
Constructive sheaf models of type theory

Introduction

The goal of this paper is to present a general way to build new models of univalent type theory which
can be seen as a generalization of sheaf models of intuitionistic logic.

We present first an abstract version of the notion of compatible descent data, as a special kind of
(pseudo)endomorphism on a model of type theory. We explain in what way this is used to build a new
model of univalent type theory. (This can be seen as a constructive version of some results in [7].)

We provide then two main examples. The first one is using a strict notion of descent data. This can
be used to show the consistency of univalent type theory with the Fan Theorem, or with the negation of
Markov’s Principle. The second one is with a notion of descent data up to path equality. This is used to
show the consistency of univalent type theory with the negation of countable choice.

The notion of non strict descent data is interesting even for the trivial site over a category: in this
case we show that equivalences in the resulting model coincide with pointwise equivalences.

1 Abstract notion of descent data

If B is a type over A we write πB : ΣAB → A the corresponding projection from the total space of B.

1.1 Lex morphism of models of type theory

We assume given a map of models: we have a strict functor D on types, and if B is a type over A we
have a type D̃(B) over D(A), and if b is a section of B then D̃(b) is a section of D̃(B). We require
D̃(Bσ) = D̃(B)D(σ) and D̃(bσ) = D̃(b)D(σ) if σ : A′ → A. There is then a canonical map from D(ΣAB)
to ΣD(A)D̃(B) and we require this map to be an isomorphism. (This notion of map of model is called
“weak morphism” in [3].)

Let IdA be the total space of the identity type over A×A. The commuting diagram

D(A)

��

// D(IdA)

��
IdD(A)

// D(A×A)

has a diagonal filler. We require this diagonal filler to be an equivalence.
It follows from this that D preserves (homotopy) commuting diagram, equivalences, and homotopy

pullbacks.

1.2 Example

If R is a given type, we define D(A) = AR and if B(a) family over A, we define D̃(B)(u) to be
Π(x : R)B(u x) for u : D(A). The canonical map D(ΣAB)→ ΣD(A)D̃(B) is then an isomorphism.

Since the canonical map
u =D(A) v → Π(x : R) u x =A v x

is an equivalence, this defines a lex morphism.
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1.3 Abstract notion of descent data

An abstract notion of descent data is a lex endomorphism D together with a strict natural transformation
ηA : A→ D(A) and a path equality between D(ηA) and ηD(A). The second condition should be expressed
more precisely as giving for each A an element εA : Π(a : D(A)) D(ηA) a =D2(A) ηD(A) a such that
app (D2σ) εA′ is path equal to εAD(σ) if σ : A′ → A.

We write isStack(A) the type (proposition) expressing that ηA is an equivalence.

Given ηA we can know relativize the operation D for types over A: we define DA(B) to be D̃(B)ηA if
B is a type over A. We then have a canonical map ηAB : ΣAB → DA(B) over A. We define isStackA(B)
to be the type expressing that this map is an equivalence.

If σ : A′ → A we have the strict equalities DA(B)σ = DA′
(Bσ) and isStackA(B)σ = isStackA

′
(Bσ).

Theorem 1.1 The proposition isStackA(B) is equivalent to the proposition expressing that the strict
commuting diagram

T

πB

��

ηT // D(T )

D(πB)

��
A

ηA
// D(A)

where T = ΣAB, is a homotopy pullback diagram.

1.4 Example

This is a continuation of the example 1.2. If we define ηA : A→ D(A) by ηA a = λ(x : A)a then we have
D(σ)ηA = ηBσ strictly for any map σ : A→ B.

We now assume that R is a proposition. The two maps D(ηA) and ηD(A) are path equals, and D
defines a notion of descent data.

1.5 Closure properties

Proposition 1.2 If A is a stack and B a family of stacks over A then ΣAB is a stack.

Proposition 1.3 If A is a stack then IdA is a family of stacks over A×A.

So far we have not used the second condition on D.

Proposition 1.4 For the map ηA : A → D(A) to be an equivalence, it is enough to have a patch
function pA : D(A)→ A such that pAηA is path equal to the identity of A.

Proof. The condition implies that D(pA)D(ηA) is path equal to the identity. This is path equal to
D(pA)ηD(A) which is strictly equal to ηApA. So, we have that pA is both left and right path inverse to
ηA and hence that ηA is an equivalence.

Proposition 1.5 If B is a family of stacks over A then T = Π(x : A)B is a stack.

Proof. We have a family of patch functions pB : D(B) → B. We can then define a patch function
pT : D(T ) → T by taking pT (u)(a) = pB(a)(D(ea)u) where ea : T → B(a) is the evaluation map
v 7−→ v a. If u = ηT v we have D(ea)u = ηB(a) ea(v) and hence pT (ηT v)(a) = pB(a)(ηB(a)(v a)) which is
path equal to v a as required.

Proposition 1.6 If B is a family of stacks over A then D̃(B) is a family of stacks over D(A).
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Proof. Let T be the type ΣAB. We have to prove that the following strictly commuting diagram

D(T )

D(πB)

��

ηD(T ) // D2(T )

D2(πB)

��
D(A)

ηD(A)

// D2(A)

is a homotopy pullback diagram. By the second condition on D, this is equivalent to the fact that the
strictly commuting diagram

D(T )

D(πB)

��

D(ηT )// D2(T )

D2(πB)

��
D(A)

D(ηA)
// D2(A)

is a homotopy pullback diagram. This is the case since D is lex and B is a family of stacks over A.

Corollary 1.7 The type Σ(X : U)isStack(El X) is a stack.

Proof. Let A be the type Σ(X : U)isStack(El X). We have a family of stacks B(X, p) = El X over
A. By the previous proposition D̃(B) is a family of small stacks over D(A). So we have defined a map
pA : D(A)→ A. Also D̃(B)ηA(X, p) = D(El X) which is equivalent to El X. Since U is univalent and
being a stack is a proposition, pA is a patch function for A.

1.6 Connections with the notion of modality

In general D may not be a modal operation in the sense of [8, 5, 6] since D(A) may not be a stack.
However, we can define the following type M(A) as a higher inductive type with constructors

inc : A→M(A)
patch : D(M(A))→M(A)
linv : Π(x : M(A)) patch(ηM(A)x) =M(A) x

The pair M, isStack define then a left exact modality in the sense of [8, 5, 6].

1.7 Model associated to a notion of descent data

We can now define an internal translation which provides a new model of univalent type theory, following
[5]. We take the same notion of context, but a type of the new model is now a type together with a proof
that this type is a stack.

In order to interpret the type of natural numbers with the desired computation rules, we need to use
the following higher inductive type

zero : N
succ : N → N
patch : D(N)→ N
linv : Π(x : N) patch(ηNx) =N x

The same idea applies to the interpretation of other inductive types such as the W type.

1.8 Generalization to a family of notions of descent data

If Cov is a given type, we generalize the notion of descent data by considering a lex morphism Dc(A) (c :
Cov) from the given model to the model of types over Cov with maps ηcA : A→ Dc(A). We define then
isStack(A) to be the proposition Π(c : Cov)isEquiv ηcA.
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2 Presheaf model of univalent type theory

We now assume given a small cartesian category B with an object I which has two distinct global points
0 and 1. We also assume that I has a structure of bounded distributive lattice (though we think that
our results still hold without this hypothesis and apply also to the cartesian cubical sets).

We write I, J,K, . . . the objects of B and X,Y, Z, . . . the objects of C. A sieve S on I is a set of
arrows of codomain I such that fg is in S whenever f : J → I is in S and g : K → J . If S is a sieve on
I and f : J → I we define a sieve Sf on J by taking the set of arrows g of codomain J such that fg is
in S. Furthermore Sf is decidable if S is decidable. We define in this way a presheaf Φ by taking ΦB(J)
to be the set of decidable sieves on J .

Let C be another small 1-category. We write X|I the objects of C ×B and f |g the morphisms of this
category where f is a map of C and g a map of B.

If we have r and s in IB(I) we define a sieve r = s on I by taking the set of maps f : J → I such
that rf = sf . We assume that this sieve is decidable.

It is then known, following [1, 4, 2] how to define a model of univalent type theory with higher order
inductive types, using for interval the presheaf IB represented by I and for cofibrations the maps classified
by ΦB.

We can also define an interval I on C × B by I(X|I) = IB(I) and we define Φ(X|I) to be the set of
decidable sieves on X|I (with associated restriction maps). We still get a model of univalent type theory
(and HITs) using the interval I and cofibrations Φ.

In this model, a context Γ is interpreted by a presheaf over C × B so a family of sets Γ(X|I) with
suitable restriction maps ρ 7→ ρ(f |g) with f : Y → X in C and g : J → I in B. We may simply write ρf
instead of ρ(f |1I) and ρg instead of ρ(1X |g).

A dependent type A over Γ is then given by a presheaf over the category of elements of Γ: for any
ρ in Γ(X|I) we have a set Aρ with suitable restriction maps Aρ → Aρ(f |g), u 7→ u(f |g) together with
a composition [1, 4] operation. We write Type(Γ) the collection of all types over Γ. The set Elem(Γ, A)
is then the set of sections: a family aρ in Aρ such that (aρ)(f |g) = a(ρ(f |g)) for any ρ in Γ(X|I) and
(f |g) map of codomain X|I.

We write Type0(Γ) the set of small types (such that each set Aρ is small). The presheaf Type0 is then
represented by a fibrant type U which is univalent [1].

3 Strict notion of descent data

3.1 Negation of Markov’s Principle

3.2 Model of the Fan Theorem

4 Descent data up to path equality

To any A is in Type(Γ) we can associate the type Cn(A) = AIn of n-cubes in A: we take Cn(A)ρ = Aρpn

where pn : J × In → J We will use the n+ 1 maps σk : In−1 → In given by

σk(~i, ik,~j) = (~i, ik, ik,~j)

for 0 < k < n and σ0~i = (0,~i) and σn~i = (~i, 1). Corresponding to these maps we have n + 1 maps
σk : Cn(A)→ Cn−1(A).

We will use the notation v = u(i1, . . . , in) for elements in Cn(A)ρ, where i1, . . . , in are purely formal
symbols. If for instance v = u(i1, i2, i3) we can then write u(i1, i1, i2) for σ1v.

We write α, β, . . . lists of composable arrows f1 : X2 → X1, f2 : X3 → X2, . . . , fn : Xn+1 → Xn.
If α = f1, . . . , fn then 〈α〉 denotes the composition f1 . . . fn : Xn+1 → X1.

An element u of D(A)(X|I) is given by a family of elements u(f, α) in A(Xn+1|I × In). This family
should satisfy the compatibility conditions

1. σ0u(f, f1, γ) = u(ff1, γ)
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2. σku(f, γ, fk, fk+1, γ
′) = u(f, γ, fkfk+1, γ

′) for 0 < k < n

3. σnu(f, γ, fn) = u(f, γ)fn

that we can also express as

1. u(f, f1, γ)(0,~i) = u(ff1, γ)(~i)

2. u(f, γ, fk, fk+1, γ
′)(~i, ik, ik,~i

′) = u(f, γ, fkfk+1, γ
′)(~i, ik,~i

′) for 0 < k < n

3. u(f, γ, fn)(~i, 1) = u(f, γ)(~i)fn

For instance, for n = 2 this means

σ0u(f, f1, f2) = u(ff1, f2), σ1u(f, f1, f2) = u(f, f1f2), σ2u(f, f1, f2) = u(f, f1)f2

If f : Y → X and g : J → I we define the restriction u(f |g) in D(A)(Y |J) by u(f |g)(f1, α) =
u(ff1, α)g.

We define a map ηA : A→ D(A) by (ηAa)(f, α) = a(f〈α〉|pn).

If B is a type over A, we define D̃(B) type over D(A). If ρ is in D(A)(X|I), then D̃(B)ρ is a set of
families v(f, α) in Bρ(f, α) satisfying the compatibiliy conditions.

Lemma 4.1 If B has a composition operation over A then so does D̃(B) over D(A).

Proof. Given ρ inD(A)(X|J×I) and ψ in Φ(X|J) and a family of elements uf |g of elements in D̃(B)ρ(f |g)

for (ψp∨δ0)(f |g) = 1 and such that uf |g(f
′|g′) = uff ′|gg′ we explain how to find an element v in D̃(B)ρδ1

such that v(f |g) = uf |δ1g if ψ(f |g) = 1.
To simplify the presentation we explain the case n = 3.
We have to describe v(f, f1, f2)(i, j) in Aρ(f, f1, f2)(i, j)δ1. We take it to be

cD̃(B)(ψ → u)(i, j) = cB (i = 0 ∧ j = 0 ∧ ψ0 → u0, i = 0 ∧ ψ1 → u1, ψ2 → u2)

where ψ0 is the sieve of f ′|g such that ψ(ff1f2|g) = 1 and ψ1 is the sieve of f ′|g such that ψ(ff1|g) = 1
and ψ2 is the sieve of f ′|g such that ψ(f |g) = 1. Furthermore u0f ′|g = uff1f2|g(1)f ′ and u1f ′|g =

uff1|g(1, f2)f ′(j) and u2f ′|g = uf |g(1, f1, f2)f ′(i, j).

Proposition 4.2 The two maps ηD(A) and D(ηA) : D(A)→ D2(A) are path equal.

Proof. An element of D2(A)(X|I) is given by a family v(f, α)(g, β) in Cn+m(A)ρf〈α〉g〈β〉 satisfying the
conditions

1. u(f, f1, γ)(g, β)(0,~i,~j) = u(ff1, γ)(g, β)(~i,~j)

2. u(f, γ, fk, fk+1, γ
′)(g, β)(~i, ik, ik,~i

′,~j) = u(f, γ, fkfk+1, γ
′)(g, β)(~i, ik,~i

′,~j) if 0 < k < n

3. σnu(f, γ, fn)(g, β)(~i, 1,~j) = u(f, γ)(fng, β)(~i,~j)

4. u(f, α)(g, g1, δ)(~i, 0,~j) = u(f, α)(gg1, δ)(~i,~j)

5. u(f, α)(g, δ, gl, gl+1, δ
′)(~i,~j, jl, jl,~j

′) = u(f, α)(g, δ, glgl+1, δ
′)(~i,~j, jl,~j

′) for 0 < l < m

6. u(f, α)(g, δ, gm)(~i,~j, 1) = u(f, α)(g, δ)(~i,~j)gm

We compute, for u in D(A)(X|I)

(ηAu)(f, α)(g, β)(~i,~j) = u(f〈α〉, g, β)(~j)

and
(D(ηA)u)(f, α)(g, β)(~i,~j) = u(f, α)(~i)g〈β〉

We have a homotopy connecting these two maps by defining

vk(f, α)(g, β)(~i,~j) = u(f, α, g, β)(~i ∧ k, k, k ∨~j)

since then v0(f, α)(g, β)(~i,~j) = u(f〈α〉, g, β)~j and v1(f, α)(g, β)(~i,~j) = u(f, α)~ig〈β〉, and each element
vk(f, α)(g, β)(~i,~j) satisfies the compatibility conditions.
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Proposition 4.3 The cobar operation is a notion of compatible descent data.

More generally, if we have a subpresheaf Cov of the presheaf of sieves, we can define a type Dc(A) (c :
Cov). If S is in Cov(X), an element of Dc(A)(X|I, S) is now a family u(f, α) in A(Xn+1|I × In) with f
in S, satisfying the compatibility conditions.

4.1 Example: a model with the negation of countable choice

5 Equivalences in the stack model

5.1 Equivalences between fibrant types

If Γ is a presheaf over C ×B then for any X object of C we have a cubical set Γ(X) by Γ(X)(I) = Γ(X|I)
(and canonical restriction maps). Similarly if A is in Type(Γ) then we get a type A(X) in Type(Γ(X))
defined by A(X)ρ = Aρ. If A is contractible then each A(X) is contractible. The converse may not
hold in general. Similarly, if a map σ : A → B is an equivalence, then each σ : A(X) → B(X) is an
equivalence, but the converse may not hold.

A simple example is provided by taking C the category with one object defined by the groupG = Z/2Z.
We take for B the unit type and for A the groupoid with two isomorphic objects swapped by the action
of G. Then the canonical map A→ B is pointwise an equivalence but is not an equivalence since A has
no global points.

Lemma 5.1 If A in Type(Γ) is such that each A(X) is contractible then we can build an element of
Elem(Γ, D(A)).

Proof. Given ρ in Γ(X|I) we define a compatible family cρ(f, α) in Cn(A)ρ(f〈α〉|I) by induction on the
length of α using the contractibility proof.

Corollary 5.2 If A in Type(Γ) is modal and such that each A(X) is contractible then we can build an
element of Elem(Γ, A).

Corollary 5.3 If A in Type(Γ) is modal and such that each A(X) is contractible then A is contractible.

Proof. We can find an element a in Elem(Γ, A) by the previous corollary. The type Path Ap ap q over
Γ.A is still modal, and is pointwise contractible. So by the previous corollary, it has a section, and A is
contractible.

Theorem 5.4 If σ : A→ B is pointwise an equivalence and A and B are modal then σ is an equivalence.

Proof. We consider the fiber F of σ as a type over B. By hypothesis this type is pointwise contractible.
Also it is modal if A and B are modal. Hence it is contractible by Corollary 5.3.

5.2 Equivalences between general presheaves

We have a fibrant replacement operation A with a trivial cofibration A → A. Also at each level X, we
have a a fibrant replacement A(X) → A(X). There is a canonical map A(X) → A(X) and this is an
equivalence between two fibrant types at level X.

A map σ : A → B determine a map σ : A → B and σ is an equivalence iff σ is an equivalence. But
Theorem 5.4, this is the case iff each map A(X) → B(X) is an equivalence at level X, which in turn
holds iff each map A(X) → B(X) is an equivalence at level X, and hence iff each map A(X) → B(X)
is an equivalence.
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