
Some remarks about Dependent Type Theory

Introduction

The goal of this paper is to describe a calculus designed in 84/85 [21] and later presented in [30]. This
calculus was obtained by applying the ideas introduced by N.G. de Bruijn [32, 33] for AUTOMATH
to some functional systems created by J.-Y. Girard [43]. There was also strong connections with the
work of P. Martin-Löf [68, 70]. This calculus provided quite simple uniform notations for proofs and
(functional) programs. Because of this simplicity and uniformity, it was possible to use it for analysing
logical problems such as impredicativity [85, 86], paradoxes [22, 28, 25, 7], but also notions of computer
science such as parametricity [9, 3]. It could also be used as the basis of implementations of proof and
functional systems [29], arguably simpler, or at least competitive, with the ones that were available at
the time [49, 19, 80].

One main theme of this work is the importance of notations in mathematics and computer science:
new questions were asked and solved only because of the use of AUTOMATH notation, itself a variation
of λ-notation introduced by A. Church [14, 15, 16, 62] for representing functions.

1 General motivations and context

1.1 System F

The starting point of this work was a study of system F . This is a quite remarkable extension of
simply typed λ-calculus [16]. It was designed independently by Girard [43], motivated by purely logical
considerations [45, 43], and by J. Reynolds [89], with the different goal of representing and analysing the
notion of “parametric” algorithms1.

System F extends simply typed λ-calculus type variables and notations for parametric functions:
ΛαM is of type ∀αT (α) if M is of type T (α) and α is a type variable, which can occur in the type of a
variable of M (with some restriction discussed below). This system was quite mysterious: the parametric
identity function2 Λαλxαxα of type ∀α (α → α) has no clear set-theoretic semantics for instance. We
cannot, like in simply typed λ-calculus, interpret types as sets, since the interpretation of a type such
as ∀α (α → α) would involve a quantification over all sets. But things were subtle, and Reynolds was
conjecturing [88] that it should actually be possible to find a set-theoretic semantics, only to prove one
year later [90] a theorem that there cannot be such a semantics. Girard could show that system F satisfies
the normalisation property [43], by an ingenious refinement of Tait’s computability method [99]. This
result implied in turn a syntactic solution to the famous Takeuti’s conjecture3 [100].

System F was also formally a complex system compared to simply typed λ-calculus. In particular,
there was a non obvious restriction on typed variables: for forming ΛαM we should have that α does
not appear free in some type of a free variable of M . For instance, the term Λαxα is not allowed.
Girard, both in the original paper [43] and in his “thèse d’état” [44], presented an extension Fω even
more complex4.

1For instance, a sorting algorithm is parametric, in the sense that it will act in an uniform way w.r.t. the types of its
elements.

2The original notation in [44] was DTαλxαxα of type δα(α→ α).
3There were already semantical proof of this conjecture, proving in the setting of sequent calculus that, if a sequent is

provable, then it has a cut-free proof
4In system F = F2 we have quantification over types; system F3 allows quantification over operations of “kind”

type → type, system F4 over operations of kind (type → type) → type, and so on. System Fω is the union of all these
systems [45].
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1.2 The system AUTOMATH

At about the same time as system F was designed, N.G. de Bruijn was creating [32] another extension of
simply typed λ-calculus. The goal there was to implement a system which can check the correctness of
mathematical proofs. One non standard feature was a uniform treatment of propositions and types, and
of programs/terms and proofs. An example in [34] is a statement of the form, for some given functions
f and g:

Theorem 1.1 Let x be a real number such that f(x) > 1 and let n be a natural number. If we have
g(x) > xn then f(x) > n.

If a mathematicien wants to use this statement later on, with x = π and n = 5, he has to give a proof
p1 of f(π) > 1 and then a proof p2 of g(π) > π5. He can then state f(π) > 5 by applying the theorem
and by giving in this order : π, the proof p1, then 5 and the proof p2.

In AUTOMATH this will become the definition of a term, representing a corollary of the theorem,
as an application, in the sense of λ-calculus, of a variable thm to some arguments like thm(π, p1, 5, p2),
which is of “type” the statement f(π) > 5.

As de Bruijn wrote [34]: “Treating propositions as types is definitely not in the way of thinking
of ordinary mathematician, yet it is very close to what he actually does”, and to have such a uniform
treatment of elements and proofs was a quite original feature. It is interesting, and really surprising,
that this feature is a key for representing in a natural way notions from homotopy theory, as was found
later by V. Voevodsky [105].

A crucial notion in AUTOMATH, inspired from the notion of block structure in ALGOL 60, is the
one of context. It is a sequence of variable declaration with their types and named hypotheses in an
arbitrary order. In the previous example, we have the following context

x : R, h1 : f(x) > 1, n : N, h2 : g(x) > xn

for the previous theorem, and to apply the theorem, we have to find an instantiation of this context.
AUTOMATH introduced also a primitive “sort” for collecting mathematical types, so that we have

real : type and nat : type for types of real numbers and natural numbers.
One also could introduce a primitive sort prop for collecting mathematical propositions, or, since the

notion of types and the notions of propositions are treated uniformly, simply take prop = type
Finally, AUTOMATH used the same notation [x : A]M for typed abstraction λx:AM and for depen-

dent product Πx:AB.
One obtained then a quite minimal calculus

M,A ::= x | M M | [x : A]M | type

One recovers ordinary implication/function type A → B as [x : A]B, where x does not occur in A,B.
We may write [x1 x2 : A]B for [x1 : A][x2 : A]B. Also we have a natural notion of convertibility from
λ-calculus which is β-conversion.

Using the same notation for abstraction and dependent product, we can purely formally compute the
type of M in a context Γ, by simply replacing its head variable by its type. For instance

[A : type][x : A][f : [z : A]A]f x

has for head variable f of type [z : A]A, and so is of type

[A : type][x : A][f : [z : A]A]([z : A]A) x

which is convertible to
[A : type][x : A][f : [z : A]A]A

that can be written
[A : type] A→ (A→ A)→ A
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1.3 Representation of mathematical notions in AUTOMATH

One of the first example represented in the system [32] was the notion of equality on a type A : type.
This is represented by a collection of constants. One constant Eq : [x y : A]type represents the notion of
equality itself: if a0 and a1 are elements of type A, then Eq a0 a1 is a type/proposition. An element of
this type would then be a proof that a0 and a1 are equal. In order to represent that this is an equivalence
relation, we introduce two constants

refl : [x : A]Eq x x eucl : [x y z : A]Eq x z → Eq y z → Eq x y

We can then form the term

[x y : A][h : Eq x y]eucl y x y (refl y) h : [x y : A] (Eq x y)→ Eq y x

which is a proof that the relation Eq is symmetric. Indeed, it can be checked that the term

eucl y x y (refl y) h

is of type Eq y x in the context
x : A, y : A, h : Eq x y

since refl y is of type Eq y y.
This example illustrates the uniform treatment of elements and proofs.

The following other simple example was also quite illuminating. Heyting’s deduction rules for in-
tuitionistic logic looked quite formal, e.g. why do we have A → ¬¬A and not (¬¬A) → A? With
AUTOMATH notation this becomes clear. First, negation can be defined as ¬ A = A →⊥, where
⊥: type represents the false proposition. It is then no problem to build an element

[x : A][f : A→⊥]f x : A→ ¬¬A

while it is at least intuitively clear that we cannot build an element of type (¬¬A)→ A, since one cannot
build any element of type A simply using an hypothesis of type (A→⊥)→⊥.

A more complex example, also illuminating, is presented by Jutting [58], who gives different versions
of a proof of the basic result that any surjective map from [1, n] to itself is injective, first informally and
then with more and more formal details, until reaching a proof in AUTOMATH.

2 AUTOMATH and system Fω

The idea5 was then to use AUTOMATH powerful notations to represent system F 6. We encode ΛαM
by [α : type]M and ∀αT (α) by [α : type]T (α). We can for instance represent the polymorphic identity
as the term id = [A : type][x : A]x, of type T = [A : type]A → A. We can then apply id to its own type
id T , which should be convertible to [x : T ]x.

We also can define the type ⊥= [A : type]A and it represents the false proposition, since it implies
any type, as shown by the following proof

[A : type][h :⊥]h A : [A : type] ⊥→ A

Note that we have several proofs of ⊥→⊥, for instance [x :⊥]x or [x :⊥]x ⊥ or or [x :⊥]x ⊥ x or
[x :⊥][A : type]x A. (This last term can be seen as the η-expansion of [x :⊥]x.)

We also can represent the notion of equality, not by introducing a new constant, but as a definition,
as “Leibnitz’ equality”

eq = [A : type][x y : A][P : A→ type]P x→ P y

5The formal rules are presented in the Appendix.
6This possibility of using abstraction over type, was actually suggested by de Bruijn [32] but with the mention: “It is

difficult to see what happens if we admit this”.
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We then define a term which represents the proof of reflexivity

refl : [A : type][x : A]eq A x x = [A : type][x : A][P : A→ type][h : P x]h

and, following [43], we can prove symmetry and transitivity of the eq relation.
One crucial point is that we don’t require7 type to be of type type; however, like in system F , the

type [A : type]A is of type type. It is possible to define an equality on type, but this is not an instance
of eq

eq1 : type→ type→ type = [A B : type][P : type→ type]P A→ P B

2.1 Some remarks

One important feature of this presentation, coming from the use of Algol block structure and expressed
by the notion of context, is that, at any point in time, there are only finitely many variables that are
“alive”, each declared with its type. This is to be contrasted with usual presentations of logical systems
and type systems at the time, which assumed an infinite “pool” of variable.

This notion of context also gives a more natural presentation of type abstraction in system F . With
the usual presentation, when forming ΛαM one had to be careful that α was not appearing free in the
type of some free variables of M . In this other presentation, using this idea of treating uniformly variable
type declarations and variable term declarations, this becomes that we always can form [A : type]M in
a context Γ if M is correct in the context Γ, A : type.

2.2 Russell-Prawitz encoding of logical connectives

Since we represent system F , it is possible to encode logical connectives [92, 2]. Intuitively, a connective
is defined by its elimination rule. For instance

(∧) = [A B : type][X : type](A→ B → X)→ X

(∨) = [A B : type][X : type](A→ X)→ (B → X)→ X

It is also possible to encode existential quantification in the same way

∃ = [A : type][B : A→ type][X : type]([x : A]B x→ X)→ X

2.3 Encoding of data types

It was also possible to encode data types, following some ideas of Martin-Löf and Girard [73, 44]

bool = [A : type]A→ A→ A nat = [A : type]A→ (A→ A)→ A

which corresponds to Church’s encoding [15, 17]. The definition of nat expresses how to define a function
by iteration. But since we have access to binary products, we can follow Kleene’s encoding of primitive
recursion in term of iteration. In order to define

f 0 = a f (n+ 1) = g n (f n)

we define the function h : n 7→ (n, f n) by iteration

h 0 = (0, a) h (n+ 1) = (π1 (h n), g′ (h n))

where g′ z = g (π1 z) (π2 z). One could then use this encoding to represent the predecessor function.
Surprisingly, one could also encode data types such as list, as suggested by Böhm and Berrarducci

[11]
list : type→ type = [A : type][X : type]X → (A→ X → X)→ X

We can also reason about these programs, using the same formalism. Early examples of such proofs
about programs can be found in [81].

7Contrary to the system [66] that I discovered after I had formulated the present system.
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2.4 Evaluation and comparison with other formal systems

We get a formal system which uses a simple and uniform notation. It contains not only system Fω, but
also higher-order logic such as the one presented by A. Church [16, 78]. Inheriting from AUTOMATH the
uniform treatment of functions and proofs, we don’t have to describe first the terms, and then deduction
rules for formulae, as was done in [16]. As in AUTOMATH, proof-checking becomes type-checking and
we get a formal system which can naturally be represented on a computer.

2.4.1 Decidable Type Checking

A distinctive feature of our system is that the judgement M : A is decidable. This is crucial in order to
reduce proof-checking to type-checking. The importance of this criteria for a formal system to be able
to recognize if a given potential proof is correct or not was stressed by Kreisel [59].

Despite this, all formulations of dependent type theory at the time, by Martin-Löf, Scott and Con-
stable [70, 72, 19, 94], were not following this criteria. Both NuPrl and Martin-Löf’s system8 were using
an equality reflection rule, which had as consequence that the judgement M : A was no longer decidable.
Similarly, Scott’s system [94] used some undecidable notion of conversion, despite the fact that it was
strongly inspired by AUTOMATH9.

Conceptually, one can argue that this non decidability is not satisfactory: if M is of type A, it is not
possible to consider anymore M as a proof of A (some crucial information for checking the correctness
of the proof may be missing in M). But this also implied that the formal system was more complex to
implement. Both NuPrl and K. Petersson’s system [80] were using a LCF approach [49], with an abstract
data type of theorems. For the present formal system, it was possible to follow the arguably simpler
AUTOMATH’s approach, and to prove that type-checking is decidable, as a corollary of a normalisation
theorem, which extends the normalisation theorem for system Fω [21, 103]. The implementation was
not trivial however, and AUTOMATH’s checking program actually had a wrong treatment of bound
variables [102]. The first type checker for the system we describe was written by G. Huet [29], making
use of the recent addition of algebraic data types and pattern-matching in ML by G. Cousineau [63].
This implementation was essential in order to test this formal system on examples.

Type-checking reduces to conversion, by building a list of conversion constraints that need to hold
for a term to be well-typed. This algorithm adapts naturally for building a proof interactively with
place-holders, as was implemented in the work [4].

2.4.2 Impredicativity in logic and functional system

One other feature of the formal system we get is the use of impredicativity, coming from system F . Intu-
itively, a definition of an object is impredicative if the definition of this object involves a quantification
over a collection which contains the object we are defining. For instance, the type T = [A : type]A→ A
uses impredicativity since we define T : type by quantifying over all types. This use of impredicativity
is crucial in order to be able to define logical connectives and data types from “nothing”. This illus-
trates the “generative” character of impredicative definitions, which is the “advantage” and mystery of
impredicativity; this aspect is described vividly by Poincaré [85, 86].

We get a quite concrete representation of what is going on with proofs using impredicativity. An
argument is impredicative precisely when we use the product rule [x : C]A : type for A : type in the
context x : C, and where C is itself of the form [x1 : A1] . . . [xn : An]type (we can have n = 0 in which
case C is type itself).

An example is the notion of equality which can be defined by

eq = [A : type][x y : A][P : A→ type]P x→ P y

and can be proved to be a symmetric relation. In a context A : type, x : A, y : A, h : eq A x y we can
prove eq A y x by

h ([z : A]eq A z x) (refl A x)

8Martin-Löf had explored an intensional approach [68], and later with P. Hancock [69], which even excluded the ξ-rule,
but this was abandonned around 1979 [70, 72]. I was told by Constable that the choice of intensional versus extensional
equality was the topic of several discussions in the NuPrl group, but they also opted for the extensional approach.

9There is a discussion at the end of the paper, alluding to objections from Gödel and Kreisel about this issue.
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which would be an impredicative proof: we use eq as a relation on A, while eq is defined by quantification
over all predicates on A. Indeed, the correctness of the application h ([z : A]eq A z x) requires eq A z x
to have the type type, and so we make use of the impredicative quantification

[P : A→ type]P z → P x : type

There is however another predicative proof, i.e. without involving a self-referencing definition, of the
symmetry of eq, which is

[P : A→ type][h1 : P y]h ([z : A]P z → P x) ([h2 : P x]h2) h1

A simpler example is ⊥→⊥, which has both an impredicative proof [x :⊥]x ⊥ and a predicative
proof [x :⊥][A : type]x A. Russell, in the introduction of the second edition of Principia Mathematica
[108], analyses such examples but without an explicit notation for proofs.

Another example of a data type was the type of ordinals of second class

ord = [A : type][x : A][f : A→ A][l : (nat→ A)→ A] A

These are notations for the ordinals we obtain from 0 using the successor α+ 1 and limit over countable
sequences operations. We can program various functional hierarchies ord → (nat → nat), simply by
instantianting A : type by nat→ nat. For instance, the Hardy hierarchy h : ord→ nat→ nat is obtained
by instantiating x to the identity function, f to the functional f u n = u (n + 1) and l to the diagonal
function l v n = v n n.

One can represent directly elements of type ord corresponding to various ordinals ω, ωω, ε0, . . . [21].
The paper [36] had a predicative representation of the Hardy function h ε0 and it was possible to compare
it with the (much simpler formally) impredicative representation10. As it happens, such a discussion was
already present in Hilbert’s papers [51, 52] for his attempt to prove the continuum hypothesis.

There is no problem to define ordinals of third class, where we allow limit over sequences of ordinals
indexed by ordinals of second class, introducing further a “constructor” of type (ord → A) → A. One
can even consider the type (Huet, [29])

ord∞ = [A : type] ([B : type] (B → A)→ A)→ A

One could as well represent directly in this “minimal” higher-order logic the proof of Tarski’s fixed-
point theorem for monotone maps on complete lattice [55].

2.4.3 Comparison with Frege’s Begriffsschrift

One of the first example encoded in this calculus [21] was the result proved by Frege in his remarkable
1879 book Begriffsschrift [37]. In this book, Frege introduced not only the notion of quantifiers but also
higher-order logic.

As emphasized in von Plato’s book [106], and also in [93], one crucial insight of Frege was the
formulation of the rule of ∀ introduction: ϕ → ∀x ψ(x) if ϕ → ψ(x) and x is not free in ϕ. It is
indeed remarkable that one can capture in a finite way the laws for quantification over a maybe infinite
collection!

In the present system, following AUTOMATH, this rule simply becomes that [x : A]M is correct
in the context Γ, if M is correct in the extended context Γ, x : A, i.e. a shift of the abstraction x : A
between the context and the term.

Frege also explained how to encode the transitive closure of a relation using an impredicative defini-
tion. His main goal was to show formally that the transitive closure of a functional11 relation defines a
linear order. As he emphasized, it is surprising that we can “bring forth judgements that at first sight
appear to be possible only on the basis of some intuitions”.

10It is direct to define the operation α 7→ ωα on ordinals and ε0 is then obtained by the limit of the sequence obtained
by iterating this operation starting from 0. For a systematic way to obtain predicative definitions of some ordinals, see the
PhD thesis of Peter Hancock [50].

11A relation R on a type A is functional if R x y and R x z imply eq A y z.
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Here was Frege’s definition of the transitive closure of a relation, using AUTOMATH notations, in
the context A : type, R : A → A → type, and where her P expresses that the predicate P is hereditary
for the relation R:

her : (A→ type)→ type = [P : A→ type][x : A] P x→ [y : A] R x y → P y
R+ : A→ A→ type = [x y : A][P : A→ type] her P → ([z : A] R x z → P z)→ P y

Here are two of the first lemmas, also following Frege [37]

lem1 : [x : A] her (R+ x)
= [x y : A][h1 : R+ x y][z : A][h2 : R y z]

[P : A→ type][h3 : her P ][h4 : [u : A]R x u→ P u] h3 y (h1 P h3 h4) z h2
lem2 : [x y z : A] R+ x y → R+ y z → R+ x z

= [x y z : A][h1 : R+ x y][h2 : R+ y z] h2 (R+ x) (lem1 x) (lem1 x y h1)

To have a notation for proofs can make explicit some interesting phenomena: for instance, the proof
of lem2 uses twice lem1 but in different contexts, and the proof of lem1 uses twice the hypothesis h3. One
similar application, appearing already in Frege [37] is to record how many times a Lemma is referred to
in later proofs, giving hints of what may be key facts in some mathematical developments. One other
possibility, which has not really been exploited yet, is that it is now possible to instantiate abstract proofs
on some concrete arguments, using the β-reduction mechanism of λ-calculus. These instances may then
be simplified further, and this could be helpful in order to understand better, or to “run”, a given proof.
F. Pfenning [84] had yet another suggestion of using this notation to find possible generalizations of
proofs and concepts.

One important difference with the formalisation of Frege was, once again, the treatment of equality.
As in AUTOMATH, we use here the combinatory logic notion of convertibility to represent definitions.
If one wants to reason internally about equality, one has to use what de Bruijn called “book equality”
which is a term of type A→ A→ type. Frege instead used book equality itself, introduced as a primitive,
in order to represent definitions.

When translating Frege’s proof using AUTOMATH notations, I really felt that these notations rep-
resented rather faithfully what is going on when one is trying to understand a proof12. In particular, to
express definition by convertibility seemed to be preferable in this respect than representing explicitly in
the proof term itself the process of unfolding definitions. Besides de Bruijn’s work, the importance of
the notion of definitional equality is emphasized by Gödel [46], Tait [99] and Martin-Löf [71].

3 Inductive Definitions and data types

Frege [37] explained how to encode inductive definitions such as the transitive closure of a relation
R : A→ A→ type, in higher-order logic. One other encoding of the transitive closure is the following

[x y : A][S : A→ A→ type]([a b : A]R a b→ S a b)→ trans A S → S x y

where trans = [A : type][S : A → A → type][a b c : A] S a b → S b c → S a c. This expresses that the
transitive closure of R is the intersection of all transitive relations containing R.

Similarly the relation of equality can be represented alternatively as the intersection of all reflexive
relations

Eq = [A : type][x y : A][S : A→ A→ type] ([z : A] S z z)→ S x y

instead of
eq = [A : type][x y : A][P : A→ type] P x→ P y

and one can show that equivalence between eq A x y and Eq A x y.
Another example of inductive definition [21] was used in an encoding of the proof of Newman’s Lemma

by G. Huet [56] which was based on the notion of Noetherian relation. This notion is represented by
expressing the principle of Noetherian induction

[P : A→ type] ([x : A] ([y : A] R x y → P y)→ P x)→ [x : A] P x

12As shown independently by S. Berardi [8] and H. Geuvers [40] the natural embedding of higher logic in this calculus is
not conservative; this issue is however solved by introducing further universes.
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We obtain the predicate of being accessible for the relation R [79] simply by shifting the abstraction
[x : A]

[x : A][P : A→ type] ([x : A] ([y : A] R x y → P y)→ P x)→ P x

Intuitively, an element x is accessible exactly when there is no infinite sequences R x x1, R x1 x2, . . .
starting from x.

One systematic study of inductive definitions represented in this system was carried out in [83]. One
quite remarkable example there was the encoding of the system F2 in F3, which is a good illustration of
the use of the correspondance between logical and functional system. One represents a predicate P on
the sort type with constructors of types

[A : type] A→ P A
[A : type][B : type] (A→ P B)→ P (A→ B)
[A : type][B : type] P (A→ B)→ P A→ P B
[A : type][C : type→ type] ([A : type] P (C A))→ P ([A : type] C A)
[A : type][C : type→ type] P ([A : type] C A)→ [A : type] P (C A)

This predicate P : type→ type can also be read as a family of types, and it represents an encoding of
F2 in F3.

Such encoding of data types can also be interesting in an univalent setting as shown in the work13

[5]. For instance the circle is described as

[A : type][a : A] a =A a→ A

where a0 =A a1 is a primitive equality type on A. Another example, not mentionned in [5], is the
following representation of the type of integers

[A : type] A→ (A ' A)→ A

where A ' B is the type of equivalences between two types. (Intuitively the only generic way to produce
an element of A starting from a : A and f : A ' A is to iterate the application f or the inverse of f on
a.)

As explained in a letter from G. Plotkin to J. C. Reynolds, commenting on [90] and which became
the paper [91], the general pattern for representing inductive types is to use

A = [X : type] (T X → X)→ X

as a “weak” initial algebra for an operation T : type→ type.
As soon as the operation T is monotone, i.e. we have a term mon of type

[X Y : type] (X → Y )→ (T X → T Y )

we can build an element intro of type T A→ A

[u : T A][X : type][v : T X → X] v (mon ([a : A] a X v) u)

We can also build, for any T -algebra α : T X → X a map iα : A→ X by iα = [x : A]x X α.
Let us define g ◦ f as [x : X]g (f x) for f : X → Y and g : Y → Z. If we have two T -algebras

α : T X → X and β : T Y → Y , we can say that a map f : X → Y is a judgemental T -morphism if f ◦α
and β ◦ (T f) are convertible. One can then check that the map iα is a judgemental T -morphism from
intro to α.

Using mon again, we get an element T intro of type T (T A) → T A and so a function of type
match : A→ T A, which is a judgemental T -morphism from intro to T intro, if T is such that T (g ◦ f)
and (T g) ◦ (T f) are always convertible. These are some steps in Lambek’s Theorem [61] for building
the initial algebra of an endofunctor, and we think that these notations are well adapted to express what
is going on.

13A model of the present type system extended with univalence for type is described in [101].
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As discovered by G. Wraith [109], such an encoding also works for coinductive definitions. The “weak”
final coalgebra for T can be encoded as ∃X:typeX ∧ (X → T X) where ∃X:typeP (X) denotes

[Y : type] ([X : type] P (X)→ Y )→ Y

One could use existential type, such as ∃X:typeP (X), for representing abstract data types [77].

One could also form types such as

[X : type] ((X → X)→ X)→ X

which can be thought of as a type of de Bruijn indices, or the type

[X : type] ((X → X)→ X)→ (X → X → X)→ X

which represents a type of syntax for pure λ-terms [29].

4 Consistency and Paradoxes

Is the calculus consistent? If we look at it as a logical system, this amounts to the question whether or
not we can find a proof of ⊥= [X : type]X.

This is a direct consequence of normalisation and subject reduction 14, since it is clear that there is
no term of type ⊥ in normal form. The normalisation proof is quite subtle [21, 103]. As explained by
Girard [43], normalisation implies consistency of higher order arithmetic.

I found later [22] that there should be a finitary proof of consistency, by interpreting type by the
finite set {0, 1}, with a truth-table interpretation of types/propositions. This is however not completely
trivial, and it involves a non standard encoding of functions in set theory described later in [1] (see also
[75]).

Consistency was however a little surprising at first since the calculus was very close to Martin-Löf
system with type : type [66] which was shown to be inconsistent by Girard [44]. This paradox involved
the collection of all well-ordered relations which we can define using the encoding

∃X:typeP (X) = [Y : type] ([X : type] P (X)→ Y )→ Y

Looking at this argument [44], it was clear [21] that one could reproduce this paradox if we could encode
the two projections

π1 : [z : ∃X:typeP (X)] type π2 : [z : ∃X:typeP (X)] P (π1 z)

So a corollary of the consistency proof was that it was not possible to have such encoding. Consistency
of the present calculus is closely connected to the fact that we cannot encode “strong” sums, following
W. Howard’s terminology [53]15. This can also be seen as an indirect justification of the impredicative
representation of abstract data types [77].

We still can define the introduction rule

i : [X : type] P (X)→ ∃X:typeP (X) = [X : type][h : P (X)][Y : type][h1 : [X : type]P (X)→ Y ] h1 X h

Girard was actually not using the two projections but the following “key” remark instead: if S =
∃X:typeP (X), thought of as a type of “structures” (in his case, well-ordering), and if we have a proof of

eq S (i X1 p1) (i X2 p2)

where eq is Leibnitz’ equality, then the two structures X1, p1 and X2, p2 are isomorphic16. It is inter-
esting that this remark, that equality of structures implies isomorphism, is a crucial component in the
formulation of the axiom of univalence [105].

14If M : A and M reduces to M ′ by a sequence of β-reduction then M ′ : A.
15A strong sum Σx:AB is a type theoretic representation of existential quantification where we have access to the two

projections π1 z : A and π2 z : B (π1 z) for z : Σx:AB.
16One needs type : type for building Q1 : S → type such that Q1 (i X p) expresses that X1, p1 and X, p are isomorphic.
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4.1 Girard’s Paradox

Another surprising feature of the paradox discovered by Girard for the type : type system was that
Martin-Löf had previously found a formally correct proof of normalisation for this system [66]. How was
this possible?

One application of Girard’s elegant normalisation proof for system F [43] was a solution of Takeuti’s
conjecture [100]. These works were direct descendants of the debate between Russell and Poincaré [93, 85]
about the status of impredicativity. Takeuti’s conjecture expressed cut-elimination for a sequent calculus
formulation of higher-order logic. This is a quite surprising conjecture, since cut-elimination proofs are
usually done by induction on the cut formula, but, with impredicativity, such induction is not possible.
For instance, the polymorphic identity of type T = [X : type] X → X can itself be applied to a more
complex type than its own type, e.g. T → T . This “circularity” illustrates further the special status of
impredicative definitions. Also, normalisation of impredicative system F , or cut-elimination of Takeuti’s
system, implies consistency of the strong system of second-order arithmetic [43]. Girard’s normalisation
proof and design of system F were direct motivations for the formulation of a type system with type : type
by Martin-Löf, and its normalisation proof [66].

Girard found his paradox not by looking directly at a contradiction in a system with type : type,
but by looking instead at a “logical” extension of system F [45]. In the same way that higher-order
logic, as formulated by Church [16], extends simple type theory by a type of propositions, constants for
connectives and quantifiers, and some logical rules, it is quite natural to look for a similar extension of
system F , adding a type of propositions, and this was the calculus Girard was considering.

With the present notation, this amounts to add a new sort prop : type. Girard added then the
following quantifications

1. [X : type]B : prop if B : prop for X : type

2. [x : A]B : prop if A : type and B : prop for x : A

3. A→ B : prop if A : prop and B : prop

The resulting system was called System U . One might expect this system to be inconsistent, since, as we
have seen, system F has no set theoretic semantics17. Girard defined then what he called System U−,
the system obtained by leaving the first quantification clause. He wrote that this system was “maybe
consistent”. I found out [25] that this was not the case: we get a contradiction already in System U−

using only the two last clauses, looking at another paradox. I will now try to describe this result in more
details.

This other paradox was a direct translation in this formal system of Reynolds’ Theorem [90] that
there is no set theoretic model of system F . This was using the type

A : type = [X : type] (T X → X)→ X

for T X = (X → prop)→ prop.
This a priori defines only a weak initial algebra. However, following the reasoning in [90], and

essentially18 Bishop’s idea of interpreting a set as a type with an equivalence relation [10], one can define
an equivalence relation E on A such that the “set” A,E becomes isomorphic to the set T A, T E where
T E is the equivalence relation on T A induced from E by the technique of logical relations [25]. We
introduce

rel : type→ type = [X : type] X → X → prop (≡) : rel prop = [p q : prop] (p→ q) ∧ (q → p)

and we can define pow : [X : type] rel X → rel (Pow X) by

pow = [X : type][E : rel X][P0 P1 : Pow X][x0 x1 : X] E x0 x1 → (P0 x1) ≡ (P1 x1)

and T E is defined to be pow (Pow A) (pow A E).

17Since one can directly translate System U in the system with type : type by defining prop = type, this implies that
type : type is inconsistent as well.

18Technically, one has to work with partial equivalence relations, going back to ideas from Gandy’s PhD thesis [39].
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Pow : type→ type = [X : type]X → prop
T : type→ type = [X : type]Pow (Pow X)
A : type = [X : type](T X → X)→ X
intro : T A→ A = [t : T A][X : type][f : T X → X]f ([g : Pow X]t ([z : A]g (z X f)))
match : A→ T A = [z : A]z (T A) ([t : T (T A)][g : Pow A]t ([x : T A]g (intro x)))
δ : A→ A = [z : A]intro (match z)
P0 : T A = [p : Pow A][z : A]p z → ¬(match z p)
p0 : Pow A = [z : A][p : Pow A]p (δ z)→ ¬(match z p)
x0 : A = intro P0

lem1 : p0 x0 = [p : Pow A][h : p (δ x0)][h1 : P0 ([z : A]p (δ z))]h1 x0 h ([z : A]h1 (δ z))
lem2 : P0 p0 = [z : A][h : p0 z]h p0 ([p : Pow A]h ([z1 : A]p (δ z1))
loop : ⊥ = lem2 x0 lem1 ([z : A]lem2 (δ z))

Figure 1: A variation of Reynolds and Hurkens Paradox

One can then translate the set theoretic result that a set cannot be in bijection with the power set
of its power set, and get a proof of ⊥ [25].

In [57], A. Hurkens presents a short variation of this paradox, using

(1) [X : type] (T X → X)→ T X

instead of

(2) [X : type] (T X → X)→ X

As it turned out, his argument can be used almost as such using the definition (2) as in [25] instead of
(1). This is presented19 in Figure 1.

Looking at the formal system in which we express this paradox, one finds that this never uses the
first quantification clause, and this thus answers Girard’s question: already System U− is inconsistent.
I only realized that this was the case however by using the notion of Pure Type System introduced by
H. Barendregt [6, 95], following S. Berardi PhD thesis [8]. With this notation, we can describe Systems
U and U− in the following way. Both have 3 sorts: prop, type and type1, and the same typing relations
prop : type and type : type1. They differ for quantifications20:

System U : (prop, prop), (type, prop), (type, type), (type1, type), (type1, prop)
System U−: (prop, prop), (type, prop), (type, type), (type1, type)

When expressing Reynolds’ argument type-theoretically, we never need the rule (type1, prop), i.e.
we only use System U−. This is a further illustration of the importance of introducing explicit names
and notations for notions: the notion of Pure Type System provides a good explicit way to express the
quantification structure of a formal system. Once we have named a notion (in this case use of the rule
(type1, prop)) we can more easily notice if this notion appears or not.

As explain in [6], we can describe higher-order logic as the system with the same sorts and typing
relations as for System U but with the rules (prop, prop), (type, prop), (type, type).

In [22], I analysed another paradox, closer to Girard’s original formulation. It was expressed in System
U , but, as was found out later by H. Herbelin and A. Miquel, a slight variation of this paradox is actually
expressible in System U−. I implemented this paradox and looked at its computational behavior [22].
At about the same time, A. Meyer and M. Reinholdt [74], suggested a clever use of Girard’s paradox for
expressing a fixed-point combinator. Using my implementation, I could check that, contrary to what [74]
was hinting, the term representing this paradox was not reducing to itself21. As it turned out, and as
was advocated by A. Meyer, it was however possible to use this paradox and produce a family of looping
combinators instead, i.e. a term which has the same Böhm tree as one of a fixed-point combinator
[54, 28]. A corollary, following [74], is that type-checking is undecidable for type : type.

19If we perform linear head reduction on loop, the head variable eventually has a periodic behavior, oscillating between
lem1 and lem3 with growing types in some abstractions.

20E.g. to have the rule (type, prop) means that, if A : type, then we have [x : A]B : prop if B : prop for x : A.
21Intuitively, if one sees head-reduction as a process of understanding a proof, the paradox was becoming more and more

complex while trying to understand it!
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4.2 Parametricity and Normalisation Proofs

How was it possible for Martin-Löf to have a normalisation proof for type : type, which implies consistency,
while this system is contradictory? The answer is simple: Martin-Löf was formulating his proof using as
meta-language a system which itself had a type of all types.

This is a general phenomenon. One can argue that the most elegant way to prove normalisation for
type systems following Tait/Girard computability methods is to use as meta-language a type system
which is as close as possible to the object system itself. (This applies as well to the predicative version of
type theory [68, 26].) This also points out to a “weakness” of such consistency proof: to be conclusive, it
has to rely on the consistency of the meta-language22. An inconsistency, on the other hand, is something
concrete and witnessed by a term of type ⊥= [X : type]X.

These proofs of normalisation are also very close formally to proofs of parametricity. The work [9]
presents an elegant formulation of parametricity, as a purely internal syntactic translation of the system
into itself. For instance the fact that the polymorphic identity function

id : [X : type]X → X = [X : type][x : X]x

is parametric is expressed by a term of type

[X : type][X ′ : X → type][x : X]X ′ x→ X ′ (id X x)

which is
id′ = [X : type][X ′ : X → type][x : X][x′ : X ′ x]x′.

This can be seen as a syntactical counterpart of the ingenious notion of “reducibility candidate”, intro-
duced by Girard to prove normalisation of system F [43]. In general, a term M is transformed to a term
M ′ and we have M ′ : A′ M if M : A.

What is remarkable is that such a transformation works as well for type : type, defining type′ : type→
type to be type′ = [X : type]X → type. This observation can be seen as underlying Martin-Löf’s (formally
correct) normalisation proof for type : type.

The paper [26], simplifying and generalizing in some way [68], presents a normalisation proof for
a predicative version of type theory, similar to this parametricity interpretation, which works for a
cumulative hierarchy of universes with β, η-conversion.

5 Consistency and expressiveness

The work on paradoxes has shown, roughly speaking, that we cannot have a consistent system with
two levels of impredicative universes. Instead, as suggested in [22], we should extend the system with
a hierarchy of predicative universes type1 : type2 : . . . with quantifications [x : A]B : typen if A : typen
and B : typen for x : A. It is then natural to rename the base impredicative sort as prop. We have
[x : A]B : prop if B : prop for x : A, without any condition on A. This is a quite natural extension of
higher-order logic.

A remark is that one can prove the axiom of infinity in such a system. Indeed, if we redefine

nat : type2 = [X : type1] X → (X → X)→ X

we have zero : nat = [X : type1][x : X][f : X → X] x and

succ : nat→ nat = [n : nat][X : type1][x : X][f : X → X] f (n X x f).

These definitions are similar to the original definition by Alonzo Church [15], also used in [66].
We can then build terms of type [n : nat]¬ (eq nat zero (succ n)) and

[n m : nat] eq nat (succ n) (succ m)→ eq nat n m

which provide a formulation of the axiom of infinity. This is somewhat surprising since, for instance,
Russell thought that to have a purely logical proof of this axiom of infinity should be impossible [93].

22This should be connected to the distinction between metamathematical and simple minded consistency proofs in [72].
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A natural question is how this system compares with set theory? I conjectured [22] that it should
be strictly stronger than Zermelo23 set theory. This question was solved in an elegant way by A. Miquel
[75, 76].

The idea is first to encode pointed graphs as binary relations. Since, as we have seen, co-induction
is definable in an impredicative system, it is possible to define bissimulation of pointed graphs. A set
can then be encoded as a pointed graph up to bissimulation. We obtain in this way a model of non
well-founded set theory, and one can check [75] that all the axioms of Zermelo set theory are satisfied.
Using [28], a double negation interpretation gives an interpretation of set theory with classical logic [75].
This is refined in [76], which shows that the system with only prop, type1, type2 is equiconsistent with
Zermelo’s set theory.

6 Intensional Expressiveness and Inductive Definitions

While the class of numerical functions representable in system F is quite large, since it coincides with the
class of functions provably total in second-order arithmetic, one can further ask if such representations
are good in an “intensional” way. The representation of the predecessor function, for instance, though
possible, does not look so natural. This study was initiated by J.-L. Krivine [60], who gave an example
of a quite natural algorithm for comparing two natural numbers that does not have a good intensional
representation in system F .

One other problem is that, if we define nat = [X : type] X → (X → X)→ X, then it is not possible
to prove the induction principle24

[P : N → type] P 0→ ([x : N ] P x→ P (S x))→ [n : N ] P n

One general solution [21] was to restrict oneself to natural numbers satisfying the following predicate,
simply obtained by shifting the abstraction n : N

C : N → type = [n : N ][P : N → type] P 0→ ([x : N ] P x→ P (S x))→ P n

by a technique similar to the internalisation of parametricity.
What was more problematic was that, even in this way, it was not possible25 to prove

[x : nat] C x→ ¬ (eq nat zero (succ x))

as shown by the “truth-table” model where we interpret type by {0, 1}.
H. Geuvers has even proved that we cannot find an encoding of natural numbers where induction

principle is provable [41].
Yet another problem was that, with this definition of natural numbers, it was not possible to have large

eliminations, e.g. to define a function f : nat→ type such that f zero = nat and f (succ n) = (f n)→ nat.
All these remarks suggested to extend the sytem by adding data types with computation rules as

primitives, like in Martin-Löf system [67, 68]. This extension was also motivated the work of Constable
and N. Mendler [20], that I reformulated without using a subtyping relation. This was carried out in26

[31]. It was then possible to further extend this system with a predicative hierarchy of universes27. We
then get a system weaker than Zermelo-Fraenkel, as shown by M. Rathjen [87].

23Using Vω·n as universes, we can give a model of this system in the system ZFC. The system ZF is stricly stronger than
Zermelo, extending it with the axiom of replacement, and ZFC extends ZF with the Axiom of Choice.

24The system Cedille [97] suggests another encoding than Church encoding of natural numbers where we have a nice
representation of primitive recursion. This alternative representation is also used in D. Fridlender’s work [38]. It is a curious
remark that for the data type ⊥= [A : type]A, it is possible to prove the induction principle [x :⊥]R x for R :⊥→ type.

25We saw above that such a proof is possible in an extension with predicative universes and a predicative encoding of
natural numbers.

26An example of a proof using inductive definitions in this paper was Wainer’s proof of Girard’s Theorem on functional
hierarchy [107], where I used an inductively definition relation instead of a relation defined by recursion as in [107].

27If we allow inductive definitions as primitives, Girard’s paradox becomes very simple, using the type U with a con-
structor of type

sup : [X : type](X → U) → U

since this type has an element sup U ([x : U ]x) which is both well-founded and has itself has a subtree [24].
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To extend the system with primitive data types and computation rules is definitely less elegant than
trying to derive them from more primitive notions, and it is not yet clear how to represent and implement
this extension without introducing some arbitrary syntactical conditions. The work [23] was motivated by
these questions, trying to see type theory as a total fragment of a programming language with dependent
type and definitions by pattern-matching. This stressed further the close connections between notions
used in functional programming and in proof theory, for instance:

-constructors of a data type correspond to introduction rules,
-proofs by induction correspond to case analysis and recursive definitions of functions,
-derived rules are represented as (maybe recursively) defined constants,
-where expressions correspond to lemmas local to a proof
-pattern-matching corresponds to Lorenzen’s inversion principle [65].

We refer to J. Cockx’s paper [18] for recent work in this direction.

Conclusion

This work can be seen as a synthesis of the work on AUTOMATH and Martin-Löf type theory. From
AUTOMATH, it uses the notion of context and the idea of reducing proof-checking to type-checking.
From Martin-Löf system, we use the idea of having data types as primitive, and the correspondance
between the notion of constructors and introduction rules. Thanks to G. Huet, these ideas could be
connected to the active development of functional programming in the 80s, and this approach was the
basis of several implementations of proof systems that have been quite successful28 and have been tested
on non trivial examples, both in formalisation of mathematics [47, 48, 13] and in checking correctness
of software [64, 12]. It was also relevant for initiating important works on the semantics of type theory,
such as [96, 35, 1], and more recently [82, 98].

One real surprise was that this language, with its uniform treatment of propositions and types,
which we found so well suited for proofs in higher-order logic, has turned out to be quite convenient for
expressing concepts from homotopy theory and higher category theory, such as the axiom of univalence
[104, 105].

28It should be emphasized that the main component in these successes has been an enduring impressive collaborative
work on software development of type theoretic systems.
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Appendix

Γ ::= () | Γ[x : A] M,A ::= type | x | [x : A]M | M M C ::= type | [x : A]C

() ` type

Γ ` C
Γ[x : C] ` type

Γ ` A : type

Γ[x : A] ` type

Γ[x : A] ` B : type

Γ ` [x : A]B : type

Γ[x : A] ` C
Γ ` [x : A]C

Γ ` type

Γ ` x : A
(x : A in Γ)

Γ[x : A] `M : B

Γ ` [x : A]M : [x : A]B

Γ ` N : [x : A]B Γ `M : A

Γ ` N M : B(M/x)

Terms are considered up to β-conversions. For study of systems with η-conversions see [42, 7, 26, 27].
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Pitts, and A. Poigné, editors, Category Theory and Computer Science, pages 118–127, Berlin,
Heidelberg, 1989. Springer Berlin Heidelberg.

21


