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Abstract
Broberg and Sands (POPL’10) introduced a logic-based policy
language, Paralocks, suitable for static information-flow control
in programs. Paralocks has a precise information-flow semantics,
and is able to represent a wide variety of information flow idioms,
including stateful policies, with just a few basic building blocks.
The question of whether these desirable features can be added to a
real programming language was left open. In this paper we present
Paragon, a Java-based language with Paralocks policy labels. We
show that the Paralocks idea can be scaled to a programming
language with features such as dynamic allocation, exceptions, and
object orientation. Moreover, the combination of Paralocks with the
modularity mechanisms of Java achieve unforeseen benefits: the
building-blocks for representing various policy idioms can be fully
encapsulated and presented to the Paragon programmer as a library
of abstract policies and policy-related functions. We describe the
Paragon compiler, and show how a number of previously studied
idioms including the decentralized label model and Jif primitives,
can be coded as a library, and, moreover, how informal coding
patterns can be expressed in Paragon and thus properly enforced
by the compiler.

1. Introduction
For application security, the semantic concept of information flow
is fundamental. Understanding and controlling how information
flows between the end points of an application is central to the
core security concerns of confidentiality (the property that sensitive
information does not leak to inappropriate sinks) and integrity (the
property that inappropriate information sources do not influence
trusted data). The ability to specify and verify how information
should flow through a program is thus a major step towards building
secure systems.

Research on language-based information flow security in the
last decade has focused heavily on the development and study of
a plethora of information flow policies. Much of this work tack-
les the restrictiveness of classic fixed-lattice models of informa-
tion flow [1] by studying controlled deviations from such policies,
a.k.a. declassification. See [2] for an overview and motivation for
the study of more complex policies, and [3] for a fairly recent struc-
tured overview of the various flavours of declassification found in
the literature.
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How has this research been reflected in the development of
actual security-typed programming languages? The answer is not
so much. In fact, there is still only one significant system, the Jif
compiler from Myers et al. [4, 5], which provides a direct means
to specify information-flow policies including aspects of dynamic
policy change and declassification. Jif has served well as a vehicle
to explore a particular decentralized information flow model [6, 7],
as well as the kinds of policies required in particular applications
e.g. [8–10].

Despite its unique position, Jif has not achieved widespread use.
Some shortcomings of the Jif approach which may account for this
are:

• it is tied to a specific information flow model (the decentralized
label model, DLM) which is perhaps not the model appropriate
for a given application,
• the policy language does not provide abstractions suitable for

building new features and policy paradigms – for this the com-
piler itself has to be extended,1

• as a consequence of the previous point, Jif suffers from feature-
creep: as the need for new policy features is discovered, succes-
sive releases of the language accumulate more and more fea-
tures, making Jif increasingly complex to work with.

Paragon In this paper we describe a new security-typed lan-
guage, Paragon, which builds on the recent policy language Par-
alocks proposed by Broberg and Sands [12], as well as experience
from the Jif system. Paralocks (described in Section 2) offers to be
a relatively simple core language with information flow as a prim-
itive notion, in which a wide variety of stateful and dynamic infor-
mation flow policies may be described without adding new prim-
itives to the policy language. But the previous work on paralocks
provides only a proof-of-concept static type system for a toy lan-
guage, rather far from a realistic programming language. Questions
and challenges which must be addressed in the adaptation of these
ideas to a real language include:

• whether the model can be scaled to handle the features of a real
programming language, such as objects, exceptions, dynamic
allocation, aliasing, and so forth,
• since the encoding of complex policies requires computation

of policies (as in the DLM example from [12]), how can static
type-checking be used?
• Paralocks provides a “core calculus” for building information

flow policies; what abstraction facilities are needed to make
programming with paralocks palatable?

Contributions and Organisation The contribution of this paper
is the presentation of a new language, Paragon, which meets these

1 The underlying compiler technology of Jif, Polyglot [11], is built with
extensibility in mind, but this is still a major undertaking.

1 2012/7/11



challenges. Paragon is a security-typed extension to Java2 support-
ing Paralocks policies. Section 2 recalls the Paralocks information-
flow policy language upon which Paragon is based. Paragon itself is
introduced (Section 3) through a series of examples. The examples
illustrate how the features of Paralocks combine fruitfully with the
basic abstraction mechanisms of Java: the internal building-blocks
needed to represent various policy idioms can be encapsulated by
standard Java features, so that a user of a given policy idiom is
not exposed to the Paralocks representation. Section 4 dives into
the details arising in the tracking of information flows in Paragon,
while Section 5 briefly describes the Paragon compiler and runtime
system. Since Jif holds a special place among the related works,
Section 6 provides a more in-depth comparison between Paragon
and Jif, pointing out both how our approach addresses some short-
comings of the Jif approach, and where Jif has directly influenced
our design. We also show how Paragon can encode the DLM as
a library which exports the basic Jif language primitives – policy
constructors, declassification functions, and operations to declare
code authority and the delegation relation between principals – with
almost no extra notational overhead. We conclude with a broader
overview of related work (section 7) and future work (section 8).

2. Paralocks
In this section we introduce the Paralocks policy language from
[13] that forms the basis for the Paragon language.

The Paralocks policy language itself is largely “policy neutral”
– it does not presuppose any particular labels, information flow
levels, or any specific fixed hierarchy. Instead it builds on two basic
components: actors and parameterized locks.

Actors The first basic building block of policies is an unstruc-
tured set of actors. These are the conceptual recipients of informa-
tion. Actors model, for example, specific communication channels,
principals, or security clearance levels.

A Paralocks policy describes how and when some actor may
gain information about any piece of data labelled with that policy.
We use the phrase “gain information” rather than “access” to stress
that this is an information flow notion rather than an access control
one. Since confidentiality and integrity are not built-in notions in
Paralocks policies, an actor is a more primitive concept than a
principal. 3

Locks The second building block accounts for the stateful and
dynamic component of policies, a form of boolean variables called
locks. Locks are the interface between the code and the policy in
the sense that they are used to communicate the security relevant
state of the program to the policy.

In general, locks can be parameterized by zero or more actors
(hence the name paralocks). Each lock has a fixed arity. Typically,
nullary locks (these are the flow locks from [13]) model general pol-
icy relevant events, for example the declassification of some data
item, or a global state change which implies a change in flow pol-
icy; unary locks can be used to model roles e.g. Manager(Bob), and
thus support a role-based version of information flow control with
dynamic role assignment; binary locks are used to model relations
between actors, such as a delegation e.g. Bob actsFor Alice.

Policies Policies are built from actors, locks and actor-variables
by forming simple statements in first-order logic, namely Horn

2 A substantial sequential subset of Java 7.x
3 For example, a single principal in the D-Star policy language [14], and
in more recent versions of Jif [5], is the subject of both confidentiality and
integrity polices, and thus might well be modelled in a paralocks policy by
a pair actors, one to express the information flow constraints concerning
confidentiality, and another to express those dealing with integrity.

clauses. A policy is a collection (a logical conjunction) of clauses
of the form

∀a,~a1, . . . ,~an. L1(~a1) ∧ · · · ∧ Lm(~am)⇒ a

This clause describes the conditions L1(~a1) ∧ · · · ∧ Lm(~am)
under which information may flow to the actor a. Here the head
of the clause a can be viewed as a shorthand for a distinguished
implicit predicate MayFlowTo(a).

In the Paragon language and in the sequel we adopt a more
Prolog-like notation and write e.g.

∀x.HighClearance(x) ∧ Safe⇒x

as ’x : HighClearance(’x), Safe. As in this example, the ’-
prefix on any variable simply denotes that the variable is locally
quantified (i.e. it is a bound variable in this policy).

Example Consider policies for a simple conference-management
system. The actors of interest are members of the roles Author,
PCMember, and PCChair. The key global states of the system are
modelled by nullary locks, SubmissionPhase and ReviewPhase,
with the obvious meanings. In the scope of some actor A, a paper
submission written by A can be stored in a location with a two-
clause policy:

authorData= {A: Author(A) ;
’x: PC(’x),ReviewPhase}

Its contents can always flow to the author, and can flow to a PC
member during the review phase. We may also wish to ensure
the integrity of the paper once the review phase has begun. In
other words the author should not be able to change the paper
after submission. Although paralocks does not have “flows-from”
policies, this integrity constraint can be enforced e.g. by ensuring
that the data provided by the author is given policy

authorChannel = {A: Author(A);
’x: PC(’x),ReviewPhase,SubmissionPhase}

This means that such information can only flow to a PC member
from the author during the submission phase. At any other time the
respective policies for the author’s channel and the storage object
for the author’s paper will be incompatible. (See the discussion of
semantics and verification below.)

Finally we mention one further feature of paralocks which
means that they are (possibly recursive) datalog programs: the abil-
ity to have rules which describe invariants that relate locks. In this
example, the PCChair role can implicitly inherit from the PCMem-
ber role by the global lock invariant: { PC(’x): PCChair(’x)}
This means that the PCChair is also implicitly a PC member.

The Policy Lattice Interpreting policies as statements in first-
order logic provides the a natural lattice structure on policies,
where the policy ordering (v) on individual clauses is just logical
entailment. Specifically, we define p v q whenever p, viewed as a
first order formula, entails q. Basically, the smaller the policy, the
more flows it permits. The bottom element of the policy lattice is
{’x: } (information may flow to any actor x, unconditionally),
and the top element is {} (information can never flow to any
actor). In general the comparison of policies takes into account the
locks which are known to be open. In the example above we have
authorChannel 6v authorData, but

SubmissionPhase ` authorChannel v authorData

where ` is just standard logical entailment.

Validating secure information flows In [12, 15] a variant of non-
interference is developed which provides the semantic definition of
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secure information flow in a system with data labelled with Par-
alocks policies. This defines the goal of the language-based en-
forcement mechanisms. Roughly speaking it ensures that what an
observer might learn at each computation step is consistent with the
policies of the objects currently being modified with respect to the
current lock state. Here we provide a rudimentary intuition by con-
sidering when an assignment is sound and how to verify it. At any
point during program execution, the permitted flows will depend
on the locks which are open at that point. Thus a type system must
safely approximate the locks which are guaranteed to be open at
each program point. For example, suppose we have an assignment
in straight-line code x := v. Suppose that at least locks L will be
open (true) at that program point. For this assignment to be safe,
the policy p of the variable x must be at least as restrictive as the
policy q of the data v relative to the locks L. This is checked by
verifying the computable condition: L ∧ p entails q. In addition, if
there are any global lock invariants these are added to the left-hand
side. This problem, in the general case, amounts to the decidable
question of the containment of a non-recursive datalog program in
a recursive one4.

3. Paragon by example
Paragon is a dialect of Java which adds the ability to label data with
Paralocks policies. The compiler will ensure that information only
flows according to the defined policies. In this section we introduce
Paragon through a series of encodings of various information flow
policy mechanisms. We present them by implementing each mech-
anism as a library, which serves a two-fold purpose. First, these ex-
amples allow us to introduce the features of Paragon step by step.
and put both the basics and the more intricate parts into context.
Second, it lets us demonstrate the generality of Paragon as an im-
plementation language for a large variety of different policy mech-
anisms, and how, by the use of encapsulation, we can present each
mechanism through a consistent interface.

3.1 Simple declassification
Our first example is just a classic two-level confidentiality lattice
with a simple declassification mechanism, showing succinctly how
class encapsulation gives us the possibility to encode a policy
scheme as a library.

The interface of this scheme consists of three things: policies
for data that is secret (“high”) and public (“low”) respectively (not
to be confused with Java’s notion of “public”, i.e. exported from
a class), and a method declassify that takes secret data as input
and releases it as public.

First we define the policy low as the least restrictive policy, for
data that anyone can see:

public static final policy low = { ’x: };

Policies in Paragon are first class values of a primitive type policy.
This way we allow for policies that are not known until runtime
(c.f. runtime labels [17]), further discussed in section 4.8. For a
policy to be used to annotate a variable, we require that policy to
be marked final, i.e. immutable. This ensures that the policies
remain consistent throughout the program.

High data may be made visible to low observers through declas-
sification. We represent this with a condition (lock) Declassify:

private lock Declassify;

Unlike policies, locks are not first class values in Paragon, and can-
not for instance be stored in variables. Locks are always implicitly

4 A full treatment of the relationship between Paralocks and Datalog, and
the algorithms for the policy lattice operations are explored in [16].

static, to avoid aliasing problems. We discuss aliasing issues in
more detail in section 4.4.

The policy high is now simply that which specifies that the data
may be made visible to a low observer when the lock is open:

public static final policy
high = { ’x: Declassify };

The act of declassification then becomes a simple matter of taking
data with policy high and, in a context where Declassify is open,
re-annotating it with policy low. Such re-annotations typically
happen at assignments, but can also happen at e.g. the return of
a method. This is exactly what the method declassify does:

public static ?low <A>
A declassify(?high A x){
open Declassify { return x; } }

There are several interesting things to note about this method
declaration. First, it shows how to use policy annotations in
Paragon: We simply extend the list of possible modifiers on e.g.
variables and methods. Here we see that the formal parameter x has
a modifier ?high, stating that an argument to the method should
have a policy no more restrictive than this. The method itself has a
modifier ?low, denoting the return policy, i.e. the effective policy
on data returned by the method.

Another thing to note is that neither of the policies we declared,
nor the lock, were annotated with policies. They still have policies
though: for fields the default policy is bottom if nothing else is
specified. For locks, it is top.

Also, the body of the method consists of a single statement: a
scoped open statement. The scoped open keeps the specified lock
open for the extent of its body. In other words, it opens the specified
lock at the start (if it was not already open), closes it when done
(unless it was already open at the start), and rules out any (non-
scoped) opens or closes of that lock throughout the body.

Finally, as suggested above, returning from a method causes a
re-annotation of the returned data to the declared return policy of
the method. Here the re-annotation is valid since it appears in a
context where Declassify is open.

We also note that this method is now the only way to declassify
data from high to low, since the Declassify lock is declared to
be private to this class. Our library can thus have a simple, consis-
tent interface through the use of standard encapsulation techniques.

The library exposes only the basic building blocks to the ap-
plication programmer: the primitive policies low and high which
can be used to label data, and a declassification method. The com-
piler statically checks that information in user code is according to
the policy, and encapsulation of the Declassify lock ensures that
the declassification method is the only way that high data can be
relabelled as low.

3.2 Robust declassification
To achieve robust declassification [18], we need to introduce data
integrity policies. Integrity is the dual of confidentiality, and we can
handle the two concepts in just the same way. Robust declassifica-
tion then requires that the choice of what data to declassify cannot
be affected by untrusted data.

To model integrity we use an actor representing a user who only
observes, and acts on, trusted data.

private static final actor trustor;

Actors, like policies, are values of a primitive data type, actor.
Declaration of an actor implicitly creates an opaque identity for
that newly created actor. Values of type actor are first class. Just
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like for policies, for an actor to be mentioned in annotations on
data that actor must be declared final, to ensure consistency. We
declare the policy of trusted data as being fit to flow to the actor
trustor:

public static final policy
trusted = { trustor: };

Thus the role of the trustor is to be a witness to the fact that a given
piece of data has only been computed from trusted sources.

Now we wish to combine the notion of trusted data with the
simple declassification mechanism above, but then we run into a
problem. Since we modelled low as bottom, all data marked with
low would be implicitly trusted – i.e. observable by trustor –
already! Our formulations of the policies in our previous library
were too simple to be combined with the notion of integrity as
required for robust declassification. We need to define new versions
of low and high based on an explicit observer separate from
trustor:

private static final actor observer;
public static final policy
low = { observer: },
high = { observer: Declassify };

Now we can modularly form the combinations we need, e.g. trusted
and low data would have the policy trusted u low.

In general the state of a lock may be observable, so locks them-
selves have a policy. When a policy for a lock is not explicitly
given, as in the examples so far, the policy defaults to bottom. But
to ensure robustness, i.e. that the choice whether to declassify is not
based on untrusted data, we give the lock that governs declassifica-
tion the policy trusted.

private ?trusted lock Declassify;

This means that the value of the lock may only depend on trusted
sources, a property that the compiler will check for us. The type
of declassify, which manipulates the lock, will reflect this in a
write effect modifier, !trusted:

!trusted ?(low u policyof(x))
public static <A>
A declassify(?high A x) {
open Declassify { return x; } }

Indeed the same holds for other data marked as trusted – it cannot
be affected by untrusted data, neither explicitly nor implicitly.

Notice how the method is polymorphic in whether its argument
is trusted or not. The parameter is marked with policy high, which
really means “no more restrictive than high”, so arguments to the
methods could be trusted, untrusted, or even low if we wanted. The
return policy states that the result will have the same policy as the
input, only it will now (definitely) be low (low u high is low).

This library could easily be extended with a mechanism for en-
dorsement, similar to declassification, but using a different lock e.g.
Endorse. We note that this way of writing declassifying functions
that work over data with different policies forms a general pattern
that implements “trusted declassifiers” as proposed by Hicks et al
[19].

3.3 Sealed-bid auctions
Our next example is not a library but an actual application, which
has been used as an example in several earlier papers [12, 13, 20]:
a server for running online sealed-bid auctions. In this setting we
want to model the following information flow properties:

• bidders provide sealed bids and can see their own bid, but
cannot see each others’ bids.
• bidders learn of the winning bid, but only at the end of the

auction.

We only sketch the implementation of the system here, focusing on
the parts that are interesting from a Paragon perspective and which
allow us to illustrate further language features, leaving many other
things underspecified.

A bidder is represented in the system as an actor. The bid
placed by actor a should be visible only to a while the auction
is running, and be released to all other bidders when the auction
is complete assuming it was the winning bid. Additionally, the
process of determining the winner of the auction can be considered
a trusted context, where the result will reveal some information
about the bids of all bidders (namely that they were no higher than
the winning bid). We model this with the policy

{a: ;
’x: AuctionClosed, HasBid(’x), Winner(a) ;
’x: DetermineWinner}

where we assume the existence of the locks AuctionClosed and
DetermineWinner, and the two unary lock families HasBid and
Winner, with intuitive interpretations.

We wrap a bidder and their associated information and opera-
tions as a class Bidder, starting with the following:

final actor id;
final policy bidpol = {id: ;
’x:AuctionClosed,HasBid(’x),Winner(id) ;
’x:DetermineWinner};

?bidpol int bid;

We implicitly also assume a channel, chan, for communication
with the actual bidder. Data received on this channel has the policy
bidpol as well, but the presence of data, i.e. whether a person
placed a bid, is public and has policy {’x:}.

We note that the actors here, unlike those used in the previous
examples, are not marked as static. This means that each instance
of Bidder will have a separate actor, uniquely generated when that
instance is created.

When the bidder supplies a bid as requested, we signal this
by opening the corresponding HasBid lock. If the bidder fails to
supply a bid, we throw an exception:

+HasBid(id) !{’x:}
void getBid() throws !{’x:} NoBidExc {
bid = chan.get(); open HasBid(id); }

Two things are worth noting here. The first is the +HasBid(id)
modifier, which signals to the type checker that calling this method
will open that lock, assuming the method call terminates normally.
If it instead terminates with an exception, we make no such guar-
antees. The second thing to note is the write effect modifier on the
declared exception. Roughly speaking, this policy denotes the level
at which it will be possible to observe that the function has termi-
nated with this exception. Java does not normally allow modifiers
on declared exceptions – they are an addition in Paragon.

Running the auction now consists of four phases: Getting the
bids from all the bidders, determining the winner, reporting the
results, and handing out the spoils. The first phase simply loops
over all bidders, gets the bid of each, catching exceptions along the
way:

!bottom void collectBids() {
for (Bidder b in bidders) {
try { b.getBid(); }
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catch (NoBidExc e) {} }}

The only thing to note here is that the contents of the set bidders
must be observable by all the bidders, due to the write effect of
getBid. The same is true for the overall write effect of this method
– every bidder can observe that the method has been called, so the
only sensible write effect policy is bottom.

In the next phase we look at all the collected bids, determine
the winner among them, and declare the auction closed. We first
declare a policy allBidders as the part of the policy on bids that
is not specific to a particular bidder:

final policy allBidders =
{’x: AuctionClosed, HasBid(’x) ;
’x: DetermineWinner};

+AuctionClosed ?allBidders
Bidder determineWinner() {

Bidder winner;
open DetermineWinner {

for (Bidder b in bidders) {
if (HasBid(b.id)) {

if (winner == null
|| b.bid > winner.bid) {
winner = b; }}}

}
open AuctionClosed;
return winner; }

The local variable winner must have policy allBidders for the
above code to be type correct. We don’t need to explicitly annotate
it with that policy though – Paragon performs inference of policies
for local variables.

Also noteworthy is that the assignment to winner does not
affect the write effect of this method, since winner is only available
locally within the body of the method, so changes to it will not be
visible from outside a call to the method.

The method is guaranteed to open the AuctionClosed lock, as
signalled by the appropriate modifier.

Next we want to notify the bidders about the winning bid:

˜AuctionClosed !allBidders void
reportResult(?allBidders int winBid){
for (Bidder b in bidders) {

if (HasBid(b.id)) {
b.chan.put(winBid); }}}

We assume that the channel to b makes the data sent on it avail-
able to b, i.e. it can only output data with policy (no more restric-
tive than) {b.id:}. To be allowed to send winBid, with policy
allBidders, on this channel, we must know that we are in a con-
text where the two locks mentioned in that policy are truly open.
The modifier ˜AuctionClosed declares that this method expects
that lock to be open whenever it is called. Calling it in a context
where that lock is not guaranteed to be open is a type error, and
consequently the body of the method may assume that the lock is
indeed open. For the second lock, we rely on so called runtime
querying for the status, through an if statement. If the condition of
the if is a lock, the type checker can assume that that lock is open
when checking the then-branch. Thus the re-annotation of winBid
is correctly allowed.

Tying all these pieces together we could now write the main
code as follows:

collectBids();
Bidder winner = determineWinner();
if (winner != null) {
open Winner(winner.id);
reportResult(winner.bid);

sendSpoils(winner); }

where we leave to imagination how sendSpoils should be an-
notated and implemented, but surmise that it requires the appro-
priate Winner lock to be open. We note that the re-annotation
of winner.bid is allowed when using it as the argument to
reportResult, since we know that Winner(winner.id) is
guaranteed to be open.

In this section we introduced several new concepts, each of
which is presented in more detail in a later section: Lockstate mod-
ifiers (section 4.1), runtime querying of locks (section 4.2), excep-
tions (section 4.6), policy inference (section 4.9), and instance ac-
tors and aliasing (section 4.4).

4. The Paragon language
The examples of the previous section have given a flavour of the
language and its features, aimed for the casual reader or as a first
introduction. In this section and the next we offer a more detailed
account of the design and implementation of Paragon.

The remainder of this section is structured as a reference to
the various features, each presented in a separate subsection, with
no overall narrative. We will cover the following sections in turn:
Types, policies and modifiers (4.1); Locks (4.2); Type parameters
(4.3); Actors and aliasing (4.4); Type methods (4.5); Exceptions
and indirect control flow (4.6); Field initializers (4.7); Runtime
policies (4.8); Type and policy inference (4.9); The Paragon type
system (4.10).

4.1 Types, policies and modifiers
In Paragon every information container (field, variable, lock) has
a policy detailing how the information contained therein may be
used. Every expression has an effective policy which is (an upper
bound on) the conjunction of all policies on all containers whose
contents are read by it – we refer to this as the expression’s read
effect. Similarly every expression (and statement) has a write effect,
which is (a lower bound on) the disjunction of all policies on all
containers whose contents are modified by the expression.

Paragon (unlike Jif – see section 6.3) separates policies from
base types syntactically by having all policy annotations as modi-
fiers. All in all, Paragon adds ten new modifiers over Java. Two of
them relate to policies:

• ?pol denotes a policy on an information container, and the read
effect of accessing that container. When used on a method we
refer to it as the return policy, as it is the read effect on the value
returned by the method.
• !pol denotes a write effect, and is used to annotate methods.

They are also used to signal the write effects of thrown excep-
tions (see section 4.6) and of static initializers (section 4.7).

There are also three modifiers used only on methods and construc-
tors to detail their interaction with the lockstate:

• +locks says that the method will open the specified lock(s), for
every execution in which the method returns normally. We call
this the opens modifier.
• -locks, dubbed the closes modifier, says that the method may

close the specified lock(s), for some execution.
• ˜locks, the expects modifier, says that specified lock(s) must

be open whenever the method is called.

The opens and closes modifiers are also used for exceptions, dis-
cussed in section 4.6.

The other five modifiers introduced by Paragon are the three
short-hand modifiers for lock properties discussed in section 4.2,
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the readonly modifier discussed in the same section, and the
typemethod modifier discussed in section 4.5.

4.2 Locks
Locks in Paragon are not first class. They cannot be stored in
variables, nor can they be passed as arguments to methods. The
only way to manipulate the status of a lock is via open and close
statements. However, the status of a lock may be queried at runtime.
If a lock (or a conjunction of locks) is used syntactically as an
expression, the type of that expression is considered by Paragon
to be lock. If an expression of type lock appears as the condition
of an if, while or do loop, or as the first operand of the ternary
conditional operator ?:, the type checker can assume that the lock
is open when checking the branch corresponding to the condition
being satisfied. Apart from this effect on the typing of programs, all
expressions of type lock, in conditions or elsewhere, are implicitly
cast to boolean.

Lock properties Lock families can be declared to have proper-
ties. A property specifies conditions under which some locks in the
family are implicitly open. A concrete lock can thus be explicitly
closed, but still remain open due to some property, such as transi-
tivity, keeping it open implicitly.

For example, delegation between actors might be encoded by an
ActsFor relation. This relation should be transitive and reflexive.
This requirement can be stated as a lock property at the point of
declaration5:

public lock ActsFor(actsForA,A) {
ActsFor(’x,’x);
ActsFor(’x,’y): ActsFor(’x,’z),

ActsFor(’z,’y);}

Transitivity and reflexivity properties are a common pattern, so
Paragon provides syntactic sugar for these:

public reflexive transitive lock
ActsFor(actsForA,A);

Since lock properties must be attached to the declaration of a lock,
they are modest restriction of the Recursive Paralocks, discussed in
[12]. However it turns out that this restriction make the policy oper-
ations decidable, and the policy comparison operation specified in
[12] become complete (as opposed to just being sound). Full details
are given in [16].

A lock may be exported as readonly. This means that it may
be used in the declaration of policies, in lockstate modifiers on
methods and constructors, and in lock queries, but not opened or
closed outside the scope of the defining class.

4.3 Type parameters
Java, since the introduction of “Generics” in Java 5.0, allows types
and methods to be parametrized by types, giving Java parametric
polymorphism. Paragon introduces several new entities – actors,
policies and locks – that affect typing in various ways. It is natural
to extend the polymorphism to also include these aspects. The
different entities are clearly not interchangeable, which implies the
need for a simple kind system for type-level entities.

Thus in Paragon ordinary types have the implicit kind type. Type
parameters of kind type need not be annotated, like in vanilla Java.
For the Paragon-specific entities we introduce kind annotations,
to separate them from each other and from ordinary types. For
actors and policies we can simply reuse their types as kinds as
well. We can do the same for locks though we need to be able to

5 The formal parameters of the lock declaration are only used to specify the
arity of the lock, and to give a pnumonic hint to their meaning.

parametrize over not just single locks, but rather sets of locks. To
avoid introducing new keywords, we reuse the syntax for arrays for
this purpose, i.e. the kind annotation on parameters taking sets of
locks is lock[].

4.4 Actors and aliasing
Actors and locks together play a crucial role in the typing of
Paragon code. Locks determine what flows are allowed at what
points, and locks are often parametrized by actors. The typeability
of some code may depend on a given lock, with some given actor
arguments, being open. Formally, the type checker treats actors as
singleton types [21].

However, the possibility of aliases greatly complicates things. If
some code opens lock L(a) and then closes lock L(b), is the first
lock still open? Clearly that depends on whether or not a and b are
two different actors.

Alias analysis in Java is a well-studied area, with many possible
degrees of sophistication. For Paragon, erring on the side of caution
is clearly crucial, so any analysis that conservatively approximates
actor aliasing is adequate. The current implementation is relatively
simple, and shortcomings in the alias analysis can be compensated
for by adding runtime queries to locks. Paragon is not dependent
on the details of the aliasing analysis so replacing the alias analysis
with a more accurate one is always possible.

4.5 Type methods
A type method is Paragon’s name for simple methods that can be
evaluated by the type checker at compile time, in order to deter-
mine policies on variables, fields and methods. A more formally
correct name would perhaps be type functions, since these meth-
ods must be both pure, i.e. have no side-effects, and deterministic.
By deterministic we mean that the end result may only depend on
values known statically when the method is called. That includes
the method’s arguments, as well as certain static fields. For a field
to be useable in a type method, it must be static and final, have a
primitive type, have a policy bottom, and have a simple initialiser
that is itself pure and deterministic.

The fact that type methods can be used at compile time does not
preclude them for being used at runtime as well, where they behave
like static methods.

4.6 Exceptions and indirect control flow
The static policy type system in Paragon tracks two kinds of infor-
mation flows: direct flows arising from assignments, and indirect
flows arising from control flow. It makes no attempt to track flows
arising from termination – it is termination insensitive. If excep-
tions could not be caught, an exception would be the same as (pre-
mature) termination, which means we would not need to care about
them. However, the catch mechanism makes exceptions rather a
kind of control flow primitive, needing special attention.

All exceptions in Paragon must be checked, i.e. declared to be
thrown by methods that may terminate with such exceptions. This
implies the need for analyses that can rule out the possibility of
exceptions, in particular for null pointers, to avoid a massive blow-
up in the number of potential exceptions that must be declared.

A caught exception is in essence a jump, where control is
passed from the throw point to a catch block. Such a jump may be
noticeable by anyone who can notice either the catch block being
executed, or the statements in the normal control flow past the
throw point. To avoid unintended flows, all such statements must
be constrained by the context in which the throw appears. We refer
to this as the exception’s area of influence.

Since an exception might not be caught locally, the area of influ-
ence is not a local property in general. To handle this modularly we
let methods that throw exceptions declare the write effects of those
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expressions as modifiers on the exception types in the method’s
throws clause. This declared write effect serves as an approxima-
tion of the context where the throw appears. It is thus both used
as the effective write effect of the throw statement itself, to ensure
that it is not used in even more restrictive contexts, as well as a
bound on the write effects of all statements in the area of influence.

Since uncaught exceptions are effectively premature exit points
from a method, the opens and closes modifiers pertaining to a
normal exit do not apply when entering a catch block. Hence we
let the declared exceptions also take opens and closes modifiers,
specifying the lock state that will be in effect at the start of a
corresponding catch block.

For the cases where a thrown exception is caught locally, before
ever reaching the top level of a function, there will be no need for
approximations via declared policy or lockstate modifiers. Instead
all the necessary information can be computed locally.

Interestingly, several other control flow mechanisms in Java can
be treated as special cases of exceptions for purposes of policy
inference: return, break and continue. These are simpler to
handle than exceptions, since their area of influence is always
contained locally.

4.7 Field initializers
Initializers for fields are simply expressions, and quite naturally the
effective policy on such an expression cannot be more restrictive
than that on the field. But expressions also have a write effect
– i.e. the initialization taking place might cause visible changes
elsewhere. Furthermore, an initialization could potentially fail with
an exception.

Fields come in two different flavors: static fields and instance
fields. For both, the main difficulty lies in handling their initial-
ization – their side-effects and possibility for exceptions – and the
solution differs between the two.

Instance fields are all initialized when the instance they belong
to is created. This means that we can view the initialization code
as being an implicit prelude to every constructor for the class.
The solution is then natural – the write effect of the initializers
cannot be less restrictive (more revealing) than the declared write
policy on any constructor. Similarly, if an initializer could throw an
exception, all constructors for the class must declare this.

Static fields have the same issues with write effects and excep-
tions, but the story is far less simple. In Java, all static fields of a
class are initialized at the same time, whenever any one of them is
used in the program. This in effect means that any use of a static
variable will have the worst-case write effect of all the static initial-
izers for the same class. We can analyze whether a static initializa-
tion is guaranteed to already have taken place before a given use of
a static variable, to preclude it from carrying the write effect.

Regardless of whether a particular use of a static variable should
be assigned a write effect or not, we need to notify the type checker
of such write effects. We argue that the most natural place to do this
is a modifier on the class, specifying in one place the upper bound
on the write effects of all the initializers of static fields of that class.

Exceptions in static initializers are even trickier to handle. For
now we require that initializers for static fields may not fail, but
leave open the possibility for a more sophisticated solution in future
work.

4.8 Runtime policies
Since policies can be used as values at runtime, and dynamically
hoisted to the type level, we need ways to relate policies that are not
known statically to other (static or dynamic) policies. To achieve
this, Paragon needs to perform runtime entailment checks between

policies. This problem has been studied by Zheng and Myers in the
context of Jif [22], and we choose to follow their solution.

Similar to runtime lock queries, we thus allow inequality con-
straints between policies to appear as the condition in if statements
and conditional ?: expressions. The type checker can then know
when checking the first branch that the inequality holds, and can
allow flows that would otherwise have been untypeable.

4.9 Policy inference and defaults
To reduce the burden on the programmer to put in policy annota-
tions, Paragon attempts to either infer, or supply clever defaults for,
policies on variables, fields and functions. Paragon’s policy default-
ing mechanisms turn out to be essentially the same as those in Jif.
We omit the details here.

Policy inference works through a straightforward constraint sys-
tem, where all constraints arising from comparisons between poli-
cies, including the program counter (PC), are collected and re-
solved on a per-method basis. In the general form a constraint will
be an inequality between two policy expressions, each of which
can contain literal policies, variables denoting policies, and joins
and meets.

4.10 The Paragon type system
Paragon’s implementation follows a specification given by formal
type rules for the core of Java but excluding inheritance. The type
system is quite involved, so for space reasons we do not present it
here. Instead we refer to [23] for the full details.

5. Compiling Paragon
In the previous sections we have presented the front-end of the
language Paragon: its features and expected behavior, as well as the
static semantics. In this section we briefly discuss how we compile
a Paragon program into vanilla Java, and how the runtime aspects
of Paragon are represented.

Once we know that a given program satisfies the intended infor-
mation flow properties, we can safely remove all type-level aspects
of policies, locks and actors. We must still retain the runtime as-
pects, and in some cases demote types to values.

All actor and policy type parameters on methods are demoted to
formal (value) parameters, and type arguments to method calls are
demoted to normal arguments. For type parameters to classes, each
type parameter is also added as a field to the class, and as a formal
parameter to each constructor of the class, with an initialization at
the start of the constructor.

Actors are pure names; the only runtime property they possess is
their unique identity. Many different representations could be con-
sidered – our implementation uses instance of class
se.chalmers.paragon.Actor, which holds only a single inte-
ger value, unique for each actor. All declarations of actor fields and
variables with no accompanying initialization are given initializers
that generate a unique actor representation.

Lock families need to support opening and closing of individual
locks in the family, parameterized by actors, as well as querying of
current status. Again many different representations could be con-
sidered. Our implementation uses a java.util.Set, whose en-
tries are arrays of actor representations for the actors for which a
lock in the family is open. The three operations are then obvious.
As a special case, locks with no parameters are simply boolean
variables. We implement the two kinds as sub-classes of a class
se.chalmers.paragon.Lock, which provides a uniform inter-
face.

The only Paragon-specific statements are open and close,
which become manipulations of the lock representations discussed
above.
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Our Paragon compiler is written in Haskell and comprises
roughly 15k lines of code, including comments. Approximately
half of that code is due to our policy type checker, and only a small
fraction, just over 500 lines of code, deals with generation of Java
code and Paragon interface files. On top of that, some 1500 lines
of Java code are written for our runtime representations of Paragon
entites6.

The compiler can be downloaded from our Paragon website
[24], or from the central Haskell “hackage” repository using the
command cabal install paragon.

6. A comparison with Jif
Comparing Paragon to Jif is inevitable. Jif stands out as the only
mature and currently maintained information-flow-typed program-
ming language, and is a source of inspiration for the present work.
Due to the unique position Jif has enjoyed in the domain of infor-
mation flow research over the last decade, a fair amount of research
has been done using Jif and DLM for context and examples. It is
thus natural to ask how research done on or with Jif can carry over
to Paragon.

In this section we make a brief but detailed comparison between
Paragon and Jif. We begin by giving an overview of Jif and its pol-
icy specification language, the decentralized label model (DLM).
Second we discuss some perceived short-comings of Jif, and how
we deal with those aspects in Paragon. We then go on to compare
various language features, and point out where Jif, or Jif-related re-
search, has directly influenced our design choices. Finally we show
how Paragon can encode the DLM as a library, and how Paragon
could be used as a drop-in replacement for (non-distributed) Jif in
existing examples.

6.1 Jif and the DLM
In this section we briefly introduce the core concepts of the De-
centralized label model (DLM) of Myers and Liskov [25], and its
realisation in Jif, a security-typed programming language that ex-
tends Java with DLM policies.

The Decentralized Label Model The decentralized label model
is a model for confidentiality and integrity policies for data shared
between principals. In the following description we will focus, as
in the original DLM papers, on the confidentiality aspects which
concern who can “read” data; integrity aspects are handled in a
largely dual manner.

A DLM policy is a label that is built from principals. It consists
of zero or more owners – reflecting that data may have come from
zero or more sources. Each owner specifies a set of readers who
are permitted by that owner to see the part of the information that
comes from that owner. As an example consider the following label
{Alice : Chuck,Dave ; Bob : Dave,Eve}. Here Alice and Bob are
the owners and Chuck,Dave and Eve are readers. Data with this
label might have been obtained by combining data from Alice and
Bob in some way. The effective readers in this example is just
Dave – i.e. unless there is some further delegation by Dave or
declassification by either Alice or Bob then Dave is the only one
to whom information with this label may flow.

Apart from labels, there is one other important component to
the DLM, namely the principal hierarchy, specified by a reflexive
and transitive acts-for relationship. If Eve acts for Dave then Eve
can do anything that Dave can. In the example above this means
Eve can also read data with the label given above.

6 As we note in section 8, we expect the size of our supporting libraries
to grow significantly as we gain more experience by implementing larger
systems in Paragon.

Jif Jif (and its predecessor JFlow, [4, 5]) is a version of Java
which adds statically-checked information-flow annotations in the
form of DLM labels. Jif extends the core DLM model with a
number of important features, including:

• Authority and Selective Downgrading: any piece of code in
a Jif program runs on behalf of a certain set of principals,
known as the authority of the code. The language contains a
declassify operator which allows the policy of an expression to
be weakened. But not just any weakening is permitted. Only
parts of the policy owned by the current authority may be
weakened in this way. For example suppose a piece of data is
labelled with the policy {Alice : Chuck,Dave ; Bob : Dave,Eve}
as above. If the code runs with at least the authority of Alice
then it can be declassified to {Alice : Chuck,Dave, Eve ; Bob :
Dave, Eve} in which case the information may then flow to Eve.
• Robustness: Jif (since version 3) can optionally be run in “ro-

bust” mode [18, 26]. In robust mode the decision to declassify
and the data to be declassified cannot be influenced by low-
integrity data.

Many other features of Jif are purely programming language issues
rather orthogonal to the DLM and policies, and concern the track-
ing of information flows and the way the type system expresses
these. Examples of such features include the treatment of excep-
tions, and the support for principals and labels that are only known
at runtime.

6.2 Jif concerns
We had two main concerns with Jif when starting the Paragon
project. The first was lack of an information-flow semantics for a
DLM, in particular in conjunction with declassification and a dy-
namic principal hierarchy. Our earlier work [12, 15] focusses on
providing a precise semantics for Paralocks from an information-
flow perspective, although for a much simpler language than
Paragon.

The second concern was that the policy model in Jif was too
restrictive, in that it could not be used to express easily many of the
proposed idioms for programming with information flow control.
As case in point, the original DLM model and the early versions
of Jif could not express robust declassification. To address this
short-coming, Jif has added integrity labels on top of the already
existing confidentiality labels, as integrity aspects could not be
expressed using already existing features. Once added, most code
which previously used only confidentiality labels could not be type
checked without adding integrity labels7.

In contrast, flexibility has been one of the main design goals for
Paralocks and Paragon. We have shown in section 3 (and in our
previous work on Paralocks) that Paragon can encode a number
of existing idioms for information flow policies, including robust
declassification, which we believe serves as evidence that we have
succeeded. In Section 6.4 we show how the DLM model with
declassification and a dynamic principal hierarchy can be encoded
and encapsulated as a Paragon library.

6.3 Feature comparison
Types and policies vs labeled types In Jif, every value has a la-
beled type, bundling types and labels together both syntactically
and semantically. We find this unfortunate since, while both types
and labels affect type checking, they are largely orthogonal con-
cepts as far as a programmer is concerned.

7 One might hope that Jif’s default integrity policies would make this un-
necessary, but in our experience dummy integrity policies still need to be
added manually.
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Paragon keeps policies and types separate, keeping the former
specified through modifiers instead of annotations directly on the
types. We feel this allows for a cleaner separation of the Paragon
additions from the vanilla Java code, making Paragon code more
accessible to a Java programmer.

One potential critisism of this choice is that it becomes less
straightforward to reuse components from existing Java libraries.
For example, any collection-like class (e.g.
java.util.Collection<A>) naturally has a type parameter de-
noting the type of its elements. Using labeled types, such a class
could be reused directly, passing a labeled type as the correspond-
ing type argument. With our approach, such a class would instead
require two parameters – one for the type and another for the pol-
icy of the elements – making reuse of existing code ostensibly less
viable.

However, in all but the most trivial cases, any use of components
from existing Java libraries require the construction of interfaces
– i.e. library stub files – that tell the compiler how the fields and
methods therein behave with regard to information flow aspects,
as pointed out in [8]. Such interfaces would easily incorporate the
addition of more type parameters as well, with negligible extra
work. Thus we do not see this as a problem in practice.

Locks vs authority and delegation The main strength of Paragon
over Jif is the generality of the concept of locks. The Jif notions
of authority and delegation are in Paragon (as we will see in more
detail in Section 6.4) just special cases of lock families. Queries to
the acts-for hierarchy in Jif then simply become a particular kind
of runtime lock queries in Paragon. Similarly method constraints,
used to specify constraints regarding the acts-for hierarchy and the
authority of the calling code, are just special cases of expects lock
state modifiers.

Furthermore, Paragon allows dynamic changes to locks during
program execution, which when considered in Jif terms means that
it would e.g. be possible to encode mechanisms to grow and shrink
the acts-for hierarchy dynamically. Jif, in the latest version, only
allows the acts-for hierarchy to be extended dynamically.

Program Counter Declassification In addition to a declassifica-
tion operation for expressions, Jif contains a block-structured de-
classification statement. Conceptually this allows the level of the
current program counter (PC) to be lowered in the context of the
given statement. This has an unfortunate consequence: execution
paths which bypass declassification statements may still implicitly
declassify data. This is hard to justify from a semantic perspective.
Since Paragon is designed to enforce a semantic definition of secu-
rity [12] then this, naturally, cannot be modelled in Paragon.

Exception handling The theory behind exception tracking is sim-
ilar in Jif and Paragon, and in many ways Paragon has benefitted
from Jif’s trail-blazing. For instance we did not need to discover
for ourselves the potential problems of unchecked exceptions, or
the need for null pointer analysis. With the introduction of Generics
in Java, the earlier problem with proliferation of dynamic type casts
largely went away, leading to much fewer potential occurrences of
exceptions from such casts. As a consequence we have opted not to
include a runtime type analysis like that in Jif, which predates Java
Generics.

Regarding the effect of exceptions on the PC, in Jif methods are
annotated with a single “end label”, which effectively approximates
the effect of any exception that could be thrown during its evalua-
tion. This end label is added to the PC after a call to the method.
Paragon takes a different approach to reasoning about it by con-
sidering for each possibly thrown exception, the surrounding state-
ments that could give away that the exception has been thrown. We
refer to this as the exception’s area of influence. This gives us more
fine-grained control, permitting different thrown exceptions to have

different effects on the PC. Further, we can accurately pinpoint the
end of a given exception’s area of influence, allowing us to remove
its effect on subsequent statements accordingly.

Static initializers Jif identifies the same problems we do for static
initializers, a problem that has also been studied by Nakata and
Sabelfeld in [27]. Jif adopts a more restrictive solution to the prob-
lem, by restricting the initializers to be exception- and side-effect-
free. As noted in section 4.7, Paragon handles side-effects by re-
quiring them to be declared as a modifier to the class.

Type parameters Jif saw the light of day before the introduction
of Generics in Java. Still the authors of Jif recognized the need
for parameterizing classes on labels and principals, so Jif rolled its
own form of parameteric polymorphism, only allowing Jif-specific
parameter kinds. While this work is impressive (and as a side-
track led to the development of PolyJ [28], a competitor to GJ
[29] that later became Java Generics), we have the relative luxury
of having Java Generics as a starting point. Our type parameter
extensions thus syntactically fit more smoothly with what is already
available in Java. One particular advantage of this is that we can
also build on Java’s mechanism for type-parameterized methods,
and pass arguments intended to affect the method’s signature as
type arguments instead of formal arguments as in Jif.

Regarding expressive power, we are not aware of any difference
between our version and that of Jif, if only actor and policy param-
eters are considered. Our lock set parameters have no counterpart
in Jif.

Aspects of dependent typing Both Jif and Paragon have limited
forms of dependent types. Labels and principals in Jif, and policies
and actors in Paragon, can be used both as first-class values at
runtime, and in the specification of other labels/policies.

In Jif, a label or principal may be hoisted from the value level
to the type level, and used as a type argument or in the construc-
tion of new labels, assuming the expression representing the label
or principal is a final access path. To make programming with type
arguments smoother, Jif introduces the restriction that formal pa-
rameters of a method are always final, so can always be used as the
root for a final access path e.g. when writing the signature of the
method.

The notion of final access paths carries over to Paragon, where
they can be used to specify arguments to parameterized types, or in
policy annotations. However, for type parameters on methods we
do not require finality, as the requirements for consistency of types
do not apply in the same way. Also, exactly because we have type
parameters on methods (unlike Jif), the reason to restrict formal
parameters to be final partly falls, since we would pass arguments
that affect the method’s signature as type parameters instead.

Runtime policies Runtime policies have been studied by Zheng
and Myers in the context of Jif and the DLM [17], and their work
is the basis for the current evolution of runtime labels in Jif. Their
ideas can largely be directly applied to Paragon as well, and the
language design regarding runtime policies in Paragon is directly
taken from their work.

6.4 Example: Encoding the DLM
Broberg and Sands [12] showed how Paralocks can be used to
encode the DLM, proving Paralocks strictly more general in the
sense that the DLM policy lattice is a sub-lattice of Paralocks. In
this section we show how that encoding can be implemented as a
Paragon library. In the next section we will show how the encoding
fares when used as a drop-in replacement for Jif in one of the larger
case studies that have been conducted for security-typed code.

For the ActsFor hierarchy, we need a lock family that repre-
sents a reflexive, transitive relation on actors (as discussed in Sec-
tion 4.2)
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public static reflexive transitive
lock ActsFor(actsForA,A);

To mark the authority of any given piece of code we use a unary
lock RunsFor :

public static lock RunsFor(A) {
RunsFor(’x): ActsFor(’y,’x), RunsFor(’y) };

Here no syntactic sugar will do to express the interplay between
ActsFor and RunsFor .

Moving one step closer to Jif, we also introduce an explicit de-
classification function to ensure that declassification only happens
at explicitly marked locations. We make it slightly more sophisti-
cated than the simple ones shown in section 3. We here specify the
target policy using a policy type parameter (4.3), and ensure that
the argument is no more restrictive than that target policy guarded
by the associated Declassify lock.

private lock Declassify;
private static final policy dec = {’x:

Declassify};

public static ?TO <A, policy TO>
A declassify(?(TO*dec) A x) {
open Declassify { return x; }

}

Finally we need to represent DLM labels in this framework.The
encoding of DLM into Paralocks was shown and proven correct in
[12], and the interested reader is referred there for the details. We
can simplify the programming of the earlier encoding by expressing
it at the level of a single clause rather than a whole label. The policy
of a label can then be represented as the join of those respective
clauses. We can thus define the following type method8 (4.5):

public typemethod policy
lbl(actor owner, actor... readers) {

policy c =
{ ’x : RunsFor(owner), Declassify };

for (actor reader : readers) {
c += { ’y : ActsFor(reader, ’y) }; }

return c;
}

Our encoding here does not cover the integrity and robustness
aspects of Jif. To model integrity a Jif principal could be modeled
by pair of actors, one for the confidentiality part of the specifica-
tion and one for the integrity. It turns out that modelling the in-
tegrity part of labels is not quite the dual of confidentiality as we
initially expected, due to the way the ActsFor delegation hierar-
chy interacts differently with confidentiality and integrity. Integrity
labels are actually easier to model than their confidentiality coun-
terparts. However for a useful comparison we would also need to
model robustness in this framework, something we have yet to do.

6.5 Case Study
As a case study for comparing Paragon with Jif, we have taken
Askarov’s development of a non-trivial cryptographic protocol that
implements online poker without a trusted third party [8]. At the
time (2005) the case study was according to the authors “the largest
program written in a security typed language to date” – around 5k
lines of Java. The example suits our investigation well since it only

8 Note that the varargs parameter, denoted by the ellipsis, is vanilla Java 5
and not a Paragon innovation.

uses the confidentiality components of Jif, but still exercises a wide
range of features and information flow patterns.9

Our first experiment simply used Paragon and the DLM library
as a drop-in replacement for Jif. With a mechanical translation of
the Jif code to Paragon, the program typechecks and illustrates that
we cover at least the same information flow aspects that Jif does10

. However, a more interesting experiment is to see where Paragon
can improve over the Jif solution.

Askarov identifies several different classes of declassification in
the application. We note in particular the following:

• Each player has a symmetric key that they use to encrypt their
cards before communicating them during the game. The key is
released when the game has ended, so the other players may
verify the encrypted card hand.
• Each player also uses an asymmetric public-private key pair, for

signing encrypted data and committing to the used deck per-
mutation. The public key component is released immediately
when the game starts, while the private key component is never
released.

From the above we see four different information flow policies: the
public key which is always available to the other players; the private
key which may never be released, but which must still allow the
minimal information flow that goes into signatures; the symmetric
key that will be released at the end of the game, and before that
allow information to flow into the encrypted values it generates; the
cards that will be encrypted and communicated during the game.

Askarov notes further that Jif is not fully equipped to handle
properly all the cases. In particular, Jif cannot deal with temporal
policies, and for this purpose Askarov devises a programming
pattern using so called “seals”. Properly used they guarantee the
integrity of the symmetric key until the end of the game, but they
get no help from Jif: the seals are runtime monitors, implemented
separately.

We further note that Jif also cannot separate between different
providers of declassification, i.e. different trusted declassifiers [19].
Jif has only one primitive, declassify, which has to be used for
all cases.

In Paragon we use locks to model the temporal state of the
game, to ensure for instance that the symmetric key cannot be
released until the game is over, but also that methods using the key
for encryption can then no longer be invoked. We also use different
locks to represent the contexts of different trusted declassifiers.
For instance this allows us to separate the policy of the symmetric
key, which influences data being encrypted, from the policy of the
private key, which influences data being signed.

The full details of our implementation are out of the scope of
this paper, and we refer the interested reader to our website for
Paragon [24] where all the examples can be found.

In conclusion, we note that

• Paragon is able to give stronger information flow security guar-
antees than Jif for this example, since we can model temporal
flow properties.
• Paragon can express information flow policies more precisely,

for example by distinguishing between different trusted declas-
sifiers.

9 A slightly more recent case study [9] offers other “real world” challenges
which are worthy of study independently of the Jif-style policies, although
this remains a topic for further work.
10 The case-study used an older version of Jif without integrity labels. The
Paragon version compiles essentially as-is whereas recompiling using the
current Jif seems to require the addition of some integrity labels to policies
even though they are not used (c.f. 6.2).
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• The syntactic annotation overhead in Paragon and Jif is compa-
rable, and (subjectively) not very large for either language. The
runtime overhead is negligible for the example at hand, but we
don’t expect it to be an issue in practice for larger applications
either.

7. Related work
In this section we consider the related work on languages and lan-
guage support for expressive information flow policies. We focus
on actual systems rather than theoretical studies on policy mech-
anisms and formalisms. We note, however, that there are several
policy languages in the access control and authorisation area which
have some superficial similarity with Paragon/paralocks, since they
are based on datalog-like clauses to express properties like delega-
tion and roles see e.g., [30–33]. Key differences are (i) the infor-
mation flow semantics that lies at the heart of Paragon, and (ii) the
fact that the principal operation in Paragon is comparison and com-
bination of policies, whereas is the aforementioned works the only
operation of interest is (run-time) querying of rules.

Languages with explicit information-flow tracking Two “real-
sized” languages stand out as providing information-flow primi-
tives as types. The first and most closely related to the present work
is Jif, which we have already discussed in the previous section. The
second is Flow Caml, a subset of OCaml extended with information
flow annotations on types. Although Flow Caml only supports sim-
ple lattice-based security policies with little flexibility, it is notable
that full ML-style type inference is supported, and a metatheory
which covers both this and information-flow soundness [34].

Compilers performing IF tracking Information-flow tracking
can be performed in a language which has no inherent security
policies, lattice-based or otherwise. In such a setting one tracks the
way that information flows from e.g. method parameters to out-
puts. The Spark Examiner, a commercial tool for static analysis
and verification for a safety-critical subset of Ada, contains such an
analysis [35].

Hammer and Snelting [36, 37] explain how state-of-the-art pro-
gram slicing methods can support a more accurate analysis of such
information flows in Java (e.g. both flow sensitive and object sensi-
tive).

Dynamic Information Flow Tracking with Expressive Policies
Runtime information flow tracking systems have experienced a re-
cent surge of interest. The most relevant examples from the per-
spective of the present paper are those which perform full informa-
tion flow tracking (rather than the semantically incomplete “taint
analysis”), and employ expressive policies. The first example is
Stefan et al’s embedding of information flow in Haskell [38], in
particular using a policy lattice based on Disjunctive Category La-
bels (DC labels) [39]. Although DC labels are similar to DLM la-
bels, it seems that Paragon lacks the form of disjunction needed to
fully encode them. The Haskell/DC work, however, suggests to us
a route to implementing a dynamic version of Paralocks (c.f. [40]
mentioned below). Yang et al’s Jeeves language [41] focusses on
confidentiality properties of data expressed as context-dependent
data visibility policies. The Jeeves approach is noteworthy in it’s
novel implementation techniques and greater emphasis on the sep-
aration of policy and code.

Encoding Information Flow Policies with Expressive Type Sys-
tems With suitably expressive type systems and abstraction
mechanisms, static information flow constraints can be expressed
via a library. Li and Zdancewic [42] showed how to provide
information-flow security also as a library. Russo et al [40] im-
prove on this by showing how this can be achieved with a more

natural programming style, and including side effects and declassi-
fication policies, among which are policies inspired by Flow Locks
[13]. Most recently, Morgernstern and Licata [43] show that a rich
variety of security policies can be encoded in an extension of the
dependently typed programming language Agda.

A number of recent expressive languages aimed at expressing a
variety of rich security policies do not have information flow con-
trol as a primitive notion (as Paragon or Jif). For example, the au-
thorization policy language Aura can be persuaded to model infor-
mation flow and declassification polices [44]. Fable [45] focuses
on the general idea of label-based policies, allowing user-defined
labels and typing constraints (via dependent types). One exam-
ple is the encoding of a standard information flow lattice policy.
A weakness of this approach, according to [46], is that “verifica-
tion depends on intricate security proofs too cumbersome for pro-
grammers to write down”. These concerns are in part addressed by
Swamy et el’s F* [46], which is the culmination of a series of lan-
guages (from the same group) including Fine [47], FX [48], and F7
[49]. F* is a full-fledged implementation of a dependently typed
programming ML-stye programming language. An impressive col-
lection of security-specific examples have been encoded in F*, al-
though it may be fair to say that information flow is not naturally
modelled in this setting, but has to be encoded using e.g. a monadic
approach (c.f. [45]).

8. Conclusions and Further Work
We have introduced Paragon, a Java-like language for expressive
stateful information-flow policies. We have argued that the com-
bination of Java’s encapsulation and the Paralocks policies enables
information-flow idioms to be nicely encapsulated so that client ap-
plications can freely program with the provided abstractions with-
out the distractions or dangers of seeing their internal representa-
tion. Based on the examples we have considered so far, the more
complex features of the Paragon language are required only in the
construction of information-flow policy libraries, and not in the ap-
plication code using the libraries. Further work is needed to confirm
(or refute) this claim.

It remains to build a library of idioms and more deeply explore
the practicality of programming with Paragon. The case study by
Hicks et al [9] identifies a number of areas for improvement in
Jif, and many of the issues raised there are relevant to Paragon, in
particular the need for extensive support libraries and the problem
of lack of debugging tools. We are investigating the latter prob-
lem by developing a dual syntax for Paragon in which a Paragon
program is represented using Java’s annotations, thus enabling non
information-flow related debugging to take place at the Java level.

The language itself – like almost all the related work – is miss-
ing a feature which is rather important for modern programming,
namely threads. This direction demands both theoretical and prac-
tical work.
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