
Constructive Sheaf Models of Type Theory

Thierry Coquand, Fabian Ruch and Christian Sattler

Computer Science Department, University of Gothenburg

Introduction
Despite being relatively recent, the notion of (pre)sheaf model has a rich and intricate history which mixes
different intuitions of topological, logical and algebraic nature. Eilenberg and Zilber [11] used a presheaf
model (simplicial sets) to represent geometrical objects, and the intuition is of a spatial nature: we think
of the objects of the base category I, J, . . . as basic “shapes” and a presheaf A(I) gives a set of objects
of shape I, objects that are related by the restriction maps. A little later, but independently, Beth [5]
and Kripke [16] used respectively a sheaf and a presheaf model over trees to provide a formal semantics
of intuitionistic logic. The motivations there were logical, and the objects of the base category/poset
are thought of as stages of knowledge and the restriction maps have a temporal intuition. Scott [23]
describes a presheaf model of higher-order logic and pointed out the potential interest for the semantics
of λ-calculus. This was refined by Martin Hofmann [13] who provided a presheaf model of dependent
type theory with universes. Such a semantics was used in an essential way in works on constructive
semantics of type theory with univalence [7, 8, 18].

The generalisation of such presheaf models of dependent type theory, and especially of universes, to
a sheaf model semantics is however non-trivial. The problem in generalising this semantics for universes
comes essentially from the fact that the collection of sheaves don’t form a sheaf in any natural way: if
we are given locally sheaves that are compatible, one can patch them together but not in a unique way,
only unique up to isomorphism. This problem was the motivation for the introduction of stacks and a
more subtle notion of patching of sheaves (cf. [12, Section 3.3]), and in general patching of mathematical
structures. The generalisation of this to patching of higher structures was the content of the first part
of Joyal’s letter to Grothendieck [14]. One contribution of the present paper is to provide a constructive
version of this notion1 by describing a sheaf model semantics of type theory with univalence [31, 29].
This uses in a crucial way the fact that we have a constructive interpretation of univalence as in [7, 18],
which can be relativised to any presheaf model. The main point is then that the notion of descent data
induced by giving a collection of compatible objects defines a left exact modality (see [29, 19, 20]), which
can then be used to build internally models of univalent type theory [19].

This work opens the possibility of generalising works of sheaf models of intuitionistic logic as in [28]
to sheaf models of univalent type theory. It extends the previous work in [9] to a complete model of
univalence, and has no restrictions for representing (higher) data types. We give only one application
(independence of countable choice), but we expect for instance that results such as in [17] can be gen-
eralised as well, and that we can give a constructive account of works such as in [25, 33]. The present
semantics (in a preliminary version) has already been used by Weaver and Licata [32] for building a
constructive model of directed univalence.

1 Abstract notion of descent data

1.1 Lex operation
A lex operation is an internal functor which preserves unit type and sum types up to strict isomorphism.
We work in a dependent type theory with product types ΠAB : U and sum types ΣAB : U for A : U

1Joyal’s argument is non-constructive since it uses the classical model structure on simplicial sets and then Barr’s
theorem (see [4]). The present paper can be developed directly in the constructive framework of CZF with universes
introduced by Aczel [1].

1

and B : A → U and unit types 1 and universes2. Note that path/identity types are not needed for the
definition of lex operation. We write () the element of 1 and (a, b) : ΣAB for a : A and b : B a and π1, π2

the projection maps.
A lex operation3 is given by a function D : U → U which is a strict functor on types: we have

Df : DA→ DB if f : A→ B with D(g ◦ f) = Dg ◦Df and DidA = idDA as strict equalities.
The operation D should also preserve the (strict) unit type 1. We have an element 〈〉 in D1 and

x = 〈〉 strictly if x is in D1.
We assume next an extension of D to dependent types with D̃B : DA → U if B : A → U with

operations ensuring that D(ΣAB) is naturally (strictly) isomorphic to ΣDAD̃B.
We thus require D̃(B◦f) = D̃B◦Df : DC → U if f : C → A together with an operation D̃s : ΠDAD̃B

if s : ΠAB and a pairing operation 〈u, v〉 in ΣDAD̃B if u : DA and v : (D̃B)u with (strict) equations

Dπ1〈u, v〉 = u D̃π2〈u, v〉 = v 〈(Dπ1)w, (D̃π2)w〉 = w

if u : DA and v : (D̃B)u and w : D(ΣAB).

Proposition 1.1. Any lex operation D defines a (strict) pointed endofunctor4.

Proof. We define ηA a = (Dεa) 〈〉 with εa = λx:1 a. We then have for f : A→ B

(Df)(ηA a) = (Df ◦Dεa) 〈〉 = (Dεf a) 〈〉 = ηB(f a)

Note furthermore that this natural transformation ηA is uniquely determined, since we should have
η1 () = 〈〉 and so ηA a = ηA(εa ()) = (Dεa)(η1 ()) = (Dεa) 〈〉.

We assume furthermore that we have (D̃B)(ηA a) = D(B a) strictly for any A : U and B : A → U
and a : A. This further condition is not needed (cf. [21]) but will hold for the examples of lex operations
we will analyse and it simplifies some arguments.

The canonical example of a lex operation is exponentiation with respect to a fixed given type R. We
define D : U → U to be DX = XR and (D̃P)u to be Πx:R P (ux) for u in DX. We can then define
〈u, v〉 = λx:R (ux, v x). We have ηX a = λx:R a and (D̃P)(ηX a) = (P a)R = D(P a).

1.2 D-modal types
The notion of lex operation is defined at the level of “pure” dependent type theory, without assuming any
notion of path/identity types. In presence of path types, we automatically have the following preservation
property.

Theorem 1.2. Let D be a lex operation, then D preserves equivalences.

Proof. Note that if f0 and f1 are path equal then so are Df0 and Df1 by path induction. It follows that
if f and g are inverses, then so are Df and Dg.

Avigad et al. [3] explain how to build a fibration category in term of dependent type theory. The-
orem 1.2 states that any lex operation defines a endomap of the associated fibration category. A lex
operation preserves any homotopy limits (homotopy pullbacks, equalisers, fibers, . . .).

In presence of path types, we also can define the following important notion.

Definition 1.1. A type A is D-modal if and only if the unit map ηA : A→ DA is an equivalence.
2We follow the typical ambiguous notation used in [29].
3The notion of lex operation appears implicitly in a natural way when describing the rules of inductive data types [10].

If we have a family Da of lex operations indexed over a : A, we can consider the inductive type T with constructor
sup : Πa:ADaT → T and elimination rule rec f : ΠTP for f : Πa:A,u:DaT (D̃aP)u → P (sup a u). We can then write the
computation rule

rec f (sup a u) = f u (D̃a(rec f) u)

For justifying the use of such inductive definitions, we need some “accessibility” assumption on the (strict) functor D, which
will be satisfied in the examples. In the special case where DaX is XBa for B : A→ U this generalizes the W -type WAB.

4We owe this observation to Dan Licata.

2

Proposition 1.3. If A is D-modal and B : A→ U then B is a family of D-modal types over A if, and
only if, ΣAB is D-modal.

Proof. Let f be the map ΣAB → ΣDAD̃B defined by (a, b) 7→ (ηA a, ηB a b). Since ηA is an equivalence,
the map f is an equivalence if, and only if, each map ηB a is an equivalence [29]. But f is an equivalence
if and only if ηΣAB is an equivalence.

1.3 Abstract notion of descent data
Theorem 1.4. The following conditions are equivalent, for a lex operation D

1. D defines a modality as axiomatised in [19, 20]

2. the map DηA is an equivalence, and DηA and ηDA are path equal

Proof. The first condition implies the second using the results in [19, 20].
Conversely, assume that the map DηA is an equivalence, and DηA and ηDA are path equal. Then

ηDA is an equivalence as well and each type DA is D-modal. Proposition 1.3 shows that D-modal types
are closed by sum types. We thus only have to prove that the map

F : (DA→ B)→ (A→ B) f 7−→ f ◦ ηA

is an equivalence if B is D-modal [19].
Let pB be a map DB → B such that pB ◦ ηB is path equal to idB . We define a map

G : (A→ B)→ (DA→ B) u 7−→ pB ◦Du

We then have F (Gu) = pB ◦Du◦ηA = pB ◦ηB ◦u which is path equal to u and G(Ff) = pB ◦D(f ◦ηA) =
pB ◦Df ◦DηA which is path equal to pB ◦Df ◦ ηDA = pB ◦ ηB ◦ f which is path equal to f . Hence G is
an inverse to F and F is an equivalence.

Definition 1.2. An abstract notion of descent data is a lex operation D satisfying the equivalent con-
ditions of Theorem 1.4.

Note that the first condition of Theorem 1.4 is a (homotopy) proposition. The second condition is
the one which will be convenient to verify for the main examples.

We write isModD(A) the type (proposition) expressing that A is D-modal.

1.4 Closure properties
Let D be a descent data.

Lemma 1.5. For the map ηA : A → DA to be an equivalence, it is enough to have a patch function
pA : DA→ A such that pA ◦ ηA is path equal to the identity of A.

Proof. If pA is such a patch function, we have idDA = DidA = D(pA ◦ ηA) = DpA ◦DηA which is path
equal to DpA ◦ ηDA = ηA ◦ pA. Hence pA is an inverse of ηA and ηA is an equivalence.

Lemma 1.6. For B : A→ U and any u : DA the type (D̃B)u is D-modal.

Proof. Since D(ΣAB) is D-modal, so is the isomorphic type ΣDAD̃B. Using Proposition 1.3, we have
that (D̃B)u is a D-modal type for any u : DA.

Proposition 1.7. The type UD = ΣU isModD is a D-modal.

Proof. Consider the following diagram
DUD

D̃π1

!!
UD

η

OO

π1

// U

3

It is homotopy commuting since (D̃π1)(η X) = D(π1X) is path equal to π1X for any X : UD by
univalence(!). Note also that π1 is an embedding since isModD is a property.

Since (D̃π1)A is D-modal by Lemma 1.6 for any A : DUD the map D̃π1 : DUD → U factorises
through π1 : UD → U and the corresponding map DUD → UD is a left inverse of η : UD → DUD since π1

is an embedding. Hence UD is D-modal by Lemma 1.5.

1.5 Model associated to a family of descent data
We can now define an internal translation which provides a new model of univalent type theory for any
descent data D, following the work in [19]. A type A, p of the new model is a type A together with a
proof p that this type is D-modal , while an element of a pair A, p is an element of A.

In order to interpret the type of natural numbers with the desired computation rules (not covered
in [19]), we need to use the following higher inductive type5

zero : Nat

succ : Nat→ Nat

patch : DNat→ Nat

linv : Πx:Nat patch(ηNat x) =Nat x

This is equivalent to the type DN where N is the usual inductive type with constructors zero and
succ, but the type DN does not satisfy the required computation rules.

The same idea applies to the interpretation of other inductive types such as the W -type. What is
noteworthy is that this description of inductive types is actually in some sense simpler in this higher
setting than in the setting of ordinary 1-sheaf (cf. the direct description of sheaves of W -types in [30]).

It also works for higher inductive type. For instance the suspension of a type A will be defined as

north/south : T

merid : A→ north =T south

patch : DT → T

linv : Πz:T patch(ηT z) =T z

Note that having D defined as a strict functor is essential for such definitions.

1.6 Generalisation to a family of descent data
More generally, if we have a family of descent data DS indexed by a given type S : C, with corresponding
maps ηSA : A→ DSA, we can consider isModC(A) to be the proposition ΠS:C isModDS

(A) and UC which
is ΣU isModC. We let US to be ΣU isModDS

We let the preorder D1 6 D2 on descent data mean that any D1-modal type is D2-modal. We say
that C is filtered if we have ∃S:CDS 6 DS1

∧DS 6 DS2
for any S1, S2 : C6.

Theorem 1.8. If C is filtered then UC satisfies isModC.

Proof. We have the following homotopy commuting diagram for any S 6 S1 in C

DS1
UC //

D̃S1
π1

��

DS1
US

D̃S1
π1

��

UC

ηS1

OO

//

π1

##

US

π1

{{

ηS1

OO

U
5To justify the use of such inductive definitions, we need some accessibility assumption on the strict functor D that will

be satisfied in the examples.
6Existence is defined as the propositional truncation of sum type [29].

4

By Proposition 1.7, US is DS-modal and so DS1
-modal, and hence ηS1 : US → DS1

US has an inverse. It
follows that the map D̃S1

π1 : DS1
UC → U factorises through US → U and hence that for any A : DS1

UC
the type (D̃S1

π1)A is DS-modal.
If C is filtered, this implies that the type (D̃S1

π1)A is DS2
-modal for any S2 in C. Hence the map

D̃S1
π1 : DS1

UC → U factorises through UC → U and the corresponding map D̃S1
UC → UC is a left inverse

of UC → DS1
UC. Hence UC is DS1

-modal for any S1 in C by Lemma 1.5.

1.7 Example
If R is a proposition, and DX is XR the two maps DηA and ηDA are path equals, and are equivalence,
and D defines a notion of descent data.

The next section will define a new kind of descent data for any presheaf model.

2 Presheaf models

2.1 Cubical sets
We now assume given a small Cartesian category B with an object I which has two distinct global points
0 and 1. We also assume that I has a structure of bounded distributive lattice7.

We write I, J,K, . . . the objects of B. We assume given a presheaf ΦB which, together with IB satisfy
the axioms of Orton and Pitts [18] (or Angiuli et al. [2] if we work in the Cartesian cubical set model).
It is then known, following the work in [7, 18, 8], how to define a model of univalent type theory with
higher inductive types, using as the interval the presheaf IB and as cofibrations the maps classified by
ΦB.

2.2 Presheaf model over cubical sets
Let C be another small 1-category. We write X,Y, Z, . . . the objects of C. We write (X, I) the objects of
C × B and (f, g) the morphisms of this category where f is a map of C and g a map of B.

We can define an interval I on C × B by I(X, I) = IB(I). We will consider two main examples for
defining the new notion of cofibration:

1. the first example is simply to take Φ0(X, I) = ΦB(I).

2. the second example is to define an element ψ of Φ(X, I) to be a family ψf in ΦB(I) for f : Y → X
such that ψf 6 ψff1 if furthermore f1 : Z → Y . We then define the restriction operation ψ(f, g)
to be the family ψ(f, g)f1 = ψff1g for f : Y → X and f1 : Z → Y .

The motivation for the second example is that if ΦB(I) is the collection of (decidable) sieves on I, then
Φ(X, I) becomes the collection of (decidable) sieves on (X, I)8.

Both define a notion of cofibration which still satisfies all required conditions of [18, 2]. We still get
a model of univalent type theory (and higher inductive types) using the interval I and cofibrations Φ0 or
Φ. We are going to analyse the model obtained using the notion of cofibrations defined by Φ0 and then
indicate how to adapt these results for the other notion of cofibration.

In this model, a context Γ is interpreted by a presheaf over C × B so a family of sets Γ(X, I) with
suitable restriction maps ρ 7→ ρ(f, g) with f : Y → X in C and g : J → I in B.

A dependent type A over Γ is then given by a presheaf over the category of elements of Γ: for any
ρ in Γ(X, I) we have a set Aρ with suitable restriction maps Aρ → Aρ(f, g) denoted by u 7→ u(f, g)
together with a composition operation (see [7, 18]). We write Type(Γ) the collection of all types with
a composition operation over Γ. The set Elem(Γ, A) is then the set of sections: a family aρ in Aρ such
that (aρ)(f, g) = a(ρ(f, g)) for any ρ in Γ(X, I) and f, g map of codomain X, I.

Given a constructive Grothendieck universe U (see [1]), we write TypeU (Γ) the set of U -types, such
that each set Aρ is in U . The presheaf TypeU is then represented by a fibrant type U which is univalent [7].

7This assumption simplifies some arguments but our results still hold without this hypothesis and apply also to the
Cartesian cubical sets (see [2]).

8Classically, this corresponds to having all monomorphisms as cofibrations.

5

2.3 Internal language description
This was an external description of the presheaf model. It is also possible to describe this model using
the internal logic of the presheaf topos over C × B as in [18, 8] but also using the internal logic of the
presheaf topos over B. We will use both descriptions.

In the internal logic of the presheaf topos over B, a context of the presheaf model over C is interpreted
as a family of “spaces” Γ(X) with restriction maps ρ 7→ ρf for f : Y → X. (Each space Γ(X) is itself
a presheaf over B with Γ(X)(I) = Γ(X, I).) A dependent type A over Γ is given by a family of spaces
Aρ for ρ in Γ(X) with restriction maps u 7→ uf . The presheaf Φ0 of cofibration is the constant presheaf
Φ0(X) = ΦB. The interval I is the constant interval I(X) = IB.

It will be convenient to introduce the following notation: if γ is an element of Γ(X)I and f : Y → X
we write γf+ in Γ(Y)I for λi γ(i)f . Similarly if u(i) is a section in Aγ(i) we write uf+ for λi u(i)f .

A filling operation (see [18, 8]) for A is given by an operation cA which takes as argument γ in Γ(X)IB

and ψ in Φ0(X) = ΦB and a family of elements u(i) in Aγ(i)f on the extent ψ ∨ i = 0. (There is a dual
operation with i = 1 instead.) It produces an element cA(X, γ, ψ, u)(i) in Aγ(i) such that

1. cA(X, γ, ψ, u)(i) = u(i) on ψ ∨ i = 0

2. cA(X, γ, ψ, u)(i)f = cA(Y, γf+, ψ, uf+)(i) for f : Y → X

If A is a type over Γ, we get a family of dependent types A(X) over Γ(X), each of them having a
filling operation, but furthermore these filling operations commute with the restriction maps.

Similarly an extension operation for A, witnessing that A is contractible (see [7]), is given by an
operation eA which takes as argument ρ in Γ(X) and a partial element u on the extent ψ and produces
an element eA(X, ρ, ψ, u) in Aρ such that

1. eA(X, ρ, ψ, u) = u on ψ

2. eA(X, ρ, ψ, u)f = eA(Y, ρf, ψ, uf) for f : Y → X

If A is contractible, each A(X) is a contractible family of types over Γ(X). But conversely, it may
be that each A(X) has an extension operation eA(X) which does not commute with restriction (see
Examples below). Similarly, a map σ : A → B which is an equivalence defines a family of equivalences
σX : A(X)→ B(X) but it may be that each map σX is an equivalence, without σ being an equivalence.

2.4 Examples
We consider first the case where the base category is the group Z/2Z. We write τ the non-trivial element
of this group. A context can be seen as a space with an action ρ 7→ ρτ . A dependent type A over Γ
has also an action Aρ→ Aρτ denoted by u 7→ uτ with a filling operation which is equivariant: we have
cA(γ, ψ, u)(i)τ = cA(γτ+, ψ, uτ+)(i).

Let A be the groupoid with two isomorphic objects swapped by τ . Then A is pointwise contractible,
but is not contractible in the presheaf model, since it has no global point. Another way to describe this
example is that the unique map A→ 1 is a pointwise equivalence but is not an equivalence.

The second example is when C is the poset 0 6 1. In this case, a type A is given by two spaces with
a map A(1)→ A(0) which commutes with the filling operation.

Let us take Γ(0) to be a point ρ0 and Γ(1) to be two points ρ1, ρ
′
1. We define Aρ0 to be the groupoid

with two isomorphic objects a0, a
′
0 and Aρ1 to be a point a1 and Aρ′1 to be a point a′1. Then A(0) and

A(1) are contractible, but A is not contractible since it has no global point9.

3 Homotopy descent data

3.1 A lex operation
In this section, we work in the internal language of the presheaf topos over B.

9Indeed, a global point a should satisfy the conditions aρ in Aρ and (aρ)f = a(ρf). It should thus satisfy aρ1 = a1 and
aρ′1 = a′1. If f is the unique map 0 6 1 we have ρ1f = ρ′1f = ρ0 and a1f = a0 and a′1f = a′0. There is then no possibility
for the choice of aρ0.

6

For any A in Type(Γ) we define EA in Type(Γ). An element u of (EA)ρ, for ρ in Γ(X) is given by a
family of elements u(f) in Aρf for f : Y → X. We define the restriction uf in (EA)ρf by uf(g) = u(fg)
if f : Y → X and g : Z → Y .

If B is in Type(Γ.A), we define Ẽ(B) in Type(Γ.EA). If ρ is in Γ(X) and u is in (EA)ρ, then
Ẽ(B)(ρ, u) is the space of families v(f) in B(ρf, u(f)).

We define a natural transformation α : A→ EA by (αa)(f) = af .

Proposition 3.1. If A has a pointwise filling operation then EA has a (uniform) filling operation and
E defines a lex operation.

Proof. We assume that A has a pointwise filling operation cA(X). We define then, for f : Y → X

cEA(X, γ, ψ, u)(i)(f) = cA(Y)(γf+, ψ, uf+)(i)

We can then check for f : Y → X and f1 : Z → Y

cEA(X, γ, ψ, u)(i)f(f1) = cA(Z)(γ(ff1)+, ψ, u(ff1)+)(i) = cEA(Y, γf+, ψ, uf+)(i)(f1)

and hence cEA is natural in X.
We can also define 〈〉 in E1 by 〈〉(f) = () and 〈u, v〉 : E(ΣAB)ρ by 〈u, v〉(f) = (u(f), v(f)) for u in

EAρ and v in (ẼB)(ρ, u), and check that all conditions for a lex operations are satisfied.

Proposition 3.2. If A is pointwise contractible then EA is contractible.

Proof. We assume that A has a pointwise extension operation eA(X). We define then, for f : Y → X

eEA(X, ρ, ψ, u)(f) = eA(Y)(ρf, ψ, uf)

We can then check for f : Y → X and f1 : Z → Y

eEA(X, ρ, ψ, u)f(f1) = eA(Z)(ρff1, ψ, uff1) = eEA(Y, ρf, ψ, uf)(f1)

and hence eEA is an extension operation for EA natural in X.

In general, E may not be a descent data, since EA does not need to be E-modal. The next section
will use the lex operation E to define a descent data.

3.2 Homotopy descent data
In this section, unless explicitly stated, we work in the internal language of the presheaf model over C×B.
Starting from the lex operation E, we define a new lex operation D which is now a notion of descent
data. We let Pn be the subpresheaf of In+1 of elements (i0, i1, . . . , in) satisfying i0 = 1 ∨ · · · ∨ in = 1.

Let sk : In+1 → In be the map which omits the kth component, for k = 0, . . . , n. Note that sk~i is in
Pn−1 if ~i is in Pn and ik = 0.

Definition 3.1. An element of DA is given by a family u(~i) in En+1A defined on Pn and satisfying the
compatibility conditions10 u(~i) = Ek(α)u(sk~i) on ik = 0.

For instance we have

u(0, i1, i2) = αu(i1, i2) u(i0, 0, i2) = E(α)u(i0, i2) u(i0, i1, 0) = E2(α)u(i0, i1)

We have an element u(~1) in each En+1A. We have a path u(1, i) between αu(1) and u(1, 1) and a
path u(i, 1) between E(α)u(1) and u(1, 1) in E2A. But, in general, we need further higher coherence
conditions.

We define ηA : A→ DA by (ηA a)(i0, i1, . . . , in) = αn+1a.
If A is a family of types over Γ we define DA family of types over Γ by (DA)ρ = D(Aρ).

10It is suggestive to think of the elements of DA as choice sequences [28] extended in a spatial rather than temporal
dimension.

7

Proposition 3.3. If A is a family of types with a pointwise filling operation, then DA has a filling
operation.

Proof. We use that each En+1A has a (uniform) filling operation by Proposition 3.1 hence is a family of
types in the model over C×B. We assume given γ in ΓI and ψ in Φ and a partial element uj in (DA)γ(j)
defined over ψ ∨ j = 0. We explain how to define a total extension vj in (DA)γ(j). For this we define
vj(~i) in En+1A by induction on n. Since En+1A has a filling operation, we apply this filling operation
to the partial element equal to uj(~i) on ψ ∨ j = 0 and equal to Ek(α) vj(sk(~i)) if ik = 0.

Corollary 3.4. D defines a lex operation.

A similar argument as the one for Proposition 3.3 using Proposition 3.2 instead proves the following.

Proposition 3.5. If A is a family of types which is pointwise contractible, then DA is contractible. If
B is a family of types over A which is pointwise contractible, then D̃B is contractible over DA.

Corollary 3.6. If σ : A→ B is pointwise an equivalence then Dσ is an equivalence.

Proof. The fiber fib(σ) defines a pointwise contractible family of types over B. Hence D̃fib(σ) is con-
tractible over DB. Since D is a lex operation, fib(Dσ) is contractible over DB and Dσ is an equiva-
lence.

Proposition 3.7. ηA is pointwise an equivalence, and hence DηA is an equivalence by Corollary 3.6.

Proof. For this proposition, we work in the presheaf model over B.
If ~f is a composable chain of arrows we write 〈~f〉 its composition.
Let A be a type over Γ. For ρ in Γ(X), an element u of DAρ is a family of elements u(~i)(~f) in Aρ〈~f〉

satisfying the compatibility conditions. For a in Aρ the element ηA a is the family of element

(ηA a)(~i)(~f) = a〈~f〉

We define a (pointwise) inverse G of ηA by taking Gu to be the element u(1)(idX). We then have
G(ηA a) = a strictly. The element ηA (Gu) satisfies

(ηA (Gu))(~i)(~f) = (Gu)〈~f〉 = u(1)(id)〈~f〉 = u(1,~0)(id, ~f)

Define the element ũ in DAρ by ũ(~i)(~f) = u(1,~i)(id, ~f). We can define a homotopy

uk(~i)(~f) = u(1, k ∧~i)(id, ~f)

between ηA (Gu) and ũ and we can define a homotopy

vk(~i)(~f) = u(k,~i)(id, ~f)

between u and ũ. By composition, there is a path between u and ηA (Gu) and G is an inverse of ηA11.

One way to understand the definition of D from E is the following. Being a pointed endofunctor, E
defines a semisimplical diagram starting from EA, and DA is a strict way to realise the homotopy limit
of this diagram. A remark is that E, and hence each El, commutes strictly with such limit. In particular,
an element of El(DA) is determined by a family u(~i) in El+n+1A satisfying u(~i) = El+k(α)u(sk~i) on
ik = 0.

Proposition 3.8. We can build a path between the two maps ηDA and DηA.

Proof. An element of (D2A)ρ is given by a family v(~i)(~j) in En+m+2A satisfying the conditions

1. v(~i)(~j) = Ek(α) v(sk~i)(~j) on ik = 0

2. v(~i)(~j) = En+1+l(α) v(~i)(sl~j) on jl = 0

11At this point that we use that the object I in B has lattice operations but one could however instead define a homotopy
in a more complex way by induction on the dimension for Cartesian cubes. The same remark applies for the proof of the
next Proposition.

8

Given u in (DA)ρ we define an element ũ in (D2A)ρ by ũ(~i)(~j) = u(~i,~j).
We compute, for u in (DA)ρ

(ηDA u)(~i)(~j) = αn+1 u(~j) = u(~0,~j)

and we have a homotopy connecting this map to ũ by defining

vk(~i)(~j) = u(~i ∧ k,~j)

. We also have
((DηA)u)(~i)(~j) = En+1(αm+1)u(~i) = u(~i,~0)

and we have a homotopy connecting this map to ũ by defining

wk(~i)(~j) = u(~i, k ∧~j)

By composition, we have a path between DηA and ηDA.

Corollary 3.9. The operation D defines a notion of descent data.

Proof. By Propositions 3.7 and 3.8.

Note that a direct consequence of Corollary 3.6 is the following strictification result.

Theorem 3.10. If A and B are D-modal types and σ : A→ B is pointwise an equivalence then σ is an
equivalence.

The way from which we get D from E can also be applied to the lex operation EA = AR, where R
is an arbitrary type. This amounts to give a map which is coherently constant as defined by Kraus [15]
and so a map ‖R‖ → A from the propositional truncation of R to A [15].

Our development actually provides a way to recover this result. Indeed, an element of DA is a
sequence of elements u(~i)(~x) in A for~i in Pn and ~x in Rn+1 with u(~i)(~x) = u(sk~i)(sk~x) on ik = 0. Given
an element x in R, we can build a left inverse pA of ηA : A → DA by taking pAu = u(1)(x). Hence
R→ isEquiv(ηA), and so ‖R‖ → isEquiv(ηA) which provides a factorisation of a coherently constant map
R→ A through R→ ‖R‖.

3.3 Case of a monoid
We consider the special case where the base category is a monoid M .n If ~x is a sequence (x0, . . . , xn) we
write tk~x the sequence where we omit xk and replace xk+1 by xkxk+1 for k < n and tn~x is the sequence
where we omit xn. A type in the presheaf model is a type A with an M -action, and an element of DA is
then a family of elements u(~i)(~x) in A with~i in Pn and ~x inMn+1 satisfying the compatibility conditions

1. u(~i)(~x) = u(sk~i)(tk~x) on ik = 0 for k < n and

2. u(~i)(~x) = u(sn~i)(tn~x)xn on in = 0

We define the M -action on DA by ux(~i)(x0, . . . , xn) = u(~i)(xx0, . . . , xn).
The special case where M is the walking idempotent is particularly relevant since the corresponding

model represents the model of family of pointed types (where the point is strictly preserved by any map).
It will be interesting to find a natural statement in this model which requires the restriction to modal
types.

Here is an example of a non-modal type which is pointwise contractible but not contractible. Let
e2 = e be the non trivial idempotent element of M . Let Γ be the set with elements ρ1, ρ2 and ρ with
ρ1e = ρ2e = ρ. We let A be the following type. We let Aρ1 be the point a1 and Aρ2 be the point a2 and
Aρ be the groupoid with two isomorphic objects u1, u2 with aie = ui for i = 1, 2. The type A is then
pointwise contractible but it has no global point12.

12If a is such a point, we should have aρi = ai and then (aρi)e = ui and a(ρ1e) = a(ρ2e) = aρ which is not possible
since u1, u2 are distinct.

9

3.4 Generalisation to a Grothendieck topology
A Grothendieck topology J on the category C defines a (strict) set C(X, I) = J(X) and we have a family
ES indexed by S : C defined as follows. Let ρ be in Γ(X), and S is in Γ → C. Note that if Sρ is in
C(X) = J(X), which is a set of sieves on X. An element of (ESA)ρ is now a family u(f) in Aρf with
f in Sρ. We define in this way an associated family of descent data DS indexed by S : C. This family
is filtered and we can apply Theorem 1.8. Note that if S1ρ is a subset of S2ρ for all ρ then we have
a canonical projection map DS2(A) → DS1A. If A is DS1 -modal a left inverse of ηS1

A composed with
this projection map is a left inverse of ηS2

A . Hence a DS1
-modal type is also DS2

-modal and we have
DS1

6 DS2
for the preorder defined in subsection 1.6.

Proposition 3.11. If A in Type(Γ) and S in Γ→ C and ρ in Γ(X) and Aρf is (pointwise) contractible
for each f in Sρ then we can find a uniform extension operation eAρ(f, ψ, u) in Aρf for all f : Y → X
and u partial element in Aρf of extent ψ.

3.5 A model with the negation of countable choice
Using in an essential way the notion of homotopy descent data, we build a model with a countable family
of (strict) sets Pn such that each ‖Pn‖ is the true proposition, while Πn:N Pn is a strict proposition not
globally inhabited.

We consider the following space, corresponding to the lattice generated by formal elements Xn and
Ln with the relations X0 = 1, Xn = Ln ∨Xn+1 and Ln+1 = Ln ∧Xn+1.

Using Proposition 3.11 one can show the following result.

Proposition 3.12. We have ‖L0 +Xn‖ = 1 for all n while Πn:N (L0 +Xn) is L0.

Corollary 3.13. There exists a model of univalent type theory with higher inductive types where countable
choice does not hold.

As stressed in [27], it is yet unknown how to build a model of univalent type theory and higher
inductive types satisfying countable choice in a constructive metatheory. (Countable choice holds in a
classical metatheory in the simplicial set model.)

4 Variation with another notion of cofibration
We explain how to modify the definition of filling operation if we work with the other notion of cofibration,
where an element of Φ(X) is no longer constant, but is given by a family of elements ψf in ΦB for
f : Y → X and satisfying ψf 6 ψff1 if f1 : Z → Y .

All the main results above still hold for this new notion of cofibration, suitably modified. The notion
of filling operation for A is given by an operation cA which takes as argument γ in Γ(X)IB and ψ in
Φ(X) and a family of elements u(i) in Aγ(i)f on the extent ψ ∨ i = 0 such that uf (i)g = ufg(i) if
g : Z → Y on the extent ψf ∨ i = 0. (There is a dual operation with i = 1 instead.) It produces an
element cA(X, γ, ψ, u)(i) in Aγ(i) such that

1. cA(X, γ, ψ, u)(i)f = uf (i) on ψf ∨ i = 0

2. cA(X, γ, ψ, u)(i)f = cA(Y, γ′, ψf, u′)(i) with γ′(i) = γ(i)f and u′g(i) = ufg(i) on the extent ψfg∨i =
0 for g : Z → Y

For instance, Proposition 3.1 becomes the following result.

Lemma 4.1. If A has a pointwise filling operation cA(X) then EA has a filling operation.

Proof. We take γ in Γ(X)IB and uf (i) in (EA)γ(i)f on the extent ψf ∨ i = 0 and we define v(i) =
cEA(X, γ, ψ, u)(i) in (EA)γ(i). For f : Y → X, we take (filling at level Y)

v(i)(f) = cA(Y)(γ′, ψ′, u′)

where γ′(i) = γ(i)f and ψ′ = ψf and u′(i) = uf (i)(idY) in Aγ(i)f on the extent ψf ∨ i = 0.

10

4.1 Examples
We consider first the case where the base category is the group Z/2Z. We write τ the non-trivial element
of this group. A context can be seen as a space with an action ρ 7→ ρτ . An element of Φ is given by a
pair ψ1, ψτ of elements of ΦB with ψ1 6 ψτ 6 ψ1 so ψ1 = ψτ and we can identify Φ with ΦB with the
constant action. So in this case, the two notions of cofibration Φ0 and Φ coincide.

The second example is when C is the poset 0 6 1. In this case, a type A is given by two spaces
with a map A(1) → A(0). An element of Φ(0) is an element of ΦB while an element of Φ(1) is a pair
ψ1, ψ0 of elements of ΦB with ψ1 6 ψ0. One can then check that a composition for A implies that the
map A(1) → A(0) is a fibration. It is thus natural to conjecture that the model we obtain should be
equivalent to the Reedy model described in [24], but we leave this point for further research.

5 Related and future works
Shulman [26] shows that all (∞, 1)-toposes have strict univalent universes, using a classical metatheory.
The work does not cover however (yet) higher inductive types and cumulativity of universes.

Once we have a presheaf model of univalence with a fibrant universe, it is now understood (see
e.g. [22, 6]) how to define a notion of weak equivalences on all presheaves (not necessarily fibrant) with a
corresponding Quillen model structure which satisfies the Frobenius condition and the fibration extension
property. We expect that this should be possible as well for the sheaf models we describe, and that in
the presheaf case, we get the injective model structure (since equivalences are pointwise equivalences).

Acknowledgement
Many thanks to Mathieu Anel, Steve Awodey, Martín Escardó, Dan Licata, Emily Riehl, Bas Spitters
and Matthew Weaver for many discussions and remarks.

References
[1] Peter Aczel. On relating type theories and set theories. In Thorsten Altenkirch, Wolfgang

Naraschewski, and Bernhard Reus, editors, Types for Proofs and Programs, International Work-
shop TYPES ’98, Kloster Irsee, Germany, March 27-31, 1998, Selected Papers, volume 1657 of
Lecture Notes in Computer Science, pages 1–18. Springer, 1998.

[2] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert Harper,
and Daniel R. Licata. Cartesian cubical type theory. 12 2017.

[3] Jeremy Avigad, Krzysztof Kapulkin, and Peter LeFanu Lumsdaine. Homotopy limits in type theory.
Math. Struct. Comput. Sci., 25(5):1040–1070, 2015.

[4] Michael Barr. Toposes without points. J. Pure Appl. Algebra, 5:265–280, 1974.

[5] Evert Willem Beth. Semantic Construction of Intuitionistic Logic. Noord-Hollandsche Uitg. Mij,
1956.

[6] Simon Pierre Boulier. Extending type theory with syntactic models. (Etendre la théorie des types à
l’aide de modèles syntaxiques). PhD thesis, Ecole nationale supérieure Mines-Télécom Atlantique
Bretagne Pays de la Loire, France, 2018.

[7] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A
constructive interpretation of the univalence axiom. In Tarmo Uustalu, editor, 21st International
Conference on Types for Proofs and Programs, TYPES 2015, May 18-21, 2015, Tallinn, Estonia,
volume 69 of LIPIcs, pages 5:1–5:34. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

11

[8] Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher inductive types in cubical type
theory. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 255–
264. ACM, 2018.

[9] Thierry Coquand, Bassel Mannaa, and Fabian Ruch. Stack semantics of type theory. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,
2017, pages 1–11. IEEE Computer Society, 2017.

[10] Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and Grigori
Mints, editors, COLOG-88, International Conference on Computer Logic, Tallinn, USSR, December
1988, Proceedings, volume 417 of Lecture Notes in Computer Science, pages 50–66. Springer, 1988.

[11] Samuel Eilenberg and J. A. Zilber. Semi-simplicial complexes and singular homology. Ann. of Math.
(2), 51:499–513, 1950.

[12] A. Grothendieck. Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études
Sci. Publ. Math., (4):228, 1960.

[13] Martin Hofmann. Syntax and semantics of dependent types. In Semantics and logics of computa-
tion (Cambridge, 1995), volume 14 of Publ. Newton Inst., pages 79–130. Cambridge Univ. Press,
Cambridge, 1997.

[14] André Joyal. Lettre à grothendieck, 1984.

[15] Nicolai Kraus. Truncation levels in homotopy type theory. PhD thesis, University of Nottingham,
UK, 2015.

[16] Saul A. Kripke. Semantical analysis of intuitionistic logic. I. In Formal Systems and Recursive
Functions (Proc. Eighth Logic Colloq., Oxford, 1963), pages 92–130. North-Holland, Amsterdam,
1965.

[17] Bassel Mannaa and Thierry Coquand. Dynamic Newton-Puiseux theorem. J. Logic & Analysis, 5,
2013.

[18] Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a topos. In Jean-Marc
Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer Science Logic,
CSL 2016, August 29 - September 1, 2016, Marseille, France, volume 62 of LIPIcs, pages 24:1–24:19.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[19] Kevin Quirin. Lawvere-Tierney sheafification in Homotopy Type Theory. (Faisceautisation de
Lawvere-Tierney en théorie des types homotopiques). PhD thesis, École des mines de Nantes, France,
2016.

[20] Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. CoRR,
abs/1706.07526, 2017.

[21] Fabian Ruch. Sheaf models of type theory. PhD thesis, Göteborgs Universitet, Sweden, to appear.

[22] Christian Sattler. The equivalence extension property and model structures. CoRR, abs/1704.06911,
2017.

[23] Dana S. Scott. Relating theories of the λ-calculus. In To H. B. Curry: essays on combinatory logic,
lambda calculus and formalism, pages 403–450. Academic Press, London-New York, 1980.

[24] Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical Struc-
tures in Computer Science, 25(5):1203–1277, 2015.

[25] Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. Mathe-
matical Structures in Computer Science, 28(6):856–941, 2018.

[26] Michael Shulman. All (∞, 1)-toposes have strict univalent universes. CoRR, abs/1904.07004, 2019.

12

[27] Andrew Swan and Taichi Uemura. On Church’s thesis in cubical assemblies. CoRR, abs/1905.03014,
2019.

[28] A. S. Troelstra and D. van Dalen. Constructivism in mathematics. Vol. II, volume 123 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1988. An
introduction.

[29] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. Institute for Advanced Study, 2013.

[30] Benno van den Berg and Ieke Moerdijk. W-types in sheaves. CoRR, abs/0810.2398, 2008.

[31] Vladimir Voevodsky. An experimental library of formalized mathematics based on the univalent
foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.

[32] Matthew Z. Weaver and Daniel R. Licata. A constructive model of directed univalence in bicubical
sets. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11,
2020, pages 915–928. ACM, 2020.

[33] Felix Wellen. Formalizing Cartan Geometry in Modal Homotopy Type Theory. PhD thesis, Karl-
sruher Institut für Technologie, Germany, 2017.

13

