
Cubical stacks

Introduction

The goal of this note is to explore an ∞-stack model of type theory based on cubical sets.
The model will be best described in a purely syntactical way as a method to build internal models

of cubical type theory. We start with a (maybe non fibrant) family of cubical sets Cov, F indexed over a
type Cov (which corresponds to the collection of basic coverings of the space). We can associate to this a
family of (judgemental) monads on fibrant types Dc(A) = AF (c) with a unit map mc A : A→ Dc(A) (the
constant map). These maps Dc and mc satisfy some remarkable properties: Dc is a strict/judgmental
monad and mc A a judgmental natural transformation A → Dc(A). The family Cov, F is called a
〈〈covering family 〉〉 if, and only if, the following property is satisfied: each monad Dc is idempotent, i.e.
each map mc (Dc(A)) : Dc(A)→ D2

c (A) is path equal to Dc(mc A)1.
In this case, we see Dc(A) as an abstract formulation of the type of descent data for the covering c,

and we define the property of being a stack for A as the type (which is fibrant and a proposition)

isStack A = Π(c : Cov)isEquiv (mc A)

We define then a cubical stack to be a (fibrant) type with a proof that it is a stack.
A simple result which follows from the idempotency assumption is that, for being a stack, it is enough

for each map mc to have a left inverse.
Since there is such a left inverse for the type Σ(X : U)isStackX, the type of stacks is itself a stack.

We also show that being a stack is preserved by dependent products and sums, and by the path and
glueing operations.

It follows that cubical stacks form a model of cubical type theory, and this model can be described
as an internal model.

The first part of this note follows this purely syntactical approach. We then explain how to build a
concrete example of such family Cov, F which is enough to get a counter-model to countable choice.

1 Abstract descent data

Given a family Cov, F and c in Cov, the type Dc(A) = AF (c) is the type of descent data associated to
the 〈〈covering 〉〉 c. It is fibrant, with a composition (which does not use any composition for F (c))

(compi Dc(A) [ψ 7→ u] u0) x = compi A [ψ 7→ u x] (u0 x)

We have a canonical map mc : A→ Dc(A) defined by mc A a = λ(x : F (c))a. The map Dc defines a
strict/judgemental monad. We say that A is a c-stack if, and only if, mc is an equivalence.

We define Cov, F to be a covering family if, and only if, each Dc is idempotent, i.e. Dc(mc) and
mc : Dc(A)→ D2

c (A) are path equal. In this case, we have the following result, which will be fundamental
for showing that the universe of stacks is a stack.

Theorem 1.1 If mc : A→ Dc(A) has a left inverse l then A is a c-stack.

1If there is no ambiguity we omit the A in mc A. One simple example of this situation is when Cov has only one
inhabitant and F (c) is the interval I. The other examples are obtained working in a presheaf extension of the cubical set
model.
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Proof. It is enough to prove that l is also a right inverse. But we have l ◦ mc path equal to 1 hence
Dc(l ◦m) = Dc(l) ◦ Dc(m) is path equal to 1. Since Dc is idempotent, we get that Dc(l) ◦m is path
equal to the identity, but Dc(l) ◦m is strictly equal to m ◦ l, hence the result.

For any c, c′ in Cov the type Dc(Dc′)(A) and Dc′(Dc(A)) are (strictly) isomorphic. Using this
isomorphism, we can prove.

Theorem 1.2 If A is a c′-stack then so is Dc(A).

2 Internal description of the stack model

We define then the type isStack A to be Π(c : Cov)isEquiv mc A. This is a proposition which expresses
that A is a stack.

We define Lc : (Dc U) → U such that we have Lc (mc A) = Dc A as a judgmental equality2. An
element of Dc U is a family A : F (c)→ U and Lc A is simply Π F (c) A, which has a composition

(compi (Lc A) [ψ 7→ u] u0) x = compi (A x) [ψ 7→ u x] (u0 x)

2.1 Path type

We have judgemental isomorphisms between Dc (Path A a b) and Path (Dc A) (mc a) (mc b), and the
canonical map

Path A a b → Dc (Path A a b)

corresponds to mc via this isomorphism.

Proposition 2.1 If A is a stack and a, b : A then Path A a b is a stack.

2.2 Product type

If A : U and B : A→ U, we have judgmental isomorphisms between Dc (Π A B) and Π A (Dc ◦B) and
the canonical map

Π A B → Π A (Dc ◦B) w 7−→ λ(a : A)mc (w a)

corresponds to mc via this isomorphism.

Proposition 2.2 If we have Π(a : A)isStack (B a) then Π A B is a stack.

2.3 Sum type

We have judgmental isomorphisms between Dc (Σ A B) and Σ (Dc A) (Lc ◦ (Dc B)) and the canonical
map

Σ A B → Σ (Dc A) (Lc ◦ (Dc B)) (a, b) 7−→ (mc a,mc b)

corresponds to mc via this isomorphism.

Proposition 2.3 If A is a stack and we have Π(a : A)isStack (B a) then Σ A B is a stack.

2.4 Glueing type

Let G be Glue [ψ 7→ (T,w)] A. There is a judgmental isomorphism between Dc G and Glue [ψ 7→
(Dc(T ), Dc(w))] Dc(A) and the canonical map

G −→ Glue [ψ 7→ (Dc(T ), Dc(w))] Dc(A)

corresponds to mc via this isomorphism.

Proposition 2.4 We can build ` glue (ψ 7→ p) q : isStack (Glue [ψ 7→ (T,w)] A) given ψ ` p : isStack T
and ` q : isStackA so that glue [1 7→ p] q = p : isStack T .

2To simplify the notations, we don’t write explicitly the index of the universes.
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2.5 Universe

So far, we did not use the idempotency hypothesis, but this will be used for the universe.
If A is a stack, we have path equality between Lc (mc A) and A by univalence. It then follows that

Lc is a left inverse of mc on types that are stacks. We can thus state, by Theorem 1.1.

Theorem 2.5 Σ(X : U)isStack X is a stack.

2.6 Internal model

We can now define an internal translation which provides a new model of cubical type theory (and hence
of univalence). This is a purely syntactical process. We define, where pf denotes the proof that the first
component is a stack3 (for a type A, [A].π2 will be a proof that [[A]] is a stack)

[x] = x
[M N ] = [M ] [N ]
[λ(x : A) M ] = λ(x : [[A]])[M ]
[M.π1] = [M ].π1
[M.π2] = [M ].π2
[M,N ] = [M ], [N ]
[〈i〉M ] = 〈i〉[M ]
[M r] = [M ] r
[glue (ψ 7→M) N ] = glue (ψ 7→ [M ]) [N ]

[Π(x : A) B] = (Π(x : [[A]])[[B]], pf)
[Σ(x : A) B] = (Σ(x : [[A]])[[B]], pf)
[Path A M N ] = (Path [[A]] [M ] [N ], pf)
[Glue (ψ 7→ (T,w)) A] = (Glue (ψ 7→ ([[T ]], [w])) [[A]], pf)
[U] = (Σ(X : U)isStack X, pf)

[[A]] = [A].π1

We then have that if x1 : A1, . . . , xn : An `I M : A then x1 : [[A1]], . . . , xn : [[An]] `I [M ] : [[A]].

3 Examples of covering family

The first example will be to take Cov to be the unit type and F (0) to be I. Using this, we get a proof
that the constant map A→ AI is an equivalence for each definable type A, which is defined by induction
on A. (This proof does not proceed by choosing a particular end point of the interval.)

For the second class of examples, we fix a topological space, given by a meet semi-lattice of basic
open and a notion of covering. We can then consider the model of cubical type theory where a type is
interpreted as a presheaf Γ(I|V ) indexed by a finite set I of names/directions (used to represent cubes)
and V is a basic open. The maps are of the form f : J |W → I|V with f : J → I and W ⊆ V . We define
composition structure so that it commutes not only with name substitution (〈〈uniformity 〉〉 condition),
but also to open restriction.

To simplify, we assume only coverings of the form V = V0, V1 with V01 = V0 ∧ V1 non empty. We
define Cov(I|V ) to be exactly the set of covering of V . If V0, V1 is a covering of V and W ⊆ V , we take
W ∩V0,W ∩V1 to be a covering of W . (In the concrete example, we always have that W ∩V0 and W ∩V1
are non empty.)

For c = V0, V1 in Cov(V ), we associate the following presheaf F (c). It is defined in the following way
for W ⊆ V

1. if W * V0 and W * V1 we have F (c)(I|W ) = ∅
3For the definition to be non ambiguous we need the proof that [[Glue (ψ 7→ (T,w)] A]] is a stack to be such that it

strictly equal to [T ].π2 if ψ = 1, cf. Proposition 2.4.
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2. if W ⊆ V0 and W * V01 we have F (c)(I|W ) = {0}

3. if W ⊆ V1 and W * V01 we have F (c)(I|W ) = {1}

4. if W ⊆ V01 we define F (c)(I|W ) = I(I) = dM(I)

The fact that this defines a family of idempotent monads follow from the fact that can build a proof
of the type Π(x y : F (c))Path F (c) x y4.

For this, it is enough to define a de Morgan formula θ(k, i, j) such that

θ(0, i, j) = i θ(1, i, j) = j θ(k, 1, 1) = 1 θ(k, 0, 0) = 0

We can take for instance θ(k, i, j) = ((1− k) ∧ i) ∨ (k ∧ j) ∨ (i ∧ j).
Given this formula, and r, s in F (c)(I|W ) we can define a path connecting r and s as 〈k〉θ(k, r, s),

which will be uniform w.r.t. both I and W .

We explain in this example why Dc(A) can be seen as a 〈〈descent data 〉〉. Let A be a presheaf.
An element of Dc(A)(I|W ) for W ⊆ V will be given by a0, a1, a01 with a0 in A(I|W ∩ V0) and a1 in
A(I|W ∩ V1) and a01 in A(I, i|W ∩ V01) (with i fresh for I) connecting a0|W ∩ V01 to a1|W ∩ V01.

4 An example of a space

For being concrete, we present an example which is enough to get independence of countable choice
from univalence. This describes X = [0, 1) (unit interval of real numbers r such that 0 6 r < 1) with
the following formal presentation, where the space is given by a decidable meet semilattice of basic
open. It is the semilattice generated by Xn, representing [0, 1/2n), and Rn, representing (0, 1/2n), and
Rn+1 = Xn+1 ∧Rn. The basic covering is that Xn is covered by Xn+1, Rn.

Stacks over this space form a counter-example to countable choice 5.
A covering of a basic open V is given by an indexed set (in this case) V0, V1 of subopen. We have the

following situations

1. V = Xn and (V0, V1) = (Xn+1, Rn) (principal case)

2. V = Xn+1 and (V0, V1) = (Xn+1, Rn+1)

3. V = Rn+1 and (V0, V1) = (Rn+1, Rn+1)

5 Data types and dependent elimination

In this concrete example, the constant presheaf N has a stack structure, using the fact that all covering
are connected: if we have compatible local data n0 on V0 and n1 on V1 we should have n0 = n1 on V01
and, since V01 is non trivial, this implies n0 = n1, which is the unique way to glue n0 and n1. Because
of this, we don’t have any problem in interpreting dependent elimination in the stack model in this case.

This corresponds to the following hypothesis on the family Cov, F : for all c in Cov, the map N →
Dc(N) is an equivalence.

6 Generalization to disjoint coverings

We can also consider disjoint covering, e.g. for spaces corresponding to Boolean algebra where the
constant presheaf N is not a stack. If c = V1, . . . , Vn is a partition of V , we have F (c)2 strictly isomorphic
to F (c) and we can define Dc(A) and mc in such a way that A = Dc(A) on Vi and mc a = a on Vi with
strict equality. In order to get dependent elimination with the required judgemental equality, we require
to have the inverse l of mc such that mc ◦ l : Dc(A)→ Dc(A) is strictly the identity map (which we can
ensure by induction on the type).

4Note that, since F (c) is not fibrant, this cannot be expressed as the fact that F (c) is a proposition. Also, this condition
on F (c) is sufficient but not necessary to get a covering family. It will be enough instead to only have a zigzag of paths
between any two elements of F (c).

5We can indeed define A1(n) to be 1 on R0, while A0(n) if 1 on Xn. We have A0(n)∨A1(n) for all n, but A0(n)+A1(n)
is only 1 on Xl for n < l.
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