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Interval

o, w= 0[1]i|1l—di[pAY |V

The equality is the equality in the free distributive lattice on generators 7,1 —i. We don’t get a
Boolean algebra since we don’t require neither ¢ A (1 —¢) =0mnor iV (1 —i) = 1.

Context

AT == ()| T,z:A|T,i:I

Substitutions

c:A—=-T Aru:Ac oc:A—=T Abrp:I
O0:A=() (oz=uw):A—=Tz:A (oi=¢):A—=Ti:1

c:A—=T TFA c:A—=T TFt:A
At Ao Atrto: Ao
We can define 1p : I' — T’ by induction on I' and then if I' F w : A we write (z =u): ' = T,z : A for
1r,z = w. If we have further I’z : A+ ¢ : B we may write ¢(u) and B(u) respectively instead of t(x = u)
and B(x = u).
Similarly if T'F ¢ : T we write (i = ¢) : T' = T',i : I for 1,7 = ¢. We may write t(¢) and B(p) for
t(i = ¢) and B(i = ¢) respectively if I',i : T+ ¢: B.

Face operations and Notation for systems
Among these substitutions, there are the ones corresponding to face operations e.g.
(x=2z,i=0,y=vy): (x:Ay:B(i=0) = (v:Ai:Ly:B)

IfTis (x: Ayi:Ly: B) we write I'(i0) = (z : A,y : B(i0)) and we write simply (i0) : I'(0) — T instead
of (x =2,i =0,y =y). In general, we write o : l'a — T" the face operations.

A substitution o : A — T' is strict if it never takes the value 0,1 on symbols. A fundamental fact is
that any substitution ¢ is decomposed in a unique way in the form ¢ = ao; where oy is strict.

A system for a type I' - A is given by a set of compatible objects T'ar - ug, : Acr.

Proposition 0.1 If we have o : A — TI'aw and § : A — I'8 such that aoc = 36 : A — I" then A+ u,o =
ugd : Aao.

Proof. a and (8 are compatible and we can find 81, a; such that a5y = fa; =y and 0 = 101, § = a101
and then u,0 = uaf101 = ugaioy. O



In order to write the equation for transport and composition, it is appropriate to use the following
notation [ — a,] for a system @ in A. Let L be the family of faces over which the system & is defined.
Ifo: A —T, we write 0 < L if, and only if, we can write 0 = ao; for some « in L. The previous result
shows that in this case do = a,07 is defined without ambiguity.

Given L a set of face maps 'aw — T" The set of all maps o : A — T" such that o < L is a sieve on T:
if o < L, then o6 < L.

Lemma 0.2 If § is strict and 06 < L then o < L

Proof. We have 0é = af for some « in L. Hence we have iod = ia for all ¢ symbol declared in I". Since
¢ is strict this implies io = iq. |

A sieve is actually determined by the face maps it contains. This follows directly from the previous
Lemma and the fact that any map o can be written ao; with oy strict.

Given L a downward closed set of face maps on I" and 0 : A — I" we define Lo to be the downward
closed set of face maps 8 on A such that o5 < L.

Corollary 0.3 We have 6 < Lo if, and only if, 0§ < L

Proof. We write § = (36, where §; is strict and we have 0§ = 0841 < L if, and only if, o8 < L by the
Lemma. O

Corollary 0.4 We have L1 = L and (Lo)d = L(0d)

If now o : A — T is arbitrary, we can define do as the system [3 — dof] for 8 such that o8 < L.
This defines a system for A + Ag. It follows from this Corollary and from Proposition 0.1 that we have
(to)d = (o).

If f: A— B and d is a system for A we define f @ = [@ — fa a,] which is a system for B.

Basic typing rules

THA I+
I'z: AF ri: I+
'+ . 'k L
m(m.AmF) Fl_i.]l(z.]lml")
I'z: A+ B Iz:AFt:B 'tt:(z:A)— B F'tu:A
'k(z:A)—B PkX:At:(z:A)—B T'ktu:Bu)
Sigma types
Iz:A+B 'Fa:A TFb:B(a) 'kz:(x: A B) 'kz:(x: A B)
'k (x: A B) 't (a,b): (z: A, B) F+z1:4 't 2.2:B(z1)
Identity types
4 TF+B Ti:l+-A
'-IDAB I @A:ID A(i=0) A(i =1)
F}_PlDAoAl F}_(pﬂ F"PlDAoAl F"PlDAQAl
I'EPy I'FPO0=A r-P1=4,
T'EP:ID Ay Ay I'kag: Ay I'ktar: A I'i:I-t: A
I'FIdP P ag aq T F (@)t : 1dP ((i)A) t(i0) t(i1)
I'Ht:ldP Paga; ThEe:l I'Et:IdP P ag a I'kt:IdP P ag a
I'Fte:Poyp I'Ft0=ap: PO I'Ftl=a;:P1



We define Id A ag a; = IdP ((i)A) ag a1 if ap : A and ay : A. We can define 1, : 1d A a a as 1, = (i)a.

We define p* = (i)p (1 — %) so that
I'kp:ldAab

I'kp*:ldAba
With these rules we also can justify function extensionality

Ft:(x:A)—B Ftu:(z:A)— B Tkp:(x:A)—IdB (tz) (ux)
FE{@Ax:A pxi:ld((z:A) —B)tu

We also can justify the fact that any element in (z : A,1d A a x) is equal to (a,1,)

I'Fa:A TFb:A T'kFp:ldAabd
TF (i Gy (177):1d (@: A Aa ) (a1,) (bp)

For justifying the transitivity of equality, we need A to have composition operations.

Composition operations

We have
'Fa: A TakFp,:ld Aa ac u,
I'kcompAap:A

with the uniformity condition, for o : A — T

At (comp A a p)o = comp Ao ac po : Ac
and the regularity condition
'tk comp Aa (p,a— (iYae) =comp Aap: A

We may write simply ap’ instead of comp A a p.

We can then justify
F'kp:ldAabd F'kFq:ldAbc

TH@@)[GE=1)r—ql:ldAac
With such a composition operation, each type has the structure of a weak co-groupoid.

If we define

propA=(zy:A)—=IldAxy set A=(zy:A) — prop (Id A z y)

it is possible to show that any proposition is a set as follows

I'Eh:prop A I'tab: A I'Fpg:ldAabd
() )a[i=0—haa,(i=1)—habd, (j=0—ha(pi), ((=1)—ha(gid]:1d(dAabd)pgq

Transport operation
Ii:IFA
I transp?(A) : A(i0) — A(:1)
together with the regularity condition that transp?(A) ag = ag whenever A is independent of i.
We can then justify the substitution rule
I'z:AFB ThFp:ldAab
I+ transp?(B(p i)) : B(a) — B(b)

which, together with the fact that any type (x : A,1d A a x) is contractible, implies the usual dependent
elimination rule for the identity type.

If E:1D A B we write E* = transp’(Ei) : A — B and E~ = transp’(E(1 —i)) : B — A.



Kan filling operation

It is convenient for the definition of composition to introduce the operation comp® A a @ : A with
i:1F ay : Aa compatible system such that a,(i0) = ac. We have (comp’ A a @)a = a,(il). This
operation binds the symbol i.

The composition operation can then be defined as comp A a = comp®’ A a [a — pq, i

In general a map u : T'— A does not need to preserve composition for judgemental equality. However,
if we have a map u: T — A, for any ¢t : T and system i : [ F ¢, : T« we can consider the composition of
the images vg = comp’ A (u t) (u t) and the image of the composition v; = u (comp® T' t t) and we have
an equality

Fpresut:ld A v vy

which satisfies (pres u t)a = (i)(ua to(i1)) for a < L.

This is defined as follow. First we consider wy = fill' A (u t) (u t) and wy = u (fill" T t £). We have
wg(i0) = u ¢t and wp(il) = vg, woax = u to while wy(i0) = w ¢t and wq(il) = v1, wia = woa = u t,. We
then take

pres u £ = (j)(comp’ A (ut) [a +— ua ty, (j = 0) > wo, (j = 1) = wy])

This operation satisfies (pres u t_)o = pres uo to.

We recover Kan filling operation
i:THfill' Aad=comp’ Aafar an(ing)]:A

The element i : T+ u = fill' Aa @: A satisfies u(i0) = a : A and u(il) = comp’ A a @: A.

Recursive definition of composition

The operation comp’ A a @ is defined by induction on A.

Product type
In the case of a product type - (z : A) = B = C, we have a system i : [ - p, : Ca with 44(i0) = fa
and we define 4 4
comp’' C fi=Xx:A comp’' B (f z) [a po z]: C
Identity type

In the case of identity type - Id A uw v = C if we have a system i : I+ g, : Ca with p,(i0) = pa for
p: C. We define _ _
comp® C' p fi = (j)comp® A (p j) [a = pa j]: C

Sum type

In the case of a sigma type - (z : A,B) = C we first need to generalize the composition operation
Comp" A a @ : A(il) where A may now depend on ¢ : I and F a : A(40). This is defined in term of
composition and transport operations.

Comp’ A a @ = comp® A(i1) (transp’ A a) [ — transp’ Aa(iV j) aa] : A(il)
Given a system € = [a > (aq, by )] for C, we define
comp’ C (a,b) = (comp® A a [a — a,],Comp’ B(u) b [ — by])

where u = comp’ A a [a > aq(i A j)].



Recursive definition of transport

The operation transp’ A a is defined by induction on A.

Product type
In the case of a product type - (z : A) = B = C, we define

transp’ C' f = Az : A(i1). transp’ B(u) (f (transp” A(1 —i) x)) : C(il)
where z : A(il),i: I+ u=transp’ A(iV1—j)x:A.

Identity type
In the case of identity type - Id A u v = C we define
transp’ C' p = (j)comp® A(i1) (transp® A (p j)) [(j = 0) — transp® A u(iVEk), (j = 1) — transp® A v(iVEk)] : C(il)

Sum type
In the case of a sigma type - (z : A, B) = C', we define
transp’ C' (a,b) = (transp’ A a,transp’ B(u) b)

where i : [ - u = transp’ A(i A j) a.

Isomorphisms

We define the type of isomorphisms

'+f:A—-B Ttg:B—-A Tts:(y:B)=IdB(f(gy)y Trt:(z:A) —>IdA(g(fx)=x
'k (f.,g,s,t) : Iso(A, B)

We write (f,g,s,t)" = f:A— Band (f,g,s,t)” =¢g: B — A.

Glueing

'FA Talk u,:lso(Aa, Ty,)
'k Au
'a:A Talt u,:lso(Aa,T,) lFakFujty =a0: Aa
I'F (,a): At
I'FA TatF u,:lso(Aa, Ty,)
FtelimAu: Au— A

We write B = Aw. We have Ba = T, for « < L. We have a map - g =elim A @ : B — A with
ga =u,, for « < L and elim A @ a = a if ¥ is an empty system.

Let us assume to have two systems M, N and L = M, N is the union of these two systems. If we have
a: Aandt, withu,t, = aa for < M, then it is possible to find vg : T for 8 < N with gz : Id AB af vg
such that ggay is the constant path (i)afBa; whenever fa; = af1. We can then consider

a’' =comp A a [B+ q5]

which satisfies a’a = aa = ut, for a < M and o' = uzvg for B < N.
This defines an operation

(d/,7) = extend a t [a = uy] [B — ug]

which satisfies a’a = aa for « < M and a'f3 = Ugvp for 8 < N.

The element (a/,t,%) is then an element of Ad.



Composition for glueing

We have two systems on I'. One system L for defining A4 = B so that 4 is a system of isomorphisms
[a — ug] for a < L. One system for b : B of the form [ — bg] for § < J. We writeg =elim A@: B — A
and define

¢ = comp’ 4 (1) (g b)

and, for « < L ' .
do = comp® Ty, ba ba : Ty,

We have an equality p, = pres ga ba: 1d Ao ca dy, for a < L and we define

comp'B b [B + bg] = ([a > dy],comp A ¢ [ = pa))

Transport for glueing

We have one system of isomorphisms u,, : Iso(Aa, Ty,) for a < L. We write Ad = B and define g to be
the map elim A @: B — A. We have ga = u, : T, = A« if & < L. Given by in B(i0), we want to define

transp’ B by : B(il)

We separate L = L', Lo, Ly in 3 parts: a — u, with o independent of 7, (i0)3 +— ug(io) and (i1)y = w(;1).-
We have
i(i1) = [a = ua(i1)], [y = wygin))]

We consider a; = transp® A (g(i0) by) : A(i1) and t, = transp’ T'a boax : T,,(i1). We have for each «
Do = pres’ ga boar : 1d A(il)a ayor (ga(il) ty,)
so that we can form a} = comp A(il) a; p which satisfies
aja =wug (il) to : A(il)a

We can then define
(af,¥) = extend a} ¢ [ > ua(il)] [y = wy ()]

which satisties afa = afa and

transp’ B by : B(il) = (af, [a = t,], [y = v,])

Composition of types

'+rA TakFP,:ID Aa T,
I+ AP
I'ra:A Tatb P,:ID Aa T, lFatk Pty =aa: Ax
T+ (f,a): AP
'-A TabP,:ID AaT,
ChelimAP:AP - A




Composition for types composition

Given P :ID A T and a system 4 : I - t,, compatible with ¢ : T we can consider vg = comp’ A (P~t) P~t
and v; = P~ (comp i T t t), we define

p=pres Ptt:ld Avy v

such that p, is the constant path (i)(P~¢,(il))

This operation is defined in such a way that p is the constant path (j)comp® A t {'if P is constant.

We define u = transp* P(j A1—k) t so that u: Pj and u(j0) =t : T and u(j1) = Pt : A. Similarly
we introduce u, = transp® Pa(j A1 —k) t,. We can then consider w = comp’ P u @ which is such that
w(j0) = comp’ T t £ and w(j1) = vg. We define then p = (j)transp* P(j V k) w.

We have two systems on I'. One system L for defining AP = B so that P is a system of type
equalities [@ — P,] for @ < L. One system for b : B of the form [8 — bg] for § < J. We write
gzelimAﬁ:B—)Aanddeﬁne

¢ =comp’ A (g b) (gb)

and, for a < L '
deo = comp® T, ba b : T},

We have an equality p, = pres Pa ba ba i 1d Aa ca dy for oo < L and we define

comp'B b [B+ bg] = ([a > dy],comp A ¢ [a = pa))

Transport for type composition

We have one system of equalities P, : ID Aa T, for a < L. We write AP = B and define g to be the
map elim A P: B — A. We have ga = P, : T, — Aa if a < L. Given by in B(i0), we want to define

transp’ B by : B(il)
We separate L = L', Lo, Ly in 3 parts: a — uq with o independent of 7, (i0)8 +— ug(;0) and (i1)y = w1

We have ~
P(i1) = [a = Pa(il)], [y = Pyn))

We consider a; = transp® A (g(i0) by) : A(il) and t,, = transp’ T'a byar : T,,(i1). We have for each «
Do = pres’ ga boa : I1d A(il)a ayor (ga(il) t,,)
so that we can form a} = comp A(il) ay p which satisfies
aya =ug (il) to 2 A(il)a

We can then define
(af,¥) = extend af [ = Pa(il)] [y = Pygin))

which satisties a]a = afj« and

transp’ B by : B(il) = (af, [a = ta], [y — v,])

In general, if we have a compatible system of equality
[a — Po] [B— P
with P, : ID Aa T, and Pg : 1D AS T we can define

(a/,¥) = extend a t [a — P,] [8 +— Pjs]



satisfies a’a = aca for a < M and '8 = Pgvg for < N. Furthermore, it is such that a’ = a if each Pg
is constant.

Similarly, if we have P : ID A T then P~ does not need to preserve composition for judgemental
equality. However, if we have t : T" and system ¢ : I F ¢, : Ta we can consider the composition of the
images vg = comp’ A (P~ t) (P~ t) and the image of the composition v; = P~ (comp® T t t) and we
have an equality

I—presuf: Id A vy vq

which satisfies (pres u t)a = (i)(ua to(i1)) for a < L and is constant if P is constant.

Comment

Constants

We use the following constants

1. comp’ A a @ witha:Aandi:IF u, : A, defined by induction on A
2. Comp’ A a @ with a: A(i0) and i : T+ A and i : [+ ug : Aa, defined from comp

3. transp’ A ag with ag : A(i0) and i : T+ A, defined by induction on A
4. pres u t t with u : Iso(T, A) and ¢ : T, defined using comp

5. extend a t o uy] [B — ug) with acv = ug t,, defined using that isomorphisms are equivalence

These constant commute all with substitution. For instance, if ' H A and T'e,i : T+ u, @ Aa and
o:A — T we have 4 4
A F (comp’ A a @W)o = comp’ Ao ac i(o,i=j): Ao

for any j fresh for A.

Glueing and composition of types

The rules for glueing and composition of types are similar. However we could not unify them: if all u,
are identity functions, then Aw does not have in general the same composition operation as A, while if
all E, are constant then AF and A have the same composition operations and we have AE = A.

Semantics

Each context T' is interpreted by a cubical set as in [5]. Concretely, for each finite set of symbols I, we
have a set T'(I) and we have restriction maps p — pf, T'(I) — T'(J) for each f : I — J satisfying
plr =pand (pf)g = p(fg). A type I' - A is interpreted by a family of sets Ap for each I and p in T'(1)
and restriction maps u — uf, Ap — Apf satisfying ul; = u and (uf)g = u(fg). An element ' -a: A
is interpreted by a family of element ap in Ap such that (ap)f = a(pf).

Furthermore this should have composition and transport operations. For composition, we should have
an operation ul;@ in Ap for u in Ap and u, in Apae; is a compatible family such that ua = u,(i0). This
operation should be regular and uniform. The regularity is that u|; (@, @ — ua) = ul;4. The uniformity
is that (ul;@)f = uf|;u(f,i=4)if f: I — J and j not in J.

For transport, we should have an operation comp’(u) in Ap(j1) if j in J and u in Ap(50). This
operation should be regular: if p is independent of j, i.e. p = p(j0)¢;, then comp? (u) = u and uniform:
comp’ (Ap,u) f = comp*(Ap(f,j = k),uf) if f: I —j— J and k is not in J.
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