastic transparency buffer. Here is
the resulting method for depth-based stochastic transparency, for
samples that are all in the center of the pixel:

1. Render any opaque geometry and the background. All further
steps treat only the transparent geometry, culling away frag-
ments that are behind opaque geometry.

2. Render total alpha for each pixel into a separate buffer. (One
pass.)

3. Render stochastic transparency with S samples per camera
pixel, storing only z. (One pass, multi-sampled.)

4. Accumulate fragment colors (including alpha to be used for
alpha correction) by Equation 4, with visibility estimated by
Equation 1. The shader reads all S of the z values for the pixel
from the output texture of the previous step, and compares
them with the current fragment’s z. (One pass.)



5. Composite that sum of fragments, times the alpha correction,
over the opaque image.

Note that Step 1 in this algorithm is an optimization (of both speed
and quality) and that the algorithm holds for α = 1 as well.

This is almost always significantly less noisy and more accurate
than the basic stochastic transparency algorithm; see Figure 3. One
reason is that basic stochastic transparency effectively quantizes al-
pha to multiples of 1/S, while depth-based stochastic transparency
quantizes visibility but not alpha. Another reason is that the ba-
sic method collects only fragments that “win” and remain in the
z-buffer for one or more samples, while in the depth-based method,
all fragments contribute.

Using the depth-only pass without alpha correction reduces the
RMS error for the red and green triangles of Example 1:

σ = (0.1, 0.17, 0.18)→ (0.0, 0.05, 0.18)

Note that the background’s contribution (blue) does not change.
The errors for the other channels are so low that in this case al-
pha correction will likely do more harm than good, which is indeed
the case:

σ = (0.0, 0.05, 0.18)→ (0.14, 0.12, 0.0)

While the example suggests that for some cases we may not want
to apply alpha correction, we have found it essential for avoiding
artifacts in all scenes we have tried.

For Example 2, the RMS error drops using only the depth-only test,
and adding alpha correction again drives the error to zero because
the fragments are all the same color:

σ = 0.12→ 0.08→ 0

3.4 Spatial Anti-aliasing

We now consider samples that are distributed spatially over the
pixel. The resulting algorithms are surprisingly simple.

We use the multi-sample anti-aliasing (MSAA) modes supported
by current hardware graphics pipelines, where each pixel contains
several (currently up to 8) samples at different positions within the
area of the pixel, and each rasterized fragment carries a coverage
mask indicating which of these samples lie inside it. This is ef-
ficient because shading is per fragment while visibility (z-buffer
comparisons) are per sample. For display, the pixel’s samples are
averaged (in hardware), or a better filter such as a 2x2 Gaussian
filter can be applied (in software). The algorithms below can work
with any filter.

These spatial anti-aliasing samples can be used as our transparency
samples as well. (Philosophically, each transparent surface can be
considered one more dimension for distributed ray tracing [Cook
et al. 1984].) Current hardware already supports an alpha to cover-
age (a2c) mode which does this. It ands the coverage mask with a
screen door mask computed from alpha. Unfortunately the screen
door mask is always the same; samples are added to it in a specified
order as alpha is increased. The key difference between current a2c
and our stochastic transparency approach is that we ensure masks
are uncorrelated between samples in the same pixel.

There is one subtlety. For alpha correction to produce anti-aliased
edges of transparent surfaces, total alpha must be rendered with
multi-sampling. For alpha correction of the transparent geometry,
only the filtered (per pixel) total alpha is needed. But for com-
positing the background pass, the background must be multiplied

by (1 − αtotal) sample by sample. This is chiefly in case there is
an edge in the background pixel that corresponds to the edge of the
transparent material, which commonly happens at the edges of a
window or the silhouette of skin with hairs behind it.

The basic algorithm with alpha correction is this:

1. Render the opaque background into a multi-sampled z-buffer.

2. Render total alpha into a separate multi-sampled buffer. (One
pass.)

3. Render the transparent primitives into a separate multi-
sampled buffer, culling by the opaque z-buffer, and discarding
samples by stochastic alpha-to-coverage. (One pass.)

4. Compositing passes: First dim (multiply) the opaque back-
ground by one minus total alpha at each sample. Then read
the filtered transparent color, correct to the filtered total alpha,
and blend over the filtered, dimmed background.

In the depth-based algorithm, the shader no longer needs to com-
pare z to all S of the zi values in the transparency map, because
we can use the multi-sampled z-buffer hardware to do this. We use
the z-buffer to accumulate each fragment into only those samples
where z ≤ zi. When the accumulated samples are averaged for
display, the effect is that the fragment is multiplied by Equation 1.

The final anti-aliased depth-based algorithm is this:

1. Render the opaque background into a multi-sampled z-buffer.

2. Render total alpha into a separate multi-sampled buffer. (One
pass.)

3. Render the transparent primitives into the opaque z-buffer,
discarding samples by stochastic alpha-to-coverage, and stor-
ing only z. (One pass.)

4. Accumulation pass: Render the transparent primitives in ad-
ditive blending mode, into a separate multi-sampled color
buffer, comparing against the combined z-buffer from the pre-
vious step. Starting with black, add αici to all samples where
zfragment ≤ zbuffer. (One pass.)

5. Compositing passes: Dim the opaque background by one mi-
nus total alpha at each sample. Then read the filtered accumu-
lated sum, correct to the filtered total alpha, and blend over
the filtered, dimmed background.

In all, we use three passes over the transparent geometry. To get
more than 8 samples per pixel (on current hardware), the algorithm
can be iterated with different random seeds and the results aver-
aged.1 Since true alpha is independent of the random variables,
only two extra passes are needed for each additional 8 samples, for
a total of 1 + 2(S/8) passes. An additional computational cost is
that shadow maps may be larger, and ideally they are re-rendered
with each new seed as well.

4 Results

Our final anti-aliased depth-based algorithm can be implemented on
recent GPUs that support programmable fragment coverage output,
supported since DirectX 10.1 and OpenGL shader model 4.1 (we
use the ARB sample shading extension [Balci et al. 2009]). All
timings were measured on a pre-release version of an NVIDIA Di-
rectX 11-capable GPU, code named “Fermi.” Timings were largely
independent of CPU speed.

1The average of two 8-sample images is noisier than one 16-sample im-
age, unless extra care is taken to split one stratified 16-bit sample mask per
pixel across both images.



Current hardware supports a maximum of only 8 samples per pixel
(8x MSAA). To simulate more samples, we average together mul-
tiple passes with different random seeds. Finding an S-choose-R
mask is accelerated by a precomputed look-up table, indexed by al-
pha in one dimension and a pseudo-random seed in the other. This
quantizes alpha to approximately 10 bits, acceptable in practice.
For modest S, the table can include all possible masks; for 8 sam-
ples, S-choose-R is at most 70, and even for 16 samples, it is at
most 12,870. We use instead a fixed table width of 2,047 masks.

We have tested our implementation on a wide variety of semi-
transparent geometry including hair, smoke, alpha-mapped foliage,
sheer cloth, and a CAD model, as well as on a scene combining sev-
eral of these. Table 1 shows the execution time of each of the ren-
der passes of the anti-aliased depth-based stochastic transparency
algorithm, for three of the scenes, each rendered at 500x500 with
8 samples per pixel and 16 samples from a stochastic shadow map
of total size either 2048x2048 or 4096x4096. (The latter is ren-
dered with supersampling rather than MSAA.) We also include for
each scene a baseline time equal to the time required for one MSAA
pass over all visible transparent geometry with full shading (includ-
ing shadow look-ups) and alpha blending. This is a plausible lower
bound on the render time for anti-aliased transparency with any al-
gorithm – the time to draw the transparent geometry if it were al-
ready sorted. Each render pass is shown in milliseconds and as a
multiple of this baseline.

Our algorithm’s run time is between 3 and 4 times the baseline,
whether the depth complexity is modest (the motor, Figure 2) or
very high (the windy hill, Figure 1). Indeed, each of the four passes
over the transparent geometry is of a similar order as the base time.
Of those four passes, only one executes the full surface shader to
compute fragment color; the other three only need to run enough
of the shader to compute fragment alpha. Computing alpha may
require a texture look-up, but it will not typically involve shadow
look-ups and filtering, for instance. Two of the passes are actu-
ally stochastic, meaning they use randomly selected sample masks,
while the other two render each transparent fragment over the whole
pixel. (In the case of the accumulation pass, many of the samples
are culled by the stochastic z-buffer.) Note that our scenes are dom-
inated by transparent geometry; in practice the increased cost of
stochastic transparency will be less for scenes containing signifi-
cant opaque geometry.

Comparison to depth peeling. Depth peeling can produce perfect
results for visibility but requires rendering the scene O(D) times
for depth complexity D. For the motor scene, 10 peels are enough
to convey the content, as the last few layers are mostly obscured.
Our straight-forward depth-peeling implementation took 1.5 times
longer to draw 10 layers – without MSAA but also without noise –
as the stochastic transparency renderer took to draw all layers – with
MSAA and with noise. As scene complexity increases, depth peel-
ing becomes quadratic in the number of primitives P (O(P ) passes
with O(P ) primitives, assuming depth complexity scales linearly
with P ) while stochastic transparency remains linear with P . For
complex scenes the advantage skyrockets; see Figure 4. Further-
more, as the view or scene moves, D can vary, with strong influ-
ence on depth peeling render times. Stability of run time is a major
strength of stochastic transparency.

Comparison to specialized approaches. For smoke, depth peel-
ing is inappropriate, but sorting the particles on the GPU can be
very fast [Sintorn and Assarsson 2008; Cohen et al. 2009]. Fur-
thermore, geometric anti-aliasing can be replaced by shader anti-
aliasing. While a specialized smoke renderer will be faster than
stochastic transparency, the flexibility of our approach means de-
velopers can avoid multiple transparency implementations for dif-
ferent scenarios. This flexibility is another strength of stochastic

Figure 4: In the time that Figure 1 was rendered with stochastic
transparency, depth peeling could only draw 5 layers, with surreal
results.

transparency.

Algorithms that sample opacity in regular slices [Kim and Neu-
mann 2001; Sintorn and Assarsson 2009; Liu et al. 2009] have had
impressive results, particularly for hair. Our randomized method
resulted from an effort to overcome limitations of these algorithms
with very uneven distributions of opacity. If for example two puffs
of smoke are separated by a large empty space, it is difficult for a
regular sampling approach to capture the variation of light within
each puff. Unlike uniform slicing methods, stochastic transparency
depends only on the depth order of fragments, and is insensitive to
the actual depths. And unlike most bit-mask methods, it does not
depend on all fragments having similar opacities; random sampling
approaches any distribution in the limit.

Qualitative assessment. To our eyes, depth-based stochastic
transparency with 8 samples is pleasant and undistracting in the
detailed naturalistic scenes, while 16 samples is adequate, although
not completely satisfying, for the less detailed cloth scene and the
broad smooth surfaces of the CAD model. Recall that 16 samples
requires only 5 passes. For basic stochastic transparency without al-
pha correction, 64 samples seems like a minimum. This may seem
prohibitive today, but if graphics hardware exploits Moore’s Law
for ever-increasing hardware MSAA sample rates, the basic algo-
rithm may win out by (in Kurt Akeley’s phrase) “the elegance of
brute force.”

5 Limitations and Extensions

Temporal coherence. When we seed the pseudorandom number
generator that selects the mask, we include pixel (x,y) in the seed to
get variation across the screen, but we also need independent masks
for each fragment within a pixel. Seeding by fragment z is effective
for still images, but causes the noise pattern of moving objects to
change completely each frame. Seeding by primitive ID (a differ-
ent number for each triangle, line, or point drawn) is much more
stable. Where noise is visible, primitives appear to move through
a noise field fixed in screen space. The drawback is that the noise
field changes at triangle boundaries, and these boundaries are oc-
casionally visible during motion (see video). An alternative is to
seed by an application-defined object ID. However if a curved ob-
ject presents several fragments to a pixel, these fragments’ masks



Motor Dog WindyHill
stochastic shading ms rel ms rel ms rel

Base no full 3.6 1.00 14.7 1.00 9.5 1.00
shadow yes full - - 8.9 0.61 13.1 1.39
opaque 2.6 0.71 1.2 0.08 2.8 0.30
total alpha no alpha 3.3 0.91 8.6 0.58 6.9 0.73
stoch depth yes alpha 2.7 0.75 8.7 0.59 7.0 0.74
accumulation no full 3.4 0.93 9.5 0.64 6.9 0.73
Other 1.6 0.44 1.5 0.1 1.7 0.18
Total 13.6 3.74 38.4 2.61 38.4 4.05

73 FPS 26 FPS 26 FPS

Table 1: Run times of the phases of the final algorithm for Figures 2, 5, and 1.

Figure 5: A dog with 300K hairs. 26 FPS.

will be identical, and they will occlude each other rather than blend.
An extra seed bit for front-facing versus back-facing triangles will
avoid this in the simple cylindrical case, but not in general. Typi-
cally however this method yields satisfactory results with few ani-
mation artifacts, at the expense of some effort by the programmer.

Uneven noise between pixels. Our noise reduction methods makes
some regions noisier than others, which may be objectionable.
Stratified masks reduce noise in most pixels, but pixels containing
edges see a mix of two masks, one from each contributing fragment,
and so have increased variance. Under specific conditions, with
matching and somewhat flat shading on both sides of the boundary,
an object boundary can cause a visible stripe of noisier pixels even
in a static image. Similarly, alpha correction eliminates noise from
regions with just one transparent layer, giving them a different tex-
ture than adjacent regions. One option is to forgo stratified masks
or alpha correction, making all pixels as noisy as the worst ones,
and instead combat noise with many more samples.

Adaptive sampling. Another possibility is to adaptively render
more passes for pixels showing larger variance. This would have
the great advantage of a noise level that is uniform and under artist
control. It would have the disadvantage of, like depth peeling, re-
quiring more passes for more complex images. But the number of
passes is likely to still be many fewer than for depth peeling.

Post processing. One approach to reducing stochastic noise is to
post-process the image. The bilateral filter [Paris et al. 2007] is a
popular way to reduce noise while preserving edges. To preserve

Figure 6: A smoke plume with 100K particles. 38 FPS.

edges from all visible layers of transparency, we experimented with
cross-filtering the transparent image with the (non-stochastic) total
alpha channel. This is inexpensive, and blurs out noise somewhat,
but also blurs surface detail in the transparent layers. However it
is possible that there are weighting functions that produce good re-
sults.

Mask selection. Ideally, we would also reduce the variance of the
overlap of the masks chosen for different fragments in the same
pixel, leaving just the right amount of correlation. This can be done
with two known fragments [Mulder et al. 1998], but it is not clear
how to do this in general, given that we choose each mask without
knowledge of the other fragments in the pixel. Furthermore, a pair
of random S-choose-R masks does reasonably well. For instance,
with S = 8 and two fragments with α = 0.5, total samples covered
is within one sample of correct 97% of the time. It would seem
difficult to improve on that significantly.

Leveraging Monte Carlo techniques. The stochastic transparency
algorithm is equivalent to backwards Monte Carlo ray tracing, with
no changes in ray direction. At each ray-surface intersection, Rus-
sian roulette decides whether the ray (the sample) is absorbed or
transmitted. In this view, Equation 4 is merely the sum over the
probability distribution of paths: vis(zi) is the probability of a ray
reaching the fragment at zi, and αi is the probability of the ray
stopping there. This explains why alpha correction is necessary in
the depth-based algorithm: since vis(zi) is only approximate, the
probabilities do not sum to one.



The stratification from Section 3.1 could be achieved by using strat-
ified seeds between the rays. This raises the question of whether
other Monte Carlo optimization techniques can apply, such as im-
portance sampling. The relative variance is highest when we have
light transparent surfaces over a dark background. Making S higher
in pixels where the background is dark would be a promising start
towards importance sampling.

6 Conclusion

Stochastic transparency using sub-pixel masks provides a natural
implementation of order-independent transparency for both primary
visibility and shadowing. It is inexact, but with the refinements
presented in the paper, it produces pleasing results for low enough
sampling rates that it is practical for interactive systems.

The resulting algorithm has a unique combination of desirable qual-
ities. It uses a low, fixed number of render passes – on current
hardware, three passes for 8 samples per pixel, or five passes for
16 samples. It uses a fairly high but fixed and predictable amount
of memory, consisting of a couple of extra MSAA z-buffers. Its
run time is fairly stable and linear with the number of fragments.
It is unaffected by uneven spatial distribution of fragments, and re-
sponsive to uneven opacities among fragments. It is very simple
to implement. And it provides a unified technique for all types
of transparent geometry, able without coding for special cases to
mix hair, smoke, foliage, windows, and transparent cloth in a single
scene.

Stochastic transparency provides a unified approach to order inde-
pendent transparency, anti-aliasing, and deep shadow maps. It is
closely related to Monte Carlo ray tracing. Yet the algorithm does
not branch and contains no read-modify-write loops other than tra-
ditional z-buffer blend operations. This makes it an excellent match
for modern, massively parallel GPU hardware.
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