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Introduction

The general framework of this paper is a reformulation of Hilbert’s program using the theory
of locales, also known as formal or point-free topology [28, 12, 33]. Formal topology presents
a topological space, not as a set of points, but as a logical theory which describes the lattice
of open sets. Points are then infinite ideal objects, defined as particular filters of neighbor-
hoods, while basic open sets are thought of as primitive symbolic objects or observable facts
[13]. This is a reverse of the traditional conceptual order in topology which defines opens as
particular sets of points [33]. Some roots of this approach involve Brouwer’s notion of choice
sequences, and an analysis of the status of infinite objects and of universal quantification over
these objects in constructive mathematics [30]1. The application to Hilbert’s program is then
the following. Hilbert’s ideal objects are represented by points of such a formal space. There
are general methods to “eliminate” the use of points, close to the notion of forcing and to the
“elimination of choice sequences” in intuitionistic mathematics, which correspond to Hilbert’s
required elimination of ideal objects2. Such a technique has been used in infinitary combina-
torics, obtaining intuitionistic versions of highly non constructive arguments [4, 5, 6]. More
recently, several works [7, 9, 10, 11, 16, 18, 27] following these ideas can be seen as achieving a
partial realization of Hilbert’s program in the field of commutative algebra.

This paper illustrates further this general program on the notion of valuations. They were
introduced by Dedekind and Weber [17] to give a rigorous presentation of Riemann surfaces. It
can be argued that it is one of the first example in mathematics of point-free representation of
spaces [3]. It is thus of historical and conceptual interest to be able to represent this notion in
formal topology.

In this work with Weber [17], Dedekind used his newly created theory of ideals, a theory that
has played an important rôle in the development of non constructive methods in mathematics
[19, 21]. It is thus also relevant to illustrate Hilbert’s notion of introduction and elimination
of ideal elements in this context. Our work relies here directly on [18], which pointed out the
notion of Prüfer domain as the right constructive (and first-order) approximation of Dedekind
rings. We extend this work and present several characterization of Prüfer domains.

We think that some of our proofs illustrate well Hilbert’s ideas of elimination of ideal ele-
ments. The points (prime ideals, valuations, . . .) constitute a powerful intuitive help, but they
are used here only as suggestive means with no actual existence. We show that many of the re-
sults of [26, 35] can be naturally expressed and proved in this point-free framework, illustrating

1Logically, such a quantification is a priori a Π1
1 statement and it is analyzed in the form of a Σ0

1 equivalent
assertion.

2Technically, the introduction of a point of a formal space corresponds to working in the sheaf model over
this space, and the elimination of this point is achieved by the Beth-Kripke-Joyal explanation of the logic of this
sheaf model. In most cases, this elimination can be carried out directly without involving explicitly the notion
of sheaf models.
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our method of eliminating the use of ideal objects and extracting the computational content of
classical concepts and arguments. The analysis of a lemma of Seidenberg [26, 35] for instance
suggests in this way a simple constructive proof of Gilmer-Hoffmann’s Theorem [25] (Propo-
sition 5.6). By combining this with a concrete algebraic definition of Krull dimension [9], we
get new simple proofs of characterizations of Prüfer domains (Corollaries 5.7, 5.8). We obtain
also a simple proof that the integral closure of a polynomial ring in an algebraic extension is a
Prüfer domain.

This paper is organized as follow. After recalling basic notions related to distributive lattices,
we present Joyal’s point-free presentation of the Zariski spectrum [27]. By analogy, we introduce
the main object of the paper, which is the space of valuations associated to any field. In our
approach, it is a distributive lattice defined by generators and relations. We give then a point-
free description of the notion of algebraic curve. We show how the cohomological description
[36] of the genus of a curve, a notion which goes back to Abel [22], can also be interpreted
constructively. We see this as a modest, but significant, first step towards the general program
of analyzing logically contemporary algebraic geometry, and classifying its results and proofs
by their logical complexity.

The paper is written in the usual style of constructive algebra, with [31] as a basic reference.
In particular, we recall that an integral domain has a decidable equality and we consider only
discrete fields. Each of our statement can be understood as a specification of a program, and its
proof can be seen as a program realizing this specification together with its proof of correctness.

1 Distributive lattices

The general methodology is to represent Hilbert’s notion of “ideal” elements as a generic point
of a formal space. This formal space is especially simple in the case of spectral spaces [28],
introduced in [37], since it is then a distributive lattice, the lattice of compact open subsets.
Most of the topological spaces introduced in commutative algebra are spectral spaces. In our
approach, we work instead directly with the corresponding distributive lattice of compact open,
which is thought of as a formal presentation of the space. The analysis of the structure of
the associated distributive lattice can be carried out using ideas from sequent calculus and
cut-elimination [7].

1.1 Krull dimension

Let D be a distributive lattice. A point of D can be defined classically as a lattice map α from
D to the lattice 2 with two elements. If u is an element of D, we may write α ∈ u for α(u) = 1
and think of u as a (basic open) set of points. The set Sp(D) of points of D is then a topological
space, and D is thought of as a point-free description of this space. If α and β are points of D
then we write α 6 β to mean that α ∈ u implies β ∈ u for all u in D. One defines classically
Kdim D < n as meaning that there is no strict chain α1 < . . . < αn of points of D. Inspired by
Espanol and Joyal [23] we gave in [9] the following point-free characterization of this notion.

Proposition 1.1 Let us consider the distributive lattice Kn(D) generated by the symbols
u1(r), . . . , un(r) for r in D and relations expressing that each ui is a lattice map and that we
have ui(r) 6 ui+1(r). We have Kdim D < n iff for any sequence r2, . . . , rn in D we have

u2(r2) ∧ . . . ∧ un(rn) 6 u1(r2) ∨ . . . ∨ un−1(rn)

in the lattice Kn(D).
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In [10], we give the following alternative constructive definition.

Proposition 1.2 We have Kdim D < n iff any sequences a1, . . . , an has a complementary
sequence, that is a sequence b1, . . . , bn such that

1 = a1 ∨ b1, a1 ∧ b1 6 a2 ∨ b2, . . . , an ∧ bn = 0

In particular, we have that Kdim D < 1 iff any element has a complement, that is iff D is a
Boolean algebra.

1.2 Going-up and going-down property

Any map φ : Z → V between two distributive lattices defines by composition a continuous map
φ∗ : Sp(V ) → Sp(Z). In this subsection, we collect some point-free formulations of properties
of the map φ∗. The proofs are omitted.

It can be seen classically that the map φ∗ is surjective iff the map φ is injective. Notice
that the lattice map φ is injective iff u 6 v for u, v in Z is equivalent to φ(u) 6 φ(v). If we see
the lattices Z, V as formal theory presenting the points of the spaces Sp(Z), Sp(V ) it means
that the surjectivity of the map φ∗ can be interpreted formally as a conservativity statement.
(A typical application is for expressing and proving constructively extension theorems, like
the Hahn-Banach Theorem, which become conservativity statements between two propositional
geometric theories when expressed in a point-free way [7, 15].)

Proposition 1.3 The map φ∗ has the going-up property iff whenever φ(u) 6 y ∨ φ(v) there
exists w ∈ Z such that φ(w) 6 y and u 6 w ∨ v. The map φ∗ has the going-down property iff
whenever y ∧ φ(u) 6 φ(v) there exists w ∈ Z such that y 6 φ(w) and w ∧ u 6 v.

The corresponding map on points φ∗ : Sp(V ) → Sp(Z) satisfies the going-up property iff
whenever φ∗(β) 6 α1 there exists β1 > β such that α1 = φ∗(β1). It satisfies the going-down
property iff whenever α1 6 φ∗(β) there exists β1 6 β such that α1 = φ∗(β1).

1.3 Going-up property and Krull dimension

If φ∗ has the going-up or going-down property and is surjective, it is clear in term of points that
this implies Kdim Sp(Z) 6 Kdim Sp(V ). The following proposition expresses this implication
in a point-free way.

Proposition 1.4 If φ : Z → V has the going-up or going-down property and is injective and
Kdim V < n then Kdim Z < n.

Proof. We give only the proof for the going-up property (the going-down property follows by
duality). Let a1, . . . , an be an arbitrary sequence in Z. Since Kdim V < n we can find v1, . . . , vn

in V such that

1 = φ(a1) ∨ v1, φ(a1) ∧ v1 6 φ(a2) ∨ v2, . . . , φ(an) ∧ vn = 0

Since φ has the going-up property, we find successively b1, . . . , bn such that

φ(b1) 6 v1, . . . , φ(bn) 6 vn

and
1 = a1 ∨ b1, a1 ∧ b1 6 a2 ∨ b2, . . . , an−1 ∧ bn−1 6 an ∨ bn

Since φ is injective we get also an ∧ bn = 0 from φ(an ∧ bn) = 0 and this shows that a1, . . . , an

has a complementary sequence.
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2 The Zariski lattice of a ring

Joyal [27] defines the Zariski lattice of a commutative ring R to be the lattice Zar(R) generated
by the symbols D(a), a ∈ R and relations (called support relations [27])

D(0) = 0, D(1) = 1, D(ab) = D(a) ∧D(b), D(a + b) 6 D(a) ∨D(b)

If b1, . . . , bn are elements in R we write D(b1, . . . , bn) for D(b1) ∨ . . . ∨ D(bn). Because of the
equality D(a)∧D(b) = D(ab), any element of Zar(R) can be written in the form D(b1, . . . , bn).
In general this cannot be simplified further3. It is direct to check from the support relations
that we have D(a) 6 D(b1, . . . , bm) whenever a, or more generally some power of a, belongs
to the ideal generated by b1, . . . , bm. The reverse implication, which characterizes the lattice
Zar(R) can be obtained by a cut-elimination argument [7]. In this case, it can be presented in
the following algebraic way. A particular realization of a lattice satisfying the support relations
is obtained by taking the lattice of radical of finitely generated ideals4 of R and D(b1, . . . , bn)
to be the radical of the ideal generated by b1, . . . , bn. Since Zar(R) is the free lattice satisfying
the support relations it follows from this remark that if D(a) 6 D(b1, . . . , bn) in Zar(R) then a
belongs to the radical of the ideal generated by b1, . . . , bn.

It is suggestive to think of D(a) as the proposition a ∈ S, where S is the complement of a
generic prime ideal of R. Another possible interpretation, in the case where R = k[X1, . . . , Xn],
is to see D(a) as the complement of the set of zeros of the polynomials a in an algebraic closure
of k. This is indeed a possible reading of Hilbert’s Nullstellensatz Theorem.

The Krull dimension Kdim R of the ring R is defined to be the Krull dimension of the Zariski
lattice Zar(R).

Theorem 2.1 Kdim R < n iff for any sequence x1, . . . , xn in R there exists k1, . . . , kn in N and
a1, . . . , an in R such that

xk1
1 (xk2

2 · · · (xkn
n (1 + anxn) + · · ·+ a2x2) + a1x1) = 0.

Proof. See [9].

In particular, Kdim R < 1 iff for any x in R there exists k and a such that xk(1 + ax) = 0.
This expresses the notion of Krull dimension directly in term of the ring structure. Notice that
this statement involves an existential quantification over natural numbers, and is geometric [39],
but not first-order.

3 The space of valuations

Let R be an integral domain and L be a field containing R. By analogy with Joyal’s construction
of the Zariski lattice, we consider the distributive lattice Val(L,R) generated by the symbols
VR(s), s ∈ L and relations 1 = VR(r) for r in R and for s 6= 0, u1, u2 in L

1 = VR(s) ∨ VR(s−1), VR(u1) ∧ VR(u2) 6 VR(u1u2) ∧ VR(u1 + u2).

We write VR(u1, . . . , un) for VR(u1) ∨ . . . ∨ VR(un). Intuitively, VR(s) means that s belongs to
the “generic” valuation ring V of L containing R. In the case where L is the fraction field of R
we write simply Val(R) instead of Val(L,R).

3But we have for instance D(a, b) = D(a + b) if D(ab) = 0 [11].
4In general the lattice of ideals of R is not distributive, for instance in the case R = k[X, Y ].
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Since we have only VR(x) ∧ VR(y) 6 VR(xy), in general we cannot simplify VR(x) ∧ VR(y).
However, we always have the equality VR(s)∧VR(s−1) = VR(s+ s−1)5. We also have VR(r−1

1 )∧
VR(r−1

2 ) = VR((r1r2)−1) if VR(r1) = VR(r2) = 1.

Lemma 3.1 VR((x+y)−1) 6 VR(x−1, y−1) in Val(R). It follows from this that if 1 = s1+. . .+sn

then 1 = VR(1/s1, . . . , 1/sn) in Val(R).

Proof. Let s be y/x. We have 1 = VR(s, 1/s). Also x−1 = (x + y)−1(1 + 1/s) and y−1 =
(x + y)−1(1 + s). Hence the result.

If V is a valuation ring containing R we can define a linear ordering on L× by taking x 6R y
to mean y/x ∈ V . For any finite family x1, . . . , xn we have i such that xi 6R xj for all j. The
formal representation of this remark is expressed as follow.

Lemma 3.2 For any x1, . . . , xn we have 1 = ∨i ∧j VR(xj/xi) in the lattice Val(R).

Proof. By induction on n. Assume 1 = ∨i<n∧j<nVR(xj/xi). We have also 1 = VR(xi/xn, xn/xi)
for each i < n. We can conclude from VR(xi/xn) ∧ ∧j<nVR(xj/xi) 6 ∧jVR(xj/xn).

It follows from the axioms of VR that VR(t1) ∧ . . . ∧ VR(tn) 6 VR(p) whenever p belongs to
R[t1, . . . , tn]. More generally, if s is integral over t1, . . . , tn, that is, if have a relation sk+p1s

k−1+
. . . + pk = 0 with p1, . . . , pk in R[t1, . . . , tn], then the equalities s = −p1− p2s

−1− . . .− pks
−1+k

and 1 = VR(s, s−1) show that we have VR(t1) ∧ . . . ∧ VR(tn) 6 VR(s). The converse will follow
from the following characterization of Val(L,R), which is proved by a cut-elimination argument.

Theorem 3.3 If t1, . . . , tn, s1, . . . , sm ∈ L× we have

VR(t1) ∧ . . . ∧ VR(tn) 6 VR(s1, . . . , sm)

iff 1 = <s−1
1 , . . . , s−1

m > in R[t1, . . . , tn, s−1
1 , . . . , s−1

m ].
In particular, VR(t1)∧ . . .∧ VR(tn) 6 VR(s) iff s is integral over R[t1, . . . , tn]. For n = 0, we

get that 1 = VR(s) iff s is integral over R.

The last result can be seen as a point-free statement of the fact that the intersection of all
valuation rings containing R is the integral closure of R.

Proof. This is proved, for another presentation of the lattice Val(R), in [16] by showing that the
existence of such a polynomial identity, seen as relation between {t1, . . . , tn} and {s1, . . . , sm}
defines an entailment relation [34].

For VR(t1) ∧ . . . ∧ VR(tn) 6 VR(s) we get a polynomial identity 1 = s−1q with q ∈
R[t1, . . . , tn, 1/s]. By multiplying this equality by a large enough power of s we get a rela-
tion of the form sk = p1s

k−1 + . . . + pk with p1, . . . , pm ∈ R[t1, . . . , tn].

Corollary 3.4 We have 1 = VR(s/t1, . . . , s/tn) iff s is integral over the ideal generated by
t1, . . . , tn.

That s is integral over the ideal I generated by t1, . . . , tn means that we can find a relation
sm + a1s

m−1 + . . . + am = 0 with a1 in I, . . ., am in Im.
5This follows from VR(s, s−1) = 1 and VR(t)∧ VR(s−1) 6 VR(s), VR(t)∧ VR(s) 6 VR(s−1) where t = s + s−1.
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4 Center of a valuation

4.1 The center map

If V is a valuation ring containing R, then V is a local ring and its maximal ideal mV is the set
of non invertible elements of V . The prime ideal R∩mV of R is called the center of V . In point-
free terms, this map V 7−→ R ∩mV can be represented as the lattice map φ : Zar(R) → Val(R)
which is defined on generators by φ(D(0)) = 0 and φ(D(r)) = VR(r−1) if r ∈ R, r 6= 0. Indeed,
if r ∈ R and r 6= 0 then r /∈ mV iff r is invertible in V .

For defining formally this map, we need only, by initiality, to check that the support relations
defining the lattice Zar(R) are validated by this interpretation.

Lemma 4.1 In the lattice Val(R) the following relations hold, for any r, s ∈ R− {0}

VR(1) = 1, VR(1/rs) = VR(1/r) ∧ VR(1/s), VR(1/(r + s)) 6 VR(1/r, 1/s)

where in the last relation, we suppose also r + s 6= 0.

Proof. The relation VR(1/rs) = VR(1/r) ∧ VR(1/s) follows from 1 = VR(r) = VR(s), and the
last relation is a special case of Lemma 3.1.

It follows from this that we can define a lattice map φ : Zar(R) → Val(R) by φ(D(r)) =
VR(1/r) if r 6= 0 and φ(0) = 0.

4.2 An application: Dedekind’s Prague Theorem

The simple existence of the center map, which has been proved without using Theorem 3.3,
allows us to transfer some results from the Zariski spectrum to the space of valuations. For
instance, we have the following general on the Zariski spectrum. If P = a0 + . . . + anXn is a
polynomial in R[X] we write c(P ) = D(a0, . . . , an) the radical content of P [23], which is an
element of Zar(R).

Lemma 4.2 (Gauss-Joyal) For any P,Q in R[X] we have c(PQ) = c(P ) ∧ c(Q).

Proof. See for instance [2].

Let now a0, . . . , an, b0, . . . , bm be indeterminate; we write ck = Σi+j=kaibj . We consider the
ring R = Z[ai/ai0 , bj/bj0 ]. Let L = Q(a0, . . . , an, b0, . . . , bm) be the field of fractions of R. In
the lattice Zar(R) we have 1 = ∨D(ck/ai0bj0) by the previous Lemma. Using the center map
for the ring R we deduce that we have 1 = ∨V (ai0bj0/ck) in the lattice Val(L,R). Hence in the
lattice Val(L, Z) we have6

(1) ∧V (ai/ai0) ∧ ∧V (bj/bj0) 6 ∨V (ai0bj0/ck).

Since aibj/ck = ai/ai0 · bj/bj0 · ai0bj0/ck this implies

∧V (ai/ai0) ∧ ∧V (bj/bj0) 6 ∧i,j ∨k V (aibj/ck)

By Lemma 3.2 we have 1 = ∨i0 ∧ V (ai/ai0) = ∨j0 ∧ V (bj/bj0). We deduce from this discussion
the following result7.

6Our argument has the following suggestive interpretation. Let V be a generic valuation ring of L containing
all elements ai/ai0 and bj/bj0 . The polynomials P = 1/ai0ΣaiX

i, Q = 1/bj0ΣbjX
j are in V [X]. Since P and

Q have 1 as coefficient, it follows from Lemma 4.2 that at least one coefficient of the product PQ is not in mV .
This is what is expressed by the inequality (1).

7Our argument precises the sketch which is presented at the end of [16].
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Theorem 4.3 In the lattice Val(L, Z) we have 1 = ∨kV (aibj/ck) for any i, j, and hence by
Corollary 3.4, each element aibj is integral over the ideal generated by c0, . . . , cn+m.

This result, which generalizes a famous Theorem of Gauss [20], is described by O. Neumann
to be “one of the most basic result in commutative algebra of the XIXth century” [32]. Our
argument is a computational interpretation of its modern non constructive proof based on
valuations [3], which is a direct generalization of the reasoning of Gauss. Using Theorem 3.3,
one can follow this proof and produce from it explicit polynomial identities. Via this general
method of elimination of points, the map L → Val(L,R) can thus be described as a (clever)
system of notations which records polynomial identities. This is to be compared with the
“actualist” interpretation of Val(L,R) as a set of points. In the spirit of Hilbert’s program, we
are helped by our intuition in term of points, but use it only as an ideal and suggestive mean.

4.3 Properties of the center map

The next result expresses in a point-free way that the center map is surjective, i.e. any prime
ideal is the center of some valuation rings. The use of Theorem 3.3 seems essential.

Proposition 4.4 The center map φ : Zar(R) → Val(R) is injective.

Proof. We show that we have D(r) 6 D(s1, . . . , sm) iff, in the lattice Val(R), we have VR(r−1) 6
VR(s−1

1 , . . . , s−1
m ). By Theorem 3.3, this last relation means that we can find m polynomials

q1, . . . , qm in R[r−1, s1, . . . , sm] such that 1 = s1q1 + . . . + smqm. This is then equivalent to
the fact that r is in the radical of the ideal generated by s1, . . . , sm, which is equivalent to
D(r) 6 D(s1, . . . , sm).

Proposition 4.5 The center map φ : Zar(R) → Val(R) has the going-up property.

Proof. Assume, for some non zero elements r, r1, . . . , rm in R and elements s1, . . . , sm in L, that
we have φ(D(r)) 6 VR(s1, . . . , sm)∨ φ(D(r1, . . . , rn)). We can then find q1, . . . , qm, p1, . . . , pn in
R[r−1, s−1

1 , . . . , s−1
m ] such that 1 = Σs−1

j qj + Σripi. By multiplying by a power of r we find a
relation of the form rk − Σtiri = Σs−1

j lj with ti in R and lj in R[1/s1, . . . , 1/sm]. The element
w = rk − Σtiri satisfies then both D(r) 6 D(w, r1, . . . , rn) and φ(D(w)) 6 VR(s1, . . . , sm) and
we can apply Proposition 1.3.

Corollary 4.6 If Vdim R 6 n then Kdim R 6 n.

Proof. This follows from Proposition 1.4.

5 Prüfer domain

The importance of the notion of Prüfer domain for constructive mathematics is stressed in [18]:
it can be seen as a non Noetherian version of Dedekind domains, and several of the important
properties of Dedekind domains can be proved at this level. (Classically, a Dedekind domain
can be defined to be a Prüfer domain which is Noetherian.) We say that R is a Prüfer domain
iff it is a domain satisfying

(∗) ∀x y ∃ u v w. ux = vy ∧ (1− u)y = wx.

Notice that being of Prüfer domain is a first-order property.
It follows easily from (∗), see [18], that if R is a Prüfer domain, for any sequence of elements

x1, . . . , xn of R we can find a11 = u1, . . . , ann = un in R such that

7



1. a11 + . . . + ann = 1

2. for any j there exists aij such that uixj = aijxi

The matrix (aij) is a principal localization matrix of x1, . . . , xn [18]8. We get ajixkxj =
ajjxkxi = ajkxjxi and hence ajixk = ajkxi if xj 6= 0. It follows that we have <a1i, . . . , ani> ·
<x1, . . . , xn> = <xi>. We find in this way explicitly an inverse of the ideal <x1, . . . , xn> [18]9.

Let Div(R) be the monoid of fractional ideals, also called divisors of R [20]. We have
just proved that, if R is a Prüfer domain then Div(R) is a group. If we order Div(R) by reverse
inclusion, we see that Div(R) is a lattice group. From this simple fact follows directly10 important
properties [3, 13]: Div(R) is a distributive lattice, and the intersection of two fractional ideals
I, J can be computed as I ∩ J = I · J · (I + J)−1 (and is thus finitely generated). Hence any
Prüfer domain is coherent [31] and we can solve any linear system over it [18]. We stress that
all these arguments are constructive and can be seen as (relatively simple) algorithms on R,
which use as a basic procedure the hypothesis (∗).

Classically, the lattice group Div(R) is defined to be the free lattice group on the set of prime
ideals of R. In our setting, this is captured by the following result.

Proposition 5.1 The spectrum of the lattice group Div(R) [13] is the dual of the Zariski
spectrum of R.

Proof. The spectrum of Div(R) is shown in [13] to be isomorphic to the lattice of positive
elements of Div(R), that is the finitely generated ideal of R, with the order I � J iff there exists
n such that I 6 Jn. This is equivalent to say that J is included into the radical of I.

Proposition 5.2 If R is a Prüfer domain then the center map φ : Zar(R) → Val(R) is an
isomorphism.

Proof. By Proposition 4.4 it is enough to show that the map φ is surjective11. Since Val(R) is
generated by the elements VR(s), we show that each such element is in the image of φ. We write
s = x/y with x, y ∈ R. Since R is a Prüfer domain there exist u, v, w ∈ R such that ux = vy
and (1− u)y = wx. We can then check that we have VR(s) = φ(D(u, w)) if s 6= 0.

The converse of Proposition 5.2 holds if R is integrally closed. For proving this converse,
we state a general lemma, which expresses in a point-free way that an integral domain is
arithmetical iff any localization at a prime ideal is a valuation domain.

Lemma 5.3 Let R be an integral domain, and K its field of fractions. The following is a suffi-
cient condition for R to be a Prüfer domain: for any s in K× there exists a1, . . . , an, b1, . . . , bm

in R such that 1 = D(a1, . . . , an, b1, . . . , bm) and s is in R[1/ai] for all i and 1/s is in R[1/bj ]
for all j.

Proof. We can find N big enough and ui, vj in R such that s = vi/aN
i and 1/s = wj/bN

j .
Since 1 = D(a1, . . . , an, b1, . . . , bm) we can find xi and yj such that 1 = Σxia

N
i + Σyjb

N
j . If

u = Σxia
N
i , v = Σxivi and w = Σwjb

N
j we have then us = v and (1− u)1/s = w.

8In the localization R[1/ui] the ideal <x1, . . . , xn> is principal and equal to <xi>.
9Dedekind himself thought that the existence of such an inverse was the fundamental result about the ring of

integers of an algebraic field of numbers [1]. Theorem 5.10 shows that this ring is a Prüfer domain.
10The structure of lattice group was discovered by Dedekind and rediscovered independently by F. Riesz. It

plays an important rôle in abstract functional analysis [13].
11Proposition 4.4 relies on cut-elimination (Theorem 3.3). One can prove directly, by a somewhat longer

argument, that φ is a bijection without using Theorem 3.3.
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Lemma 5.4 If R is a Prüfer domain then R is integrally closed.

Proof. Let K be the field of fractions of R. Assume s in in K and s 6= 0 and we have a relation
sn + r1s

n−1 + . . .+ rn = 0 with r1, . . . , rn in R. We can find u, v, w in R such that su = v, sw =
1−u. If u = 1 then s is in R. If u = 0 we have s = −r1−r2w−. . .−rnwn−1 is in R. Finally if u 6= 0
and u 6= 1 we have s in R[1/u] and, since s(1−u)n−1 = −r1(1−u)n−1−r2w(1−u)n−2−. . .−rnwn,
it is also in R[1/1− u]. Hence s is in R[1/u] ∩R[1/1− u] = R, as desired12.

Proposition 5.5 If R is an integrally closed domain such that the center map φ : Zar(R) →
Val(R) is an isomorphism then R is a Prüfer domain.

Proof. We use Lemma 5.3. Let s be an element of K×. We have 1 = VR(s, 1/s). Since the
center map φ is surjective we can find a1, . . . , an and b1, . . . , bm in R such that VR(s) = φ(u)
and VR(1/s) = φ(D(b1, . . . , bm)) where u = D(a1, . . . , an) and v = D(b1, . . . , bm). We have
1 = φ(u ∨ v) and hence 1 = u ∨ v in Zar(R). Also VR(1/ai) 6 VR(s) and VR(1/bj) 6 VR(1/s)
in Val(R). Since R is integrally closed, so are R[1/ai] and R[1/bj ], and so VR(1/ai) 6 VR(s)
implies s ∈ R[1/ai] and VR(1/bj) 6 VR(1/s) implies 1/s ∈ R[1/bj ] by Theorem 3.3.

The following proposition was obtained while analyzing Seidenberg’s Lemma ([26], Chapitre
III, Proposition 2) in a point-free setting. We rediscovered in this way Gilmer-Hoffmann’s
Theorem [25]. As above, let R be an integral domain and K be its field of fractions. For s ∈ K
we let I(s) to be the set of all polynomials P in R[X] such that P (s) = 0.

Proposition 5.6 (Gilmer-Hoffmann’s Theorem) If for all s ∈ K× there exists P1, . . . , Pn in
I(s) such that 1 = c(P1) ∨ . . . ∨ c(Pn) in Zar(R)13 and R is integrally closed then R is a Prüfer
domain.

Proof. For any P in I(s) we show how to build a family u1, . . . , um in R such that c(P ) 6
D(u1, . . . , um) and we have s or 1/s in R[1/ui] for each i. The result follows then from Lemma
5.3.

Write P = anXn + . . . + a0. We define

bn = an, bn−1 = bns + an−1, bn−2 = bn−1s + an−2, . . . , b1 = b2s + a1

Notice that P (s) = b1s + a0 = 0. We have

c(P ) 6 D(bn, bns, bn−1, bn−1s, . . . , b1, b1s)

since D(an) = D(bn) and D(ai) 6 D(bi+1s, bi) for 0 < i < n and D(a0) = D(b1s). Since we
have P (s) = ansn + . . . + a0 = 0 and R is integrally closed, we can prove successively that
bn, bns, bn−1, . . . are all in R. Finally, we have 1/s in R[1/bis] and s in R[1/bi].

Corollary 5.7 If Kdim R[X] 6 2 and R is integrally closed then R is a Prüfer domain.

Proof. We use Proposition 5.6. Given s in K we build P,Q in I(s) such that 1 = c(P ) ∨ c(Q)
in Zar(R). For this, we write s = a/b with a, b in R and b 6= 0. We apply Theorem 2.1 to the

12This reasoning can be seen as the interpretation that a valuation ring is integrally closed in the sheaf model
over the Zariski spectrum of R.

13It is direct to see that this is equivalent to c(P ) = 1 for one P in I(s), but our formulation is more convenient
in the applications.
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sequence bX − a, b, X in R[X], using Kdim R[X] < 3. It follows that there exists p1, p2, p3 in
R[X] and k1, k2, k3 in N such that

(bX − a)k1(bk2(Xk3(1 + Xp3) + bp2) + (bX − a)p1) = 0

Since R is an integral domain, this can be simplified to bk2(Xk3(1+Xp3)+bp2)+(bX−a)p1 = 0.
If we specialise X to s we get bk2(sk3(1 + sp3(s)) + bp2(s)) = 0 and hence since b 6= 0 we have
sk3(1 + sp3(s)) + bp2(s) = 0. If we take P = bX − a and Q = Xk3(1 + Xp3(X)) + bp2(X) we
have P,Q in I(s) and 1 = c(P ) ∨ c(Q) in Zar(R) as desired.

Here is another application, which was first obtained as a corollary of Proposition 6.5 and
Corollary 5.7.

Corollary 5.8 If R is an integral domain which is integrally closed and such that Vdim R 6 1
then R is a Prüfer ring.

Proof. We proceed like in the proof of Corollary 5.7. We write s = a/b with a, b in R and b 6= 0.
Since Vdim R 6 1 we have Kdim R[s] 6 1 by Corollary 4.6. Hence we can apply Theorem 2.1
to the sequence b, s: there exists p1, p2 in R[X] and k1, k2 in N such that bk1(sk2(1 + sp2(s)) +
bp1(s)) = 0. Since b 6= 0 this simplifies to sk2(1 + sp2(s)) + bp1(s) = 0. If we take P = bX − a
and Q = Xk2(1 + Xp2(X)) + bp1(X) we have P,Q in I(s) and 1 = c(P ) ∨ c(Q) in Zar(R) as
desired.

This can be compared with the characterization in [18]: if R is integrally closed and coherent
and such that Kdim R 6 1 then R is a Prüfer ring.

The following Lemma will be needed in the definition of the genus of an algebraic curve.

Lemma 5.9 Let R be a Prüfer domain, and K its field of fractions. If s is in K then R[s] is a
Prüfer domain. It follows that if s1, . . . , sn are in K then R[s1, . . . , sn] is a Prüfer domain.

Proof. Using Proposition 5.6 it is enough to show that R[s] is integrally closed. Like in the proof
of Proposition 5.2 we find u, v, w in R such that us = v, ws = 1−u. If u = 0 then R[s] = R[1/w]
is integrally closed. If u = 1 then s = v is in R and R[s] = R is integrally closed by Lemma 5.4.
If u 6= 0 and u 6= 1 we claim that R[s] = R[1/u]∩R[1/w], which will show that R[s] is integrally
closed since both R[1/u] and R[1/w] are integrally closed. Indeed we have s in R[1/u] and
R[1/w]. Conversely if x is in R[1/u] and R[1/w] we can write x = p/un = q/wn = qsn/(1−u)n.
We can then find a, b in R such that aun + b(1−u)n = 1 and we have x = ap+ bqsn in R[s].

Another more direct application is a simple proof of the fundamental fact that the integral
closure of a Bezout domain14 in an extension of its field of fractions is a Prüfer domain.

Theorem 5.10 If S is the integral closure of a Bezout domain R in a field extension of the
field of fractions of R then S is a Prüfer domain15.

Proof. We use Proposition 5.6. Given s in the field of fractions of S we have a non zero
polynomial P in in R[X] such that P (s) = 0. Since R is a Bezout domain, we can compute
the gcd g of the coefficients of P and we can then write P = gQ with Q(s) = 0 and c(Q) = 1.
(Notice that we find a polynomial in I(s) which is even in R[X].)

14A Bezout domain is a domain where any finitely generated ideal is principal [31].
15Two particular important cases are R = Z (algebraic integers) and R = k[X] (algebraic curves).
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6 Polynomial rings

Proposition 6.1 An integral domain R satisfies Vdim R 6 n iff in the Boolean algebra gener-
ated by the symbols V0(s), . . . , Vn(s) and relations

1 = Vi(r), 1 = Vi(s) ∨ Vi(s−1),
Vi(u1) ∧ Vi(u2) 6 Vi(u1u2) ∧ Vi(u1 + u2),

Vi(s) 6 Vi+1(s)

we have 1 =
∨

16i6n(Vi(si) ↔ Vi−1(si)) for any sequence s1, . . . , sn.

Proof. This follows from Proposition 1.1.

Using the distributive laws of Boolean algebra, we deduce that for any finite subset Z ⊆ L
we have

1 =
∨

16i6n

∧
s∈Z

(Vi(s) ↔ Vi−1(s))

It is suggestive to write Vi =Z Vi−1 for
∧

s∈Z(Vi(s) ↔ Vi−1(s)) and to rewrite the previous
equality as 1 =

∨
16i6n Vi =Z Vi−1. Classically, given a chain of valuation rings V0, . . . , Vn we

have i such that Vi = Vi−1. Our constructive version is weaker, stating only that we have i such
that Vi and Vi−1 coincides on a given finite subset Z of L. Similarly, one can show the following
result.

Lemma 6.2 If we have Vdim R 6 n then in the theory representing a chain of n + 2 valuation
rings V0, . . . , Vn+1, for any finite subset Z ⊆ L we have

1 =
∨

16i<j6n+1

(Vi =Z Vi−1 ∧ Vj =Z Vj−1)

Classically, given any such chain V0, . . . , Vn+1 there exists i < j such that Vi−1 = Vi and
Vj−1 = Vj .

We now prove constructively that we have Vdim R[X] 6 n+1 if Vdim R 6 n. The argument
is a syntactical version of the proof in [26].

Lemma 6.3 For any integral domain R if we have s1 + . . . + sn = 0, with s1, . . . sn ∈ L× then
1 =

∨
16i<j6n VR(si/sj) ∧ VR(sj/si).

Proof. Let u be the right hand-side of this equality. Since 1+Σj 6=ksj/sk = 0, by Lemma 3.1 we
have 1 = ∨j 6=kV (sk/sj) for all k. It follows that we have ∧jV (sj/sk) 6 u for all k. The result
follows then from Lemma 3.2.

Lemma 6.4 For any p, q in L(X) there exists a finite subset Z of L such that, in the propo-
sitional theory generated by symbols V1(p), V2(p), V3(p), V4(p) for p ∈ L(X) and relations ex-
pressing that V1, V2, V3, V4 is a chain of valuation rings of L(X) containing R[X],

(V2 =Z V1 ∧ V4 =Z V3) 6 (V2(p) ↔ V1(p)) ∨ (V4(q) ↔ V3(q))

Classically, if we have such a chain of valuation rings containing R[X] and such that V1∩L =
V2 ∩ L and V3 ∩ L = V4 ∩ L then we have V1 = V2 or V3 = V4.
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Proof. The elements p, q are algebraically dependent over L and there exists sl,m in L× such
that Σsl,mplqm = 0. Using Lemma 6.3 it follows from this that we have a finite number of
elements ti in L× with li 6= 0 or mi 6= 0 such that

1 =
∨
i

(V1(tipliqmi) ∧ V1(t−1
i p−liq−mi))

For each i it follows from the axioms of Vi that we have

V2 =Z V1 ∧ V4 =Z V3 ∧ V1(tipliqmi) ∧ V1(ti−1p−liq−mi)
6 (V2(p) ↔ V1(p)) ∨ (V4(q) ↔ V3(q))

where Z is the set of all elements ti and t−1
i . It follows from this that we have

(V2 =Z V1 ∧ V4 =Z V3) 6 (V2(p) ↔ V1(p)) ∨ (V4(q) ↔ V3(q))

as desired.

Proposition 6.5 If Vdim R 6 n then Vdim R[X] 6 n + 1.

Proof. We consider the propositional theory of the chain of n + 2 valuation rings V0, . . . , Vn+1

containing R[X]. Given any sequence p1, . . . , pn+1 of elements in L(X) we find, using Lemma
6.4 a finite subset Z of L such that, for each i < j

(Vi =Z Vi−1 ∧ Vj =Z Vj−1) 6 (Vi(pi) ↔ Vi−1(pi)) ∨ (Vj(pj) ↔ Vj−1(pj))

From Lemma 6.2 we also have

1 =
∨

16i<j6n+1

(Vi =Z Vi−1 ∧ Vj =Z Vj−1)

It follows that we have 1 =
∨

16i6n+1(Vi(pi) ↔ Vi−1(pi)) as desired.

An important consequence of Proposition 6.5, Theorem 5.2 and Corollary 4.6 is the following.

Theorem 6.6 If R is a Prüfer domain and Kdim R 6 n then the Krull dimension of R[X1, . . . , Xm]
is 6 n + m.

For instance for R = Z we get a constructive proof that the Krull dimension of Z[X1, . . . , Xm]
is m + 1. A challenge is to have a direct proof of this result. A proof of Kdim Z[X] = 2 with
the characterization of Theorem 2.1 is not so easy to derive directly.

7 Towards point-free algebraic geometry

We apply the previous results to give a simple point-free description of the notion of algebraic
curves as a scheme. For this we need to develop some sheaf theory in a point-free setting,
up to the cohomological definition of the genus, following the fundamental paper of Serre [36].
All our definitions and proofs are constructive, but follow closely the intuitions given by the
classical picture. Once the basic definitions are in place (but this was the main difficulty here),
the logical structures of proofs using cohomology theory are quite elementary, most arguments
being of a direct algebraic nature.
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7.1 Sheaves over lattices

We will analyze now how to represent the notion of sheaves of abelian groups in our setting.
Since for us, a space is a distributive lattice, we have to define what is a sheaf F over a
distributive lattice D.

A presheaf of rings F over a distributive lattice D is a family F(U) of rings for each U
in D together with restriction maps ρV U : F(U) → F(V ), x 7−→ x|V whenever V 6 U . We
require furthermore that x|U = x if x is in F(U), and that (x|V )|W = x|W if W 6 V 6 U .
If x is in F(U) and y is in F(V ), we may write simply x = y on U ∧ V for expressing that
x|U ∧ V = y|U ∧ V in F(U ∧ V ). We say that F is a sheaf iff the following gluing conditions
are satisfied:

1. if u = U1 ∨U2, and x1 in F(U1), x2 in F(U2) satisfy x1 = x2 on U1 ∧U2 then there exists
one and only one x ∈ F(U) such that x|Ui = xi,

2. F(0) is the trivial ring 0.

It follows from the first condition that if u = U1 ∨ U2 and x, y in F(U) are such that x = y on
both U1 and U2 then x = y. If F is a sheaf on a lattice D, it is clear that it defines by restriction
a sheaf on any lattice ↓ U for U in D.

If R is an arbitrary integral domain, an important sheaf on the lattice Zar(R) is the structure
sheaf on R16.

Lemma 7.1 If D(b) 6 D(a1, . . . , an) in Zar(R), where b, a1, . . . , an are 6= 0, then R[1/a1] ∩
. . . ∩R[1/an] ⊆ R[1/b].

Proof. Assume that u is in R[1/a1]∩ . . .∩R[1/an]. One can find k and r1, . . . , rn in R such that
u = ri/ak

i . Since D(ai) = D(ak
i ), we know that some power bl of b is of the form Σsia

k
i with si

in R. We have then u = (Σsiri)/bl and hence u is in R[1/b].

An element of Zar(R) is 0 or of the form D(a1, . . . , an) where all ai are 6= 0. We define
O(D(a1, . . . , an)) to be R[1/a1]∩ . . .∩R[1/an], and O(0) to be 0. This definition is justified by
Lemma 7.1. If V = D(b1, . . . , bm) 6 D(a1, . . . , an) = U and x is in R[1/a1] ∩ . . . ∩ R[1/an], we
have also x in R[1/b1] ∩ . . . ∩ R[1/bm] and we define x|V to be x itself. The sheaf condition is
then clearly satisfied.

A structure sheaf is also called an affine scheme.
Notice that, by definition, the global sections of this sheaf are the elements of Γ(Zar(R),O) =

O(D(1)) = R.

7.2 Algebraic curves and schemes

Let k be a field. An algebraic curve is defined to be an algebraic extension L of a a field of
rational functions k(x), where x is an indeterminate. If a1, . . . , an are elements of L we write
E(a1, . . . , an) the set of elements of L that are integral over k[a1, . . . , an]. If a is an element of
L it is algebraic over k(x) and hence we have a polynomial relation P (a, x) = 0. Since equality
is decidable in L, we can test if this equality is of the form P (a) = 0, that is a is algebraic over
k, in which case a is said to be a constant of L, or if x is algebraic over k(a), in which case a is
said to be a parameter of L. If p is a parameter, L is the field of fractions of E(p), since this
field contains x because x is algebraic over E(p).

16This can be defined for an arbitrary ring, but the definition is a little simpler for an integral domain, and we
shall only need this case.
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Any non zero element of the formal space X = Val(L, k) can be written as a disjunction of
elements of the form V (a1)∧ . . .∧V (an). If U is such a non zero element, we define OX(U) to be
the set of elements q in L such that U 6 V (q) in Val(L, k)17. In particularOX(V (a1)∧. . .∧V (an))
is the set E(a1, . . . , an), by Theorem 3.3. Thus Γ(X,OX) = OX(X), the global sections of OX ,
is the field of constants k0 of L (algebraic closure of k in L). The fact that Γ(X,OX) = k0 is an
algebraic counterpart of the fact that the global holomorphic functions on a Riemann surface
are the constant functions.

A point α of Val(L, k) can be identified with the valuation ring Vα of elements a such that
α ∈ V (a). The fiber of OX at a point α is defined to be the inductive limit of OX(U) with
α ∈ u. The fiber at α is nothing else than Vα itself.

If b is a non zero element of E(a) we have E(a, 1/b) = E(a)[1/b]. More generally, if b1, . . . , bm

are non zero elements of E(a), we have

OX(V (a) ∧ V (1/b1, . . . , 1/bm)) = E(a)[1/b1] ∩ . . . ∩ E(a)[1/bm].

If p is a parameter of L, and φ is the center map of E(p) and q1, . . . , qm are non zero elements
of E(p) and U is the element D(q1, . . . , qm) of Zar(E(p)) we deduce from our discussion the
equality

OE(p)(U) = E(p)[1/q1] ∩ . . . ∩ E(p)[1/qm] = OX(φ(U)).

By Theorem 5.10, E(p) is a Prüfer domain. By Proposition 5.2, the sub-lattice ↓ V (p) of
Val(L, k), which is isomorphic to Val(E(p)), is isomorphic to Zar(E(p)). Hence, the sheaf OX

restricted to the basic open V (p) is isomorphic to the affine scheme Zar(E(p)),O.
The pair (X,OX), where X = Val(L, k), is a most natural example of a scheme. For each

parameter p of L the space X is the union of two basic open sets U0 = V (p), U1 = V (1/p).
The open U0 is isomorphic to Zar(E(p)) and U1 is isomorphic to Zar(E(1/p)). Furthermore the
sheaf OX reduces to the structure sheaf over each open Ui. (Surprisingly, I was unable to find
this example in the literature.)

Notice that, even in the simplest case where L = k(t), the sheaf OX is not isomorphic to an
affine scheme. This follows from the observation that Γ(X,OX) is the field of constants of L,
while we have seen that Γ(Zar(R),O) = R for the structure sheaf of an integral domain R.

7.3 Places

Following [20], a place P of L/k is given by two parameters α, β such that V (α−1, β−1) 6= 1 and
L = k0(α, β) and α, β satisfy a polynomial relation f(α, β) = 0 with f(X, Y ) in k0[X, Y ] such
that f(0, 0) = 0 and f ′X(0, 0) 6= 0 or f ′Y (0, 0) 6= 0. (For instance x − 1/2, y − 1/2 determines a
place of L/Q if L is defined by the equation x3 + y3 = xy.) The set

VP = {z ∈ L | 1 = V (α−1, β−1, z)}

is then a (discrete) valuation ring of L and it is possible to define a valuation function vP :
L× → Z such that z is in VP iff vP (z) > 0 [20].

We can decide if the point VP is in a given open V (t1) ∧ . . . ∧ V (tk) of X since this is
equivalent to having vP (t1) > 0, . . . , vP (tk) > 018. It is also possible to represent X − {P} as
the formal open V (α−1, β−1) and we can express formally that an element g has a unique pôle
of order l at the point P on the open U of X by the inequality U ∧ V (α−1, β−1) 6 V (g) and
vP (g) = −l.

17Intuitively, q is a meromorphic function on the abstract Riemann surface X, and U 6 V (q) expresses that q
is holomorphic over the open U .

18The membership in a general valuation ring of L needs not to be decidable a priori.
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Lemma 7.2 There exist a formal covering of X by two open W0,W1 and an element g such
that P is not in W0 and g has a unique (simple) pôle at P on W1.

Proof. If for instance f ′x(0, 0) 6= 0, we have a relation of the form βl = αh with l in k0[β] and
vP (h) = 0. We can then check that β−1 has a unique (simple) pôle at the point P on the open
V (h−1): we have V (h−1) ∧ V (α−1) 6 V (β−1) which follows from the relation βl = αh. We get
two open W0 = V (α−1, β−1) and W1 = V (h−1) that cover X and are such that P is not in W0

and β−1 has a unique (simple) pôle at P on W1.

7.4 The genus of an algebraic curve

Lemma 7.3 For any parameter p we have E(p, q, 1/q) = E(p, q)⊕ E(p, 1/q).

Proof. Let R be E(p) which is a Prüfer ring of field of fractions L. It follows from Lemma 5.9
that we have E(p, q) = R[q], E(p, 1/q) = R[1/q] and E(p, q, 1/q) = R[q, 1/q]. We clearly have
R[q, 1/q] = R[q]⊕R[1/q], hence the result19.

Theorem 7.4 The k0-vector space H1(p) = E(p, 1/p)/E(p) ⊕ E(1/p) is independent of the
parameter p and hence it defines an invariant H1(X,OX) of the extension L/k.

Proof. Our argument is a specialization of the general cohomological argument [36]20. Let p and
q be two parameters. Write p0 = p, p1 = 1/p and q0 = q, q1 = 1/q. We say that x in E(p, 1/p)
and y in E(q, 1/q) are related iff there exists aij in E(pi, qj) such that x = a10− a00 = a11− a01

and y = a01 − a00 = a11 − a10. Using Lemma 7.3, we show that this relation defines an
isomorphism between H1(p) and H1(q).

We have first that y is uniquely determined modulo E(q)⊕E(1/q). Indeed, if we have other
elements bij in E(pi, qj) such that

x = b10 − b00 = b11 − b01, y′ = b01 − b00 = b11 − b10

then b10 − a10 = b00 − a00 belongs to E(q, p)∩E(q, 1/p) = E(q). Similarly b11 − a11 = b01 − a01

belongs to E(1/q, p) ∩ E(1/q, 1/p) = E(1/q). Hence y′ − y belongs to E(q)⊕ E(1/q).
We show that any element x in E(p, 1/p) is related to at least one element y in E(q, 1/q).

Indeed x belongs to E(p, 1/p, q), which is E(q, p) ⊕ E(q, 1/p) by Lemma 7.3, and hence it can
be written x = a10 − a00 with ai0 in E(pi, q0). Similarly x can be written a11 − a01 with ai1

in E(pi, q1). We can then let y to be a11 − a10 = a01 − a00 which belongs to E(q, 1/q, p) ∩
E(q, 1/q, 1/p) = E(q, 1/q).

We illustrate these notions in the cases of the curve S = Q(t) and in the case of the algebraic
curve L = Q(x, y) with y2 = 1 − x4, an example which played historically an important rôle
[24, 22]. In this case, 1, y is a basis of E(x) over Q[x] and 1, y/x2 a basis of E(1/x) over ∈ Q[1/x].
It follows that the elements of E(x, 1/x) = E(x)[1/x] can be written (uniquely) in the form
p + qy + ry/x + a + (y/x2)b with r ∈ Q and p, q ∈ Q[x], a, b ∈ Q[1/x]21.

Proposition 7.5 We have H1(L,OX) = E(x, 1/x)/E(x)⊕ E(1/x) = Q.

19This result has a direct cohomological interpretation since it follows from the fact that the sheaf OX restricted
to the basic open V (p) is isomorphic to an affine scheme and that a structure sheaf is acyclic.

20H1(p) is the quotient H1(U0, U1) of OX(U0 ∧U1) by OX(U0)⊕OX(U1) where U0 = V (p) and U1 = V (1/p).
21More generally, as soon as we have a basis of E(x) over k[x] and a basis of E(1/x) over k[1/x] a simple

argument shows that H1(X,OX) is a finite dimensional vector space over k [22]. This gives also a way to
compute the field of constants k0.
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For S = Q(t) we have E(t, 1/t) = k[t, 1/t] and E(t) = k[t], E(1/t) = k[1/t].

Proposition 7.6 We have H1(S,OX) = 0.

Since these are invariant attached to the function field L we get the result.

Proposition 7.7 L = Q(x, y), y2 = 1− x4 cannot be written on the form L = Q(t).

While it is possible to prove directly this Proposition, we think that it is a good illustration
of the power of cohomological methods.

Here is another simple application.

Proposition 7.8 If H1(X,OX) = 0 and P is a place of X then there exists a function on X
having P as the only (simple) pôle22.

Proof. By Lemma 7.2, we have a function g and a covering W0,W1 of X such that P is not in
W0 and g has P as the only (simple) pôle on W1. It follows that g is in OX(W0 ∧W1). Since
H1(X,OX) = 0, we have23 OX(W0∧W1) = OX(W0)⊕OX(W1) and we can write g on the form
h1 − h0 with hi in OX(Wi). The element f = h1 = h0 + g is the required function24.

8 Conclusion

Our work is complementary to existing constructive presentations of Riemann surfaces [19, 20,
21, 22]. Our use of formal topology, which is a reformulation of Hilbert’s notion of introduction
and elimination of ideal elements, allows us to have access to the power of abstract methods
(prime ideals, valuations), in the same way as [13, 14] simplify some proofs of Bishop.

One motivation for the present work comes actually from a formalization of the associativity
property of elliptic curves in type theory [38]. Our setting should contain all the elements for a
conceptual and constructive proof of this result, which should be directly representable in type
theory.
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arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind. J. Algebra 281 (2004),
no. 2, 604–650.

[19] H.M. Edwards. The genesis of ideal theory. Arch. Hist. Ex. Sci., pages 321–378, 1980.

[20] H.M. Edwards. Divisor Theory. Birkauser Boston, 1990.

[21] H.M. Edwards. Mathematical ideas, ideals, and ideology. Math. Intelligencer 14 (1992),
no. 2, 6–19.

17



[22] H.M. Edwards. Essays in Constructive Mathematics. Springer-Verlag, New York, 2005.

[23] L. Espanol. The spectrum lattice of Baer rings and polynomials. Categorical algebra and
its applications (Louvain-La-Neuve, 1987), pages 118–124, 1988.

[24] K.F. Gauss. Disquisitiones Arithmeticae. 1802.

[25] R. Gilmer, J.F. Hoffmann. A characterization of Prüfer domains in terms of polynomials.
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