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Type Theory and Univalent Foundation

This talk

Revisit some questions discussed by Russell at the beginning of Type Theory

-Russell’s Paradox (1901)

-Theory of Descriptions (1905)

-Theory of Implication (1906)

-Extensionality (1925)

-Reducibility (1925)

-Theory of structures and similarity of structures
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This talk

Univalent Foundation (Voevodsky 2009) brings new light to these questions

It also suggests a new approach to the foundation of category theory
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The Theory of Implications

American Journal of Mathematics 1906

Russell shows how to build a Boolean algebra from the axioms of implication

Observe that if p ≡ q, q may be substituted for p, or vice versa, in any formula
involving no primitive ideas except implication and negation, without altering the
truth or falsehood of the formula. This can be proved in each separate case,
but no generally, because we have no means of specifying (with our apparatus of
primitive ideas) that a complex C(p, q) is to be one that can be built up out of
implication and negation alone

The essence of explanation of extensionality
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Introduction to the second edition of Principia Mathematica

Generalized in 1925, written under the influence of Wittgenstein

A function can only enter into a proposition through is values

All functions of functions are extensional . . . Consequently there is no longer
any reason to distinguish between functions and classes

This assumption if fundamental in the following theory. It has its difficulties,
but for the moment we ignore them. It takes the place (not quite adequatly) of
the axiom of reducibility

Also discussed in Introduction to Mathematical Philosophy, 1919

The quantifiers are extensional functions of functions
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Structures

The notion of structure played an important role for Russell

For instance in Introduction to Mathematical Philosophy, 1919

Chapter VI Similarity of Relations

We may say, of two similar relations, that they have the same “structure”

Definition of “relation number” and operations of these relation numbers

Also in Human Knowledge. Its Scope and Limits, 1948

(Influence on Tarski’s definition of logical notions?)
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Type Theory

Elegant formulation by A. Church (1940)

Simple types o (type of propositions) and ι (type of individuals)

α→ β (function types) written (β)α by Church

10o Propositional extensionality (p ≡ q) → p = q (already in Russell 1925)

10αβ Function extensionality (∀xα.f x = g x) → f = g

9α Axiom of Description ∀fα→o.∀xα. f x∧ (∀yα.f y → x = y) → f (ι f)

11α Axiom of Choice ∀fα→o.∀xα. f x → f (ι f)
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Remarks

We can rewrite the extensionality axioms as

10o Propositional extensionality p = q ≡ (p ≡ q)

10αβ Function extensionality f = g ≡ (∀xα.f x = g x)

The axioms 1− 6 are about basic laws of logic

The axioms 7− 8 are about individuals (axiom of infinity)

Church introduced type of functions not necessarily proposition valued

E.g. ι→ ι if ι primitive type of individuals
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Axiom of Reducibility

In Church’s formulation this becomes the fact that we have a quantification

∀ : (α→ o)→ o

where α is any type, which can be more complex than o

In Russell 1925 system, one would have a stratification on of propositions, e.g.

∀ : (o1 → o1)→ o2

8



Type Theory and Univalent Foundation

Propositions as Types

The next step occurs in the 70s through the work of Curry, Howard, de Bruijn,
Tait, Scott, Martin-Löf, Girard, . . .

In natural deduction the laws for proving a proposition are the same as the
laws for building an element of a given type

E.g. λx.t is of type A→ B if t is of type B given x of type A

c u is of type B if c is of type A→ B and u of type A

It is natural to identify propositions and types
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Propositions as Types

So the type of propositions can be thought of as a type of (small) types

Universal quantification corresponds to an operation

(Πx : A)B if B(x) is a dependent type over x : A

E.g. λx.t is of type (Πx : A)B if t is of type B given x of type A
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Propositions as Types

Unification: the laws of logic and term formation are the same

Girard’s Paradox (1971): if there is a type of all types we have a contradiction

The type of proposition can be thought of as a “universe” of (small) types

Russell’s stratification is similar to the stratification of Grothendieck’s universes

Explanation of the (intuitionistic version of the) axioms 1− 6
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Propositions as Types

Howard, Scott and then Martin-Löf introduced a new logical quantification

(a, b) : (Σx : A)B if a : A and b : B(a)

π1(z) : A if z : (Σx : A)B

π2(z) : B(π1(z)) if z : (Σx : A)B

This is a “constructive” and explicit version of existential quantification
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Equality?

What should be the rules of equality in this new interpretation?

In particular, should the equality be extensional?

Martin-Löf (1973): we should have

refl a : IdA a a

J(d, p) : C(x, p) if C(x, p) type (x : A, p : IdA a x) and d : C(a, refl a)

Furthermore J(a, refl a) = d : C(a, refl a)

This was introduced purely “formally”, based upon “symmetry reason”

13



Type Theory and Univalent Foundation

Equality?

In particular we have

C(a) implies C(x) if p : IdA a x

Any property of a holds for x if IdA a x

This is Leibnitz’ law of indiscernability of identicals

The new (until 1973) property is

Any element in (Σx : A)IdA a x is equal to (a, refl a)
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Equality?

With this formulation, function extensionality does not hold

What should be the equality for the universe(s)?

When are two small types equal?
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Univalent Foundation

Voevodsky (2009) introduced the following hierachy

A type A is contractible iff (Σa : A)(Πx : A)IdA a x holds (is inhabited)

A type A is of hlevel 0 iff it is contractible

A type A is of hlevel n+ 1 iff all IdA a0 a1 are of hlevel n

In particular

A proposition is a type of hlevel 1

A set is a type of hlevel 2

A groupoid is a type of hlevel 3
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Univalent Foundation

contr A is (Σa : A)(Πx : A)IdA a x

prop A is (Πa0 : A)(Πa1 : A)contr (IdA a0 a1)

set A is (Πa0 : A)(Πa1 : A)prop (IdA a0 a1)

groupoid A is (Πa0 : A)(Πa1 : A)set (IdA a0 a1)

One can show that prop A holds iff (Πa0 : A)(Πa1 : A) IdA a0 a1

17



Type Theory and Univalent Foundation

Univalent Foundation

The type (Σx : A)IdA a x is always contractible for any A and a : A

Indeed any element (x, p) of this type is equal to (a, refl a)
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Univalent Foundation

A map f : A→ B is an equivalence iff all fibers of f are contractible

equiv f is (Πy : B)contr (Σx : A)IdB (f x) y

Write A ' B for stating that there exists an equivalence between A and B

E.g. if A and B are sets we get back the notion of bijection between sets

If A and B are groupoids notion of categorical equivalence between groupoids

If A and B are propositions notion of logical equivalence between propositions
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Univalent Foundation

The identity map A→ A is always an equivalence

We have a map IdU A B → A ' B

The Axiom of Univalence claims that this map is an equivalence

A = B ' (A ' B)
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Univalent Foundation

This generalizes the axiom

p = q ≡ (p ≡ q)

This implies function extensionality
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Univalent Foundation

Function extensionality is equivalent to

a product of contractible types is contractible

This implies that

(Πx : A)B is a proposition if B(x) is a family of propositions over A

This holds for any type A
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Structures

We can define structures using universes and dependent sum types, e.g.

S = (ΣX : U) (X → X)×X × set X

is the type of structures s = (X, f, a, p) with f : X → X and a : X

p : set X is a proof that X is a set

We can define IsoS s0 s1 as usual

Corollary of the Axiom of Univalence: two isomorphic elements of S are equal

More precisely, the canonical map IdS s0 s1 → IsoS s0 s1 is an equivalence
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Structures

This implies that two isomorphic structures have the same properties

This is not true in a set theoretic framework, e.g.

s0 = (N,+1, 0)

s1 = (N− {0},+1, 1)

are isomorphic, but 0 is in the carrier of s0 and not in the one of s1

When two relations have the same structure, their logical properties are
identical, except such as depend upon the membership of their fields

Russell (1959) My philosophical development
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Structures

Another example of a structure is the notion of poset

-A set A

-A binary relation R(x, y) over A which is proposition valued

-It is reflexive and transitive

-We have x =A y = (R(x, y)×R(y, x))
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Structures

These are usual “algebraic” mathematical structures, at the set level

A category is a structure at the groupoid level

This is the hlevel 3 version of a poset
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Structures

A category is given by

-A type A of hlevel 3

-A binary relation R(x, y) over A which is set valued

-It is reflexive and transitive, with associativity and neutral element

-We define IsoR(x, y), which is a set

-We have x =A y = IsoR(x, y)

E.g. we can define the category of sets, the category of groups, . . .
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Structures

The notion of groupoid is more fundamental than the notion of category

To define a category we have first to introduce its collection of objects

This collection is

not a set, type of hlevel 2

but a groupoid, type of hlevel 3
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Axiom of Description

It is natural to introduce a new modality operator

inhabited A

This is a proposition expressing that A is inhabited

The axiom is that

inhabited A → prop B → (A→ B)→ B

Given this modality, we can define the existential quantifier

(∃x : A)B defined as inhabited (Σx : A)B
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Axiom of Description

In this setting the Axiom of Description is provable

(∃x : A)B → (Σx : A)B

as soon as A is a set and that there is at most one x : A satisfying B

Indeed, in this case (Σx : A)B is a proposition

This gives a new analysis of the description operator

Requires as an argument a proof that there exists exactly one witness

(∃!x : A)B is (∃x : A)(B(x)× (Πu : A)B(u)→ IdA x u)

(∃!x : A)B → (Σx : A)B
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Axiom of Choice

The Axiom of Global Choice in the form

(ΠX : U) (set X)→ (inhabited X)→ X

is provably false

No “invariant” global choice function
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Reducibility

Voevodsky also suggested the following version of the reducibility axiom

We have a hierarchy of universe U0, U1, U2, . . .

The new axiom, “resizing” axiom, states that any proposition is in U0

For instance

(ΣX : U2) IdU2 U1 X

is in U0

Connection between “size” and complexity of equality
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Constructive Type Theory

Bishop defined a set as a collection

together with a relation which is an equivalence relation

A type is interpreted as a cubical collection such that

any open box can be filled

This generalizes the notion of equivalence relation
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