
Cubical Type Theory

May 4, 2015

Interval

ϕ,ψ ::= 0 | 1 | i | 1− i | ϕ ∧ ψ | ϕ ∨ ψ

The equality is the equality in the free distributive lattice on generators i, 1 − i. We don’t get a
Boolean algebra since we don’t require neither i ∧ (1− i) = 0 nor i ∨ (1− i) = 1.

Context

∆,Γ ::= () | Γ, x : A | Γ, i : I

Substitutions

() : ∆→ ()

σ : ∆→ Γ ∆ ` u : Aσ

(σ, x = u) : ∆→ Γ, x : A

σ : ∆→ Γ ∆ ` ϕ : I
(σ, i = ϕ) : ∆→ Γ, i : I

σ : ∆→ Γ Γ ` A
∆ ` Aσ

σ : ∆→ Γ Γ ` t : A

∆ ` tσ : Aσ

We can define 1Γ : Γ→ Γ by induction on Γ and then if Γ ` u : A we write (x = u) : Γ→ Γ, x : A for
1Γ, x = u. If we have further Γ, x : A ` t : B we may write t(u) and B(u) respectively instead of t(x = u)
and B(x = u).

Similarly if Γ ` ϕ : I we write (i = ϕ) : Γ → Γ, i : I for 1Γ, i = ϕ. We may write t(ϕ) and B(ϕ) for
t(i = ϕ) and B(i = ϕ) respectively if Γ, i : I ` t : B.

Face operations and Notation for systems

Among these substitutions, there are the ones corresponding to face operations e.g.

(x = x, i = 0, y = y) : (x : A, y : B(i = 0))→ (x : A, i : I, y : B)

If Γ is (x : A, i : I, y : B) we write Γ(i0) = (x : A, y : B(i0)) and we write simply (i0) : Γ(i0)→ Γ instead
of (x = x, i = 0, y = y). In general, we write α : Γα→ Γ the face operations.

A substitution σ : ∆ → Γ is strict if it never takes the value 0, 1 on symbols. A fundamental fact is
that any substitution σ is decomposed in a unique way in the form σ = ασ1 where σ1 is strict.

A system for a type Γ ` A is given by a set of compatible objects Γα ` uα : Aα.

Proposition 0.1 If we have σ : ∆→ Γα and δ : ∆→ Γβ such that ασ = βδ : ∆→ Γ then ∆ ` uασ =
uβδ : Aασ.

Proof. α and β are compatible and we can find β1, α1 such that αβ1 = βα1 = γ and σ = β1σ1, δ = α1σ1

and then uασ = uαβ1σ1 = uβα1σ1.

1

In order to write the equation for transport and composition, it is appropriate to use the following
notation [α 7→ aα] for a system ~a in A. Let L be the family of faces over which the system ~a is defined.
If σ : ∆→ Γ, we write σ 6 L if, and only if, we can write σ = ασ1 for some α in L. The previous result
shows that in this case ~aσ = aασ1 is defined without ambiguity.

Given L a set of face maps Γα → Γ The set of all maps σ : ∆ → Γ such that σ 6 L is a sieve on Γ:
if σ 6 L, then σδ 6 L.

Lemma 0.2 If δ is strict and σδ 6 L then σ 6 L

Proof. We have σδ = αθ for some α in L. Hence we have iσδ = iα for all i symbol declared in Γ. Since
δ is strict this implies iσ = iα.

A sieve is actually determined by the face maps it contains. This follows directly from the previous
Lemma and the fact that any map σ can be written ασ1 with σ1 strict.

Given L a downward closed set of face maps on Γ and σ : ∆→ Γ we define Lσ to be the downward
closed set of face maps β on ∆ such that σβ 6 L.

Corollary 0.3 We have δ 6 Lσ if, and only if, σδ 6 L

Proof. We write δ = βδ1 where δ1 is strict and we have σδ = σβδ1 6 L if, and only if, σβ 6 L by the
Lemma.

Corollary 0.4 We have L1 = L and (Lσ)δ = L(σδ)

If now σ : ∆ → Γ is arbitrary, we can define ~aσ as the system [β 7→ ~aσβ] for β such that σβ 6 L.
This defines a system for ∆ ` Aσ. It follows from this Corollary and from Proposition 0.1 that we have
(~uσ)δ = ~u(σδ).

If f : A→ B and ~a is a system for A we define f ~a = [α 7→ fα aα] which is a system for B.

Basic typing rules

Γ ` A
Γ, x : A `

Γ `
Γ, i : I `

Γ `
Γ ` x : A

(x :A in Γ)
Γ `

Γ ` i : I
(i :I in Γ)

Γ, x : A ` B
Γ ` (x : A)→ B

Γ, x : A ` t : B

Γ ` λx : A. t : (x : A)→ B

Γ ` t : (x : A)→ B Γ ` u : A

Γ ` t u : B(u)

Sigma types

Γ, x : A ` B
Γ ` (x : A,B)

Γ ` a : A Γ ` b : B(a)

Γ ` (a, b) : (x : A,B)

Γ ` z : (x : A,B)

Γ ` z.1 : A

Γ ` z : (x : A,B)

Γ ` z.2 : B(z.1)

Identity types

Γ ` A Γ ` B
Γ ` ID A B

Γ, i : I ` A
Γ ` 〈i〉A : ID A(i = 0) A(i = 1)

Γ ` P : ID A0 A1 Γ ` ϕ : I
Γ ` P ϕ

Γ ` P : ID A0 A1

Γ ` P 0 = A0

Γ ` P : ID A0 A1

Γ ` P 1 = A1

Γ ` P : ID A0 A1 Γ ` a0 : A0 Γ ` a1 : A1

Γ ` IdP P a0 a1

Γ, i : I ` t : A

Γ ` 〈i〉t : IdP (〈i〉A) t(i0) t(i1)

Γ ` t : IdP P a0 a1 Γ ` ϕ : I
Γ ` t ϕ : P ϕ

Γ ` t : IdP P a0 a1

Γ ` t 0 = a0 : P 0

Γ ` t : IdP P a0 a1

Γ ` t 1 = a1 : P 1

2

We define Id A a0 a1 = IdP (〈i〉A) a0 a1 if a0 : A and a1 : A. We can define 1a : Id A a a as 1a = 〈i〉a.

We define p∗ = 〈i〉p (1− i) so that
Γ ` p : Id A a b

Γ ` p∗ : Id A b a

With these rules we also can justify function extensionality

Γ ` t : (x : A)→ B Γ ` u : (x : A)→ B Γ ` p : (x : A)→ Id B (t x) (u x)

Γ ` 〈i〉λx : A. p x i : Id ((x : A)→ B) t u

We also can justify the fact that any element in (x : A, Id A a x) is equal to (a, 1a)

Γ ` a : A Γ ` b : A Γ ` p : Id A a b

Γ ` 〈i〉(p i, 〈j〉p (i ∧ j)) : Id (x : A, Id A a x) (a, 1a) (b, p)

For justifying the transitivity of equality, we need A to have composition operations.

Composition operations

We have
Γ ` a : A Γα ` pα : Id Aα aα uα

Γ ` comp A a ~p : A

with the uniformity condition, for σ : ∆→ Γ

∆ ` (comp A a ~p)σ = comp Aσ aσ ~pσ : Aσ

and the regularity condition

Γ ` comp A a (~p, α 7→ 〈i〉aα) = comp A a ~p : A

We may write simply a~p instead of comp A a ~p.
We can then justify

Γ ` p : Id A a b Γ ` q : Id A b c

Γ ` 〈i〉(p i)[(i = 1) 7→ q] : Id A a c

With such a composition operation, each type has the structure of a weak ∞-groupoid.

If we define

prop A = (x y : A)→ Id A x y set A = (x y : A)→ prop (Id A x y)

it is possible to show that any proposition is a set as follows

Γ ` h : prop A Γ ` a b : A Γ ` p q : Id A a b

Γ ` 〈j〉〈i〉a[(i = 0) 7→ h a a, (i = 1) 7→ h a b, (j = 0) 7→ h a (p i), (j = 1) 7→ h a (q i)] : Id (Id A a b) p q

Transport operation

Γ, i : I ` A
Γ ` transpi(A) : A(i0)→ A(i1)

together with the regularity condition that transpi(A) a0 = a0 whenever A is independent of i.
We can then justify the substitution rule

Γ, x : A ` B Γ ` p : Id A a b

Γ ` transpi(B(p i)) : B(a)→ B(b)

which, together with the fact that any type (x : A, Id A a x) is contractible, implies the usual dependent
elimination rule for the identity type.

If E : ID A B we write E+ = transpi(Ei) : A→ B and E− = transpi(E(1− i)) : B → A.

3

Kan filling operation

It is convenient for the definition of composition to introduce the operation compi A a ~a : A with
i : I ` aα : Aα compatible system such that aα(i0) = aα. We have (compi A a ~a)α = aα(i1). This
operation binds the symbol i.

The composition operation can then be defined as comp A a ~p = compi A a [α 7→ pα i]

In general a map u : T → A does not need to preserve composition for judgemental equality. However,
if we have a map u : T → A, for any t : T and system i : I ` tα : Tα we can consider the composition of
the images v0 = compi A (u t) (u ~t) and the image of the composition v1 = u (compi T t ~t) and we have
an equality

` pres u ~t : Id A v0 v1

which satisfies (pres u ~t)α = 〈i〉(uα tα(i1)) for α 6 L.
This is defined as follow. First we consider w0 = filli A (u t) (u ~t) and w1 = u (filli T t ~t). We have

w0(i0) = u t and w0(i1) = v0, w0α = u tα while w1(i0) = u t and w1(i1) = v1, w1α = w0α = u tα. We
then take

pres u ~t = 〈j〉(compi A (u t) [α 7→ uα tα, (j = 0) 7→ w0, (j = 1) 7→ w1])

This operation satisfies (pres u ~t)σ = pres uσ ~tσ.

We recover Kan filling operation

i : I ` filli A a ~a = compj A a [α 7→ aα(i ∧ j)] : A

The element i : I ` u = filli A a ~a : A satisfies u(i0) = a : A and u(i1) = compi A a ~a : A.

Recursive definition of composition

The operation compi A a ~a is defined by induction on A.

Product type

In the case of a product type ` (x : A) → B = C, we have a system i : I ` µα : Cα with µα(i0) = fα
and we define

compi C f ~µ = λx : A. compi B (f x) [α 7→ µα x] : C

Identity type

In the case of identity type ` Id A u v = C if we have a system i : I ` µα : Cα with µα(i0) = pα for
p : C. We define

compi C p ~µ = 〈j〉compi A (p j) [α 7→ µα j] : C

Sum type

In the case of a sigma type ` (x : A,B) = C we first need to generalize the composition operation
Compi A a ~a : A(i1) where A may now depend on i : I and ` a : A(i0). This is defined in term of
composition and transport operations.

Compi A a ~a = compi A(i1) (transpi A a) [α 7→ transpj Aα(i ∨ j) aα] : A(i1)

Given a system ~c = [α 7→ (aα, bα)] for C, we define

compi C (a, b) ~c = (compi A a [α 7→ aα],Compi B(u) b [α 7→ bα])

where u = compj A a [α 7→ aα(i ∧ j)].

4

Recursive definition of transport

The operation transpi A a is defined by induction on A.

Product type

In the case of a product type ` (x : A)→ B = C, we define

transpi C f = λx : A(i1). transpi B(u) (f (transpi A(1− i) x)) : C(i1)

where x : A(i1), i : I ` u = transpj A(i ∨ 1− j) x : A.

Identity type

In the case of identity type ` Id A u v = C we define

transpi C p = 〈j〉compi A(i1) (transpi A (p j)) [(j = 0) 7→ transpk A u(i∨k), (j = 1) 7→ transpk A v(i∨k)] : C(i1)

Sum type

In the case of a sigma type ` (x : A,B) = C , we define

transpi C (a, b) = (transpi A a, transpi B(u) b)

where i : I ` u = transpj A(i ∧ j) a.

Isomorphisms

We define the type of isomorphisms

Γ ` f : A→ B Γ ` g : B → A Γ ` s : (y : B)→ Id B (f (g y)) y Γ ` t : (x : A)→ Id A (g (f x)) x

Γ ` (f, g, s, t) : Iso(A,B)

We write (f, g, s, t)+ = f : A→ B and (f, g, s, t)− = g : B → A.

Glueing

Γ ` A Γα ` uα : Iso(Aα, Tα)

Γ ` A~u
Γ ` a : A Γα ` uα : Iso(Aα, Tα) Γα ` u−α tα = aα : Aα

Γ ` (~t, a) : A~u

Γ ` A Γα ` uα : Iso(Aα, Tα)

Γ ` elim A ~u : A~u→ A

We write B = A~u. We have Bα = Tα for α 6 L. We have a map ` g = elim A ~u : B → A with
gα = u−α for α 6 L and elim A ~u a = a if ~u is an empty system.

Let us assume to have two systems M,N and L = M,N is the union of these two systems. If we have
a : A and tα with u−α tα = aα for α 6M , then it is possible to find vβ : Tβ for β 6 N with qβ : Id Aβ aβ vβ
such that qβα1 is the constant path 〈i〉aβα1 whenever βα1 = αβ1. We can then consider

a′ = comp A a [β 7→ qβ]

which satisfies a′α = aα = u−α tα for α 6M and a′β = u−β vβ for β 6 N .
This defines an operation

(a′, ~v) = extend a ~t [α 7→ uα] [β 7→ uβ]

which satisfies a′α = aα for α 6M and a′β = u−β vβ for β 6 N .

The element (a′,~t, ~v) is then an element of A~u.

5

Composition for glueing

We have two systems on Γ. One system L for defining A~u = B so that ~u is a system of isomorphisms
[α 7→ uα] for α 6 L. One system for b : B of the form [β 7→ bβ] for β 6 J . We write g = elim A ~u : B → A
and define

c = compi A (g b) (g ~b)

and, for α 6 L
dα = compi Tα bα ~bα : Tα

We have an equality pα = pres gα ~bα : Id Aα cα dα for α 6 L and we define

compiB b [β 7→ bβ] = ([α 7→ dα], comp A c [α 7→ pα])

Transport for glueing

We have one system of isomorphisms uα : Iso(Aα, Tα) for α 6 L. We write A~u = B and define g to be
the map elim A ~u : B → A. We have gα = u−α : Tα → Aα if α 6 L. Given b0 in B(i0), we want to define

transpi B b0 : B(i1)

We separate L = L′, L0, L1 in 3 parts: α 7→ uα with α independent of i, (i0)β 7→ uβ(i0) and (i1)γ 7→ uγ(i1).
We have

~u(i1) = [α 7→ uα(i1)], [γ 7→ uγ(i1)]

We consider a1 = transpi A (g(i0) b0) : A(i1) and tα = transpi Tα b0α : Tα(i1). We have for each α

pα = presi gα b0α : Id A(i1)α a1α (gα(i1) tα)

so that we can form a′1 = comp A(i1) a1 ~p which satisfies

a′1α = u−α (i1) tα : A(i1)α

We can then define
(a′′1 , ~v) = extend a′1 ~t [α 7→ uα(i1)] [γ 7→ uγ(i1)]

which satisties a′′1α = a′1α and

transpi B b0 : B(i1) = (a′′1 , [α 7→ tα], [γ 7→ vγ])

Composition of types

Γ ` A Γα ` Pα : ID Aα Tα

Γ ` A~P
Γ ` a : A Γα ` Pα : ID Aα Tα Γα ` P−α tα = aα : Aα

Γ ` (~t, a) : A~P

Γ ` A Γα ` Pα : ID Aα Tα

Γ ` elim A ~P : A~P → A

6

Composition for types composition

Given P : ID A T and a system i : I ` tα compatible with t : T we can consider v0 = compi A (P−t) P−~t
and v1 = P−(comp i T t ~t), we define

p = pres P t ~t : Id A v0 v1

such that pα is the constant path 〈i〉(P−tα(i1))

This operation is defined in such a way that p is the constant path 〈j〉compi A t ~t if P is constant.
We define u = transpk P (j ∧ 1− k) t so that u : Pj and u(j0) = t : T and u(j1) = P−t : A. Similarly

we introduce uα = transpk Pα(j ∧ 1− k) tα. We can then consider w = compi P u ~u which is such that
w(j0) = compi T t ~t and w(j1) = v0. We define then p = 〈j〉transpk P (j ∨ k) w.

We have two systems on Γ. One system L for defining A~P = B so that ~P is a system of type
equalities [α 7→ Pα] for α 6 L. One system for b : B of the form [β 7→ bβ] for β 6 J . We write

g = elim A ~P : B → A and define
c = compi A (g b) (g ~b)

and, for α 6 L
dα = compi Tα bα ~bα : Tα

We have an equality pα = pres Pα bα ~bα : Id Aα cα dα for α 6 L and we define

compiB b [β 7→ bβ] = ([α 7→ dα], comp A c [α 7→ pα])

Transport for type composition

We have one system of equalities Pα : ID Aα Tα for α 6 L. We write A~P = B and define g to be the
map elim A ~P : B → A. We have gα = P−α : Tα → Aα if α 6 L. Given b0 in B(i0), we want to define

transpi B b0 : B(i1)

We separate L = L′, L0, L1 in 3 parts: α 7→ uα with α independent of i, (i0)β 7→ uβ(i0) and (i1)γ 7→ uγ(i1).
We have

~P (i1) = [α 7→ Pα(i1)], [γ 7→ Pγ(i1)]

We consider a1 = transpi A (g(i0) b0) : A(i1) and tα = transpi Tα b0α : Tα(i1). We have for each α

pα = presi gα b0α : Id A(i1)α a1α (gα(i1) tα)

so that we can form a′1 = comp A(i1) a1 ~p which satisfies

a′1α = u−α (i1) tα : A(i1)α

We can then define
(a′′1 , ~v) = extend a′1 ~t [α 7→ Pα(i1)] [γ 7→ Pγ(i1)]

which satisties a′′1α = a′1α and

transpi B b0 : B(i1) = (a′′1 , [α 7→ tα], [γ 7→ vγ])

In general, if we have a compatible system of equality

[α 7→ Pα] [β 7→ Pβ]

with Pα : ID Aα Tα and Pβ : ID Aβ Tβ we can define

(a′, ~v) = extend a ~t [α 7→ Pα] [β 7→ Pβ]

7

satisfies a′α = aα for α 6M and a′β = P−β vβ for β 6 N . Furthermore, it is such that a′ = a if each Pβ
is constant.

Similarly, if we have P : ID A T then P− does not need to preserve composition for judgemental
equality. However, if we have t : T and system i : I ` tα : Tα we can consider the composition of the
images v0 = compi A (P− t) (P− ~t) and the image of the composition v1 = P− (compi T t ~t) and we
have an equality

` pres u ~t : Id A v0 v1

which satisfies (pres u ~t)α = 〈i〉(uα tα(i1)) for α 6 L and is constant if P is constant.

Comment

Constants

We use the following constants

1. compi A a ~u with a : A and i : I ` uα : Aα, defined by induction on A

2. Compi A a ~u with a : A(i0) and i : I ` A and i : I ` uα : Aα, defined from comp

3. transpi A a0 with a0 : A(i0) and i : I ` A, defined by induction on A

4. pres u t ~t with u : Iso(T,A) and t : T , defined using comp

5. extend a ~t [α 7→ uα] [β 7→ uβ] with aα = u−α tα, defined using that isomorphisms are equivalence

These constant commute all with substitution. For instance, if Γ ` A and Γα, i : I ` uα : Aα and
σ : ∆→ Γ we have

∆ ` (compi A a ~u)σ = compj Aσ aσ ~u(σ, i = j) : Aσ

for any j fresh for ∆.

Glueing and composition of types

The rules for glueing and composition of types are similar. However we could not unify them: if all uα
are identity functions, then A~u does not have in general the same composition operation as A, while if
all Eα are constant then A~E and A have the same composition operations and we have A~E = A.

Semantics

Each context Γ is interpreted by a cubical set as in [5]. Concretely, for each finite set of symbols I, we
have a set Γ(I) and we have restriction maps ρ 7−→ ρf, Γ(I) → Γ(J) for each f : I → J satisfying
ρ1I = ρ and (ρf)g = ρ(fg). A type Γ ` A is interpreted by a family of sets Aρ for each I and ρ in Γ(I)
and restriction maps u 7−→ uf, Aρ→ Aρf satisfying u1I = u and (uf)g = u(fg). An element Γ ` a : A
is interpreted by a family of element aρ in Aρ such that (aρ)f = a(ρf).

Furthermore this should have composition and transport operations. For composition, we should have
an operation u|i~u in Aρ for u in Aρ and uα in Aραιi is a compatible family such that uα = uα(i0). This
operation should be regular and uniform. The regularity is that u|i(~u, α 7→ uα) = u|i~u. The uniformity
is that (u|i~u)f = uf |j~u(f, i = j) if f : I → J and j not in J .

For transport, we should have an operation compj(u) in Aρ(j1) if j in J and u in Aρ(j0). This
operation should be regular: if ρ is independent of j, i.e. ρ = ρ(j0)ιj , then compj(u) = u and uniform:
compj(Aρ, u)f = compk(Aρ(f, j = k), uf) if f : I − j → J and k is not in J .

8

References

[1] M.Bezem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Preprint, 2013.

[2] B. van der Berg and R. Garner. Topological and simplicial models of identity types. ACM Transactions
on Computational Logic (TOCL), Volume 13, Number 1 (2012).

[3] R. Brown, P. J. Higgins and R. Sivera. Nonabelian Algebraic Topology: Filtered spaces, crossed
complexes, cubical homotopy groupoids. volume 15 of EMS Monographs in Mathematics , European
Mathematical Society, 2011.

[4] H. Cartan. Sur le foncteur Hom(X,Y) en théorie simpliciale. Séminaire Henri Cartan, tome 9
(1956-1957), p. 1-12

[5] Th. Coquand. Course notes on cubical type theory.

[6] D. Kan. Abstract Homotopy I. Proc. Nat. Acad. Sci. U.S.A., 41 (1955), p. 1092-1096.

[7] J.C. Moore. Lecture Notes, http://faculty.tcu.edu/gfriedman/notes/, Princeton 1956 p. 1A-8.

[8] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets.
Manuscript, 17 September 2013.

[9] R. Williamson. Combinatorial homotopy theory. Preprint, 2012.

9

