HOW TO DEFINE MEASURE OF BOREL SETS

THIERRY COQUAND

ABSTRACT. One of the first definitions of measure, by Borel, provides an early example of
generalised recursive definition of a function. It presented however an ambiguity problem.
Lebesgue’s work provides a solution to this problem, but a natural question [10] is if
this problem has not a purely inductive solution. The goal of this paper is to show that
this problem has a solution using some concepts of functional analysis essentially due to
F. Riesz [13]. Furthermore, this solution is not only purely inductive, but is expressed
naturally using only intuitionistic logic. This work can also be seen as a possible approach
to constructive probability theory.

INTRODUCTION

One of the first definitions of measure, by Borel, presented a subtle ambiguity problem.
We recall here Borel’s definition, and in order to simplify the presentation, we consider
only subsets of the open interval (0, 1). This definition is an early example of a generalised
inductive definition and of a generalised recursive definition of a function.

e An open interval (7, s) is a well-defined set! and its measure u((r, s)) is s — 7.

e If we have a disjoint collection of well-defined sets A, its union A is a well-defined

set, and pu(A) = Zu(Ay)-

e Finally, if A C B are two well-defined sets, then the difference B — A is a well-defined

set, and u(B — A) = u(B) — u(A).

The problem in this definition of the measure is that it may depend in a non-extensional
way on the presentation of a well-defined set: it is not clear a priori that if A and B denote
the same set, then we have u(A) = u(B). In the first edition of his book [3], Borel limits
himself to prove what became known as Heine-Borel’s theorem and states in a footnote
that the ambiguity in his definition of measure can be solved using ideas similar to the ones
contained in this proof. In later editions, Borel sketches a proof in an appendix that any
well-defined set can be approximated in a suitable sense by a finite union of open intervals
[3], and in this way solves the ambiguity in his definition of measure?.

It is a natural question however if “Borel’s measure problem”, as it was called in Lusin’s
book [10], has not a purely inductive solution. The goal of this paper is to show that
this problem has a natural solution using some concepts essentially due to F. Riesz [13].

The author is grateful for an invitation to the Mittag-Lefller Institute, where part of the work reported
here was carried out and presented.
'In the first edition of [3] such subsets were called measurable and then, after Lebesgue’s work, Borel
called them well-defined subsets.
2This addition came after Lebesgue’s work on measure theory.
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Furthermore, this solution is not only purely inductive, but is naturally expressed using
only intuitionistic logic.

In order to simplify the problem, we shall not consider measure for Borel subsets of
(0,1) but for Borel subsets of Cantor space. In [12] is presented a constructive definition
of Borel subsets of Cantor space ) and their inclusion relation. They are seen as symbolic
expressions built from the Boolean algebra of simple (closed and open) subsets of Q by
formal countable disjunction and conjunction. If X is such a symbolic expression, it is
clear for instance how to define by induction the formal complement X' of X. Classically
one can think of symbolic expressions as sets of points, and define the inclusion relation
extensionally. Constructively, it is still possible to define X C Y for X,Y Borel subsets
without mentioning points, and this is done in [12] using a suitable infinitary one-sided
sequent calculus. Using this approach the law 2 C X U X' for instance can be justified
constructively.

A theory of Lebesgue measure on € is also presented in [12], starting from a measure
w(b) € [0,1] of simple (closed and open) subsets. Constructively, if we want the measure
of a subset to be a computable real, we cannot define in general the measure of even open
sets, and the question of measure of Borel subsets is usually not addressed.

Here we define the measure of a Borel set as a bounded “hyperarithmetical real”, i.e.
a real built from rationals by repeated (may be transfinitely) sups and infs of bounded
sequences. The starting point is to follow Borel [3] and try to define x(X) by induction
on the construction of X. One insight is that it is more elegant to define by induction the
function

px b— u(X Nb)

where b denotes an arbitrary simple set of Cantor space 2. Indeed, it will be shown that
ix can be defined by structural induction on X, that is, if X,, are the components of X,
ix is a function of px, while p(X) is not a priori a function of p(X,).

This development is done in an intuitionistic framework using as primitive the notion
of generalised inductive definition. This work can also be seen as a possible approach to
constructive probability theory, and we illustrate this in the last section with a presentation
of Borel’s normal number theorem.

We formulate this approach in the framework of the theory of Riesz spaces [20]. This
theory, which originated from Riesz’s work [13] and Stone’s papers [15, 16], is well suited
for a constructive and point-free development of measure theory. Actually there is a great
analogy between some motivations in point-free topology [9] and motivations in the theory
of Riesz spaces where people strive for elementary and “representation free” development
(cf. the preface of [20]). We then apply this analysis to the case of a measure in a monotone
o-complete ordered space [19].

1. INDUCTIVE DEFINITION OF BOREL SETS

The following fact, proved in [8] and recalled in [7] will play a key role here. We are
going to prove a similar result for the space of bounded Baire functions on 2. Let B the
Boolean algebra of simple subsets of (2.
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Theorem 1.1. The o-algebra of Borel subsets of Cantor space §2 is the o-completion By
of B.

We recall the definition of the o-completion of B. We have first a Boolean algebra map
1: B — By. Also B is o-complete, and for any other map f : B — A in a o-complete
Boolean algebra A there exists a unique o-algebra map f : B; — A such that foi= f.

Hence in order to define the measure of Borel sets of Cantor space, it is enough to extend
the finitely additive measure on B to a countably additive measure on its o-completion
B;.

In [12] an explicit construction of B is given. It follows for instance from this construc-
tion that ¢ is one-to-one, fact which can also be proved by using the o-complete algebra
construction described in [6].

2. RIESZ SPACES

2.1. Algebraic Theory. We define an ordered space to be a vector space E on the ratio-
nals, with an order relation < such that

r<y—r+zy+z

An ordered space is a Riesz space iff any two elements z,y have a least upper bound
2V y. A natural other axiom would be that » > 0 then z < y implies rx < ry; however, as
noticed in [2], this is, rather surprisingly, actually provable from the only axiom that we
have an ordered space which is a lattice.

We shall work only with Riesz spaces that have a strong unit: we assume given a distin-
guished element 1 € E such that for any z € F there exists n such that x € [—n, n] that
is—n-1<z<n-1e€FE. Ifrisarational we shall writer € E forr-1¢€ E.

Given two Riesz spaces F, and FEy, a Riesz space map will be a linear map f : E; — Fy
preserving binary sups and such that f(1) = 1.

In any Riesz space any two elements z, y have a greatest lower bound xAy = x+y—zVy.
Furthermore E, V, A is a distributive lattice. This follows from the more general result.

Theorem 2.1. The following distributivity laws hold

.I/\\/yi:\/(x/\yi) mv/\yi=/\($\/yi)

whenever the corresponding bounds exist.

Proof. We show the first distributivity law. Let y = \/y;. We have z Ay; <z Ay for all n
and hence \/(z A y;) < z Ay. Conversely let z be such that z A y; < z for all n. We have
then

TH+Y —xVy <z
and hence

v<z—x+zVy;<z—zxz+zxVy

It follows that we have

y<z—z+zVy
and thus z A y < z as desired. The proof of the other distributive law is similar. O
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Corollary 2.2. For any Riesz space
{z€0,1]|zA(1—-2z)=0}
is a Boolean algebra, written G(E), called the Boolean algebra of components of E.

We define as usual 27 =z V0, 2~ = (—z) V0. We have z =21 — ™.
An element z is called positive iff 0 < z. An important relation on positive elements is
the orthogonality relation: z L y iff z Ay = 0.

Theorem 2.3. Ifx L y; and x L yo thenz L y1+yo. Ifx L y and 2z < y then x L z.
We always have x* L x~ and if a L 1 then a = 0.

As noted by Dieudonne, this theorem goes back to Euclides, since it can be seen as a
general form of results about numbers that are relatively prime.

An f-ring or function ring [2] is a Riesz space which is also a commutative ordered ring
such that a(bAc) =abAacifa > 0.

2.2. Dedekind o-complete Riesz Spaces. A Riesz space is called Dedekind o-complete
iff any sequence x,, which is bounded above has a least upper bound Vz,,. This notion will
play a key role here.

In a Dedekind o-complete Riesz space, any sequence z, which is bounded below has a
greatest lower bound Az,. Indeed, if z < z,, for all n we have that z — \/(z — z,,) is a inf
of the sequence z,. It follows from theorem 2.1 that the Boolean algebra of components
of a Dedekind o-complete Riesz space is a o-complete Boolean algebra.

2.3. Dedekind o-completion of Riesz Spaces. A map f : F;y — E, of Riesz spaces is
a o-map iff it preserves sups of sequences that are bounded above. Let F be a Riesz space.
We say that Ey,1: E — F; is a o-completion of E iff E; is Dedekind o-complete, and for
any other map f : E — F of E in a Dedekind o-complete Riesz space F' there exists one
and only one o-map f : By — F such that foi = f.

The existence and uniqueness of the o-completion of a Riesz space can be seen abstractly.
We will give later an explicit construction. The importance of this construction is that it
gives a point-free way of defining bounded Baire functions over a space. This is justified
by the following result.

Theorem 2.4. Let X be a compact Hausdorff space, and C(X) the Riesz space of con-
tinuous function over X, with the constant function 1 as strong unit. The Riesz space of
bounded Baire functions on X is the o-completion of C(X). The corresponding o-complete
Boolean algebra of its components is the Boolean algebra of Baire subsets of X if X is
separable.

In general, C(X) is Dedekind o-complete iff X is the representative space of a o-complete
Boolean algebra [17].

Proof. If X is a compact Hausdorff space, let B(X) be the Riesz space of bounded Baire
functions on X, that is the space of functions we get by repeated sups and infs of bounded
sequences of functions, starting from the continuous functions.



HOW TO DEFINE MEASURE OF BOREL SETS 5

We shall make use of the following results of [15] (we shall prove later a representation-
free version of these results). First, any Dedekind o-complete Riesz space is of the form
C(Y), where Y is the representative space of a o-complete Boolean algebra. It is also
proved in [17] that, in such a case, any bounded Baire function f in B(Y) determines a
unique ¢(f) € C(Y) such that f(y) = ¢(f)(y) except on a meager set.

We can now show that B(X) is the o-completion of C'(X). Any map ¢ : C(X) — C(Y)
corresponds to a continuous map s : Y — X, and hence extends to a map B(X) — B(Y).
If Y is the representative space of a o-complete Boolean algebra, we compose this map
with ¢ : B(Y) — C(Y), and we get an extension 1 : B(X) — C(Y') of 1, which is uniquely
determined. 0J

2.4. Riesz Spaces and Boolean Algebras. To any Boolean algebra B we associate the
function ring V'(B) of formal finite step functions on B. This can be seen as the Q-algebra
generated by symbols v(b), b € B with the relations

vby +vby = v(b1 Aba) +v(by Vb)), vl=1, v0=0

We define 0 < a iff a can be written a = Yr;vb; with r; > 0. The multiplication is defined
by U(bl)v(bg) = ’U(bl VAN bg)

We have the following universal property of the Riesz space V(B) and the map v :
B — V(B). Let a valuation on B be a map m : B — E into a Riesz space such that
m(0) =0, m(1) =1 and

m(bl) + m(bg) = m(b1 \% bg) + m(61 N bg)

Theorem 2.5. v : B — V/(B) is a universal valuation: if m : B — E is any valuation,
there exists a unique map I : V(B) — E such that I ov = m.

The importance of this construction is stressed in the work of Rota [14]. The elements
of V(B) may be thought of as simple random variables on a probability space, while T is
the expectation operator.

2.5. Dedekind o-complete Riesz Spaces. We now give a point-free version of some
results of [17], and present the spectral decomposition of an element of a Dedekind o-
complete Riesz space.

To any o-complete Boolean algebra B we associate a Riesz space F'(B)? (which is actually
also a function ring). An element of F(B) is a family ¢(r) € B indexed by rationals such
that

e there exists N such that ¢(r) =0ifr < —N and ¢(r) =1if N <7
b ¢(T) = Vs<r QS(S)
Given two such elements ¢ and v the addition is given by the convolution product

(6 +)(t) = \[6(r) Ao(t — 1)

T

31t can be seen in [17] that with our definition, an element of F'(B) corresponds to a continuous function
on the representative space of B.
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and we define ¢ < 1 to mean ¥(r) < ¢(r) for all r. Finally we define
(V) (t) = (t) A(t)

Let us consider now the category B of Boolean o-algebras (with o-additive maps), and
the category R of Dedekind o-complete Riesz space. We have a functor ' : B — R and
conversely we have a functor G : R — B that to any object in R associates its o-complete
Boolean algebra of components.

Theorem 2.6. F(B) is a Dedekind o-complete Riesz space, whose Boolean algebra of
components is isomorphic to B.

Proof. If b € B one defines the family ¢, € F(B) by
ow(r) =0 ifr<0, ¢(r)=1—0 if0O<r<1, ¢@(r)=1 ifl<r
This defines a map € : B — G(F(B)) and it can then be checked directly that this map is

an isomorphism. 0

Theorem 2.7. G is a right adjoint of F': we have a canonical isomorphism between the
set of maps B — G(E) and F(B) — E.

Proof. We show how to define the counit of the adjunction 7 : F(G(E)) — E. We suppose
given a family ¢ € G(F) such that

e there exists N such that ¢(r) =0if r < —N and ¢(r) =1if N <7
¢(r) =V, 8(5)

We consider then rational partitions 7 of [-N,N|, 1= —-N =y < --- < a, = N and we
associate

t(m) = Tog1(d(ak) — b))

s(m) = Ton(¢(aw) — Pon-1))

) N and s(m) — t(m) is bounded by the mesh of the
s(m) defines an element in E. A suggestive notation for

We have clearly —N < t(r) < s(m
partition 7. Then sup,t(r) = inf,
this element is

[ @ d8(a) = supst(r) = infs(m
and the map 7: ¢ — [ @ d¢(«) is the unique o-map such that 7(¢p) =bif b € G(E). O

Corollary 2.8. Let H be the free o-complete Boolean algebra. Then F(H) is the free
Dedekind o-complete Riesz space. An element of F(H) is called a bounded hyperarith-
metical real.

Intuitively such a real is one that can be obtained from rationals by repeated sups and
infs of bounded sequences.

We know already, by theorem 2.6, that the unit map € : B — G(F(B)) is an isomorphism.
We will show later that the counit map is an isomorphism as well.
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3. THE MEASURE PROBLEM

3.1. The Problem. We start from the Boolean algebra of simple subsets of Cantor spaces
2 with the usual Lebesgue measure p : B — [0, 1] which is a finitely additive map: if by, by
are disjoint then p(by V by) = pu(by) + p(bs).

The problem is now to extend p to a measure y; on the o-completion B; of B which is
o-additive. One way to express this is that p; has to be a finitely additive measure which
extends p, that is p; o7 = p and has to be o-continuous: if z, is an increasing sequence in
By then p(V zn) =V p(zn).

We fix now R an arbitrary Dedekind o-complete Riesz space and we are going to define

such an extension u; : By — R. An alternative description of u is that we give a linear
map I : V(B) — R such that I(1) =1 and I(f) > 0if f > 0. We define

I(3rv(b;)) = Xrip(bi)

Let V; be the o-completion of V(B). We notice first the following result, consequence of
theorems 2.6 and 2.7.

Theorem 3.1. V; and F(By) are isomorphic, and so are G(V;) and By .

We say that a linear map between ordered vector spaces is o-continuous iff it preserves
existing sups of infinite sequences. We are going to extend the linear map I to a o-
continuous map I; : Vi — R. Intuitively this defines the integral of any bounded Baire
function on the representative space of B.

In particular we can take for R the set of bounded hyperarithmetical reals, i.e. the
o-completion of the rationals and we get a definition of the measure of Borel sets of Cantor
space as bounded hyperarithmetical reals.

3.2. Space of I-Bounded Measures. On the set of linear, equivalently additive, maps
[ : V(B) — R, we consider the ordering l; < Iy iff I;,(f) < lo(f) whenever f > 0. The
subset M| of all linear map [ such that there exists n such that | € [-nl,nI] is called the
space of I-bounded measures.

Any element f € V(B) defines a I-bounded measure ¢(f) € M by taking ¢(f)(g9) =

I(fg).

Lemma 3.2. In a Riesz space, if Xf; = Xg; for positive f;, g; then there exist positive hyj
such that f; = X;h;; and g; = Xk .

Proof. See for instance [4]. O

Theorem 3.3. The ordered vector space M is a Dedekind o-complete Riesz space. Fur-
thermore the map ¢ : V(B) — M is a map of Riesz spaces.

Proof. The main idea in the proof is due to F. Riesz [13] and consists in the following
definition of the sup v = v; V v,. For f > 0 we let v(f) be the sup of the countable family
of reals

vi(f1) +1a(f2)
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over all possible positive decompositions f = f; + fo. This family is countable because
B is countable and decidable. To show the additivity of v assume h = f 4+ ¢g. It is clear
that we have v(f) + v(g9) < v(h) since any decomposition of f and of g will give one
decomposition of h. To show the converse inequality v(h) < v(f) + v(g) one takes an
arbitrary decomposition of A and uses lemma 3.2. O

Let now V; be the o-completion of V(B) and ¢ : M; — R, [+ [(1) be the evaluation
map, which is clearly o-continuous.

Corollary 3.4. There exists a unique o-map ¢1 : Vi — M extending ¢. The composition
I, =1vo¢,: Vi — R is a o-continuous extension of I to V.

It would be possible to generalise this construction starting from an arbitrary function
ring (not necessarily of the form V(B)).

4. EXTENSION TO MONOTONE 0-COMPLETE SPACES

We now extend our analysis to the case of a valuation u : B — R where B is an arbitrary
boolean algebra, not necessarily countable or decidable, and R is an ordered vector space,
with a strong unit 1, which is not any more supposed to be a lattice. We assume instead
that R is monotone o-complete: if z,, is a bounded monotone sequence then \/ z,, exists.
We let I : V(B) — R be the corresponding map, and V; be the o-completion of V(B).
The problem is to extend the map I to a o-continuous map V; — R *.

Lemma 4.1. A monotone o-complete Riesz space is Dedekind o-complete.

We let M; be the space of all I-bounded maps [ : V(B) — R. It is direct that M is
also monotone o-complete for the ordering: I; < Iy iff [;(f) < lo(f). However My is not
necessarily a Riesz space any more and we have to proceed in a different way in order to
extend I to V;. We start by noticing that we still have a map ¢ : V(B) — M defined by

o(f)(g) = I(fg).
Lemma 4.2. In M, the sup of ¢(f1) and ¢(f2) exists and is ¢(f1L V f2)-
Proof. Let I, be ¢(v(a)). We limit ourselves to show that we have
Ia1Va2 = Ial \ Iaz
Indeed, it is clear that I,, < I, vq4,. Suppose I,, <1 € M. We can write, for f € V(B)
fv(ay Vag) = fi + fo
with fiv(a;) = f;. We have then
Toivas (f) = Loy (f1) + Loy (f2) < U(f1) +U(f2) = U(S)
as desired. ]

4Tt is noted in [19]: “The difficulties arising in dropping the lattice condition on R seem analogous to
the difficulties encountered in the theory of C*-algebras when going from the commutative to the non-
commutative case. Indeed, the self-adjoint part of a C*-algebra is a partially ordered vector space which
is a lattice if, and only if, the algebra is commutative.”
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This shows that the image of ¢ in M; determines a Riesz subspace of M.
Lemma 4.3. Ify<z andxzV z, yV z exist then
0<zVz—yVz<z-—y

Proof. Indeed, we have that z A z,y A z exist and that

TtVz=x+2—2xNz, yVz=y+z—yAz
and so

rVz—yVz=x—y+yAz—azANz<zx—y

O

The next crucial lemma is a form of minmax principle valid in any monotone o-complete
space F.

Lemma 4.4. If a,, b,, are bounded sequences, a, increasing and b,, decreasing, and a =
Van, b= A\by and a, V b, exists for all n,m then

AV von) =\ AV bn)

and the common value is a V b.

Proof. We let u,, be A, (@ V by,) while vy, is \/, (a5 V by,). It is clear that u, is increasing,
U, is decreasing and u,, < a, V b, < vy, for all n,m. Let u be \/u,, and v be A v,. We

have
v—u= /\[vm—un]

Also, if p > n, ¢ > m, using lemma, 4.3
apV by —a, Vb <ap,—ap+by,—b,<a—a,+b,—0b
and hence
vm—un:\/[ap\/bm—anqu] <a-—a,+b,—b
Psq

Since A, (a — an) = A,,(bm — b) = 0 it follows that we have A, (vm — u,) = 0. Hence
v = U.

We have clearly a < v and b < v. Also, if a < ¢ and b < ¢ we have u < c. Hence v = u
is the sup of a and b. 0

Theorem 4.5. If F' is a monotone o-complete ordered space, and E a subspace such that
any two elements in E has a sup, then the same property holds for the least monotone
o-complete ordered subspace E, containing E. Hence Fy is a Dedekind o-complete Riesz
space.

Proof. This follows directly from lemma 4.4. O
Corollary 4.6. The map I : V(B) — R has a unique o-continuous extension Vi — R.

Proof. Follows from lemma 4.2 and theorem 4.5. O



10 THIERRY COQUAND

5. CONSTRUCTIVE PROBABILITY THEORY

We give a simple example following the presentation of Borel’s number theorem in the
first chapter of [1]. We let r; : © — {—1,1} be the Rademacher map
wh— 2w; — 1

and s,(w) be X;<,ri(w). We can define the simple sets

Sp(w), 1
2y

N= AV A bus

k m n>m
In the classical approach, N is defined as a set of points. A sequence element of the set N
is called normal. Here N is not defined as a set of points but as a symbolic expression.
It is shown in [1] how to define a family of simple sets a,, of the form &, , for a suitable
increasing sequence k,, such that Xu(a,) converges and that, for all m, we have

Nc\ a

n>m

bn,k = {w € Q) |
‘and the Borel subset

In [1] this is understood as inclusion of subsets, but we can make sense of this inclusion
using the calculus described in [12], that is, by using only the laws of o-complete Boolean
algebras. Indeed we have to prove

/\ bn,kn g N
n>m
and this follows from the fact that k, is increasing, so that k < k,, for n large enough if &k
is fixed, and that b, s is decreasing in k.
It follows from this, using the o-additivity of the measure m, that we have
m(NI) S Eanu(an)
and hence m(N') = 0 and m(/N) = 1. As noticed in [1] this is quite remarkable because
N', as a set of points, is not countable. Thus, this theorem requires a non trivial notion of
measure.
Finally we note that this approach is reminiscent of Borel’s own description of Borel

subsets [3] that he called “ensembles bien définis”, stressing the symbolic way in which
these sets are defined rather than looking at them extensionally as sets of points.

6. REPRESENTATION THEORY

6.1. Riesz Space. Following [16] we can see any Riesz space E with a strong unit as a
set of continuous functions over a compact Hausdorff space X. It may be interesting to
give a direct point-free description of this space.

Theorem 6.1. The following geometrical propositional theory with atoms elements of E
e a,—ak
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a+btab
at ifa<0
F1

aVbla,b
a,bFaAb

atV,sp0—71

describes a compact regular space X. The points of this space are the models of this propo-
sitional theory: the element a may be thought of as the proposition a(x) > 0 where x is a
generic point of X. A point of this space defines exactly one continuous map a — a(z),
such that a > 0 implies a(z) > 0.

This space X can be called the spectrum of E. We will denote by Sp(E) the geometrical
propositional theory that defines X.

We can associate to a € E the spectral decomposition £y, = A — a. This is an open
subset of X and E), is well-inside E,, if \; < \y. Furthermore if a € [—n,n| we have
Ey=0if A < —n and E) = X if n < A. Finally E) = U,\E,. Thus following [17] each
element of E can be seen as a continuous function X — R i.e. as an element of C'(X) such
that

Ey={r € X|a(z) < A}

Let us define F;, to be the entailment relation generated by the finitary rules (all but
the last one). We have the following characterisation.

Theorem 6.2. a1, ...,0n Ffin b1, .., b iff 1A Aaf < N(VD]) for some N.
In the special case where n = 0 we get that 1 < N(Vb;") for some N. If m = 0 we get
that Aa; = 0.
Proof. We follow the method of [5], and prove that the relation
LA Aaf < N(Vb)) for some N

is an entailment relation, and that it validates all the axioms of ;. We have to prove
that, if we have for some positive ¢ < 1, z,y and some N

aANz<Nb a<N(ObVzI)
then a < Mb for some M. But we have a < Na and
NaANGBVzZ) < NGBV (aAz) < NOBVNb) <N
so that a < Mb with M = N?2. O
Corollary 6.3. If -y, a then there exists N such that 1 < Na.

Proof. We know that 1 < Na™ for some N by the theorem. Using theorem 2.3 we have
a~ L a* and hence a= L Na*t. It follows that we have ¢~ L 1 and hence a= = 0 by
theorem 2.3. Hence a = a™ and 1 < Na. O

Corollary 6.4. If+ a then there exists N such that 1 < Na.
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In term of points, this says that if a(z) > 0 for all z € X then there exists N such
that 1/N < a(zx) for all z € X. It follows from this that if 0 < a(z) for all z € X then
0 < a+1/nin E for all n. Hence if 0 is the only infinitesimal in E, that is, if E is
Archimedean [11] we have an embedding of E into C'(X).

It would now be possible to develop a point-free version of the Stone-Weirstrass theorem.

Lemma 6.5. If U; is an arbitrary covering of X it is possible to find a partition of unity
D1, .-, Pn with p; € [0,1] and Xp; = 1 and each open p;(x) > 0 is well-inside one Uj.

Proof. We first notice that a(z) > 0iff a*(z) > 0. Thisis because a - o™ and a™ = aVO+F a

since 0 - . It follows that given any covering U; we can find positive elements a4, ..., a,
such that a;(xz) > 0 is well-inside some U; and a;(z) > 0 cover X. Since a(z) > 0 is
the union of the monotone family a(xz) > s, s > 0 we can find s1,...,s, > 0 such that

a;(z) > s; cover X. This means that we have in Sp(FE)

F \/(ai/si — 1)

and hence, by corollary 6.4, we have 1 + 1/N < \/a;/s; in E for some N. If we define
¢ = 1 Aa;/s; € [0,1] we have thus Vg; = 1. If we define next p; = ¢; — (¢ A V,<ig;), we
have p; € [0, 1], each basic open p;(z) > 0 is well-inside some U; and ¥;.;p; = V,<g;. In
particular Xp; = Vg; = 1. O

Theorem 6.6. If f € C(X) and r > 0 then there exists a € E such that |f(z) —a(z)| <7
forallz € X.

7. SPECTRAL DECOMPOSITION

Let E be a Dedekind o-complete Riesz space, and B = G(F) its Boolean algebra of
components. We know that B is o-complete. It is now possible, using an idea going back
to Riesz [13] to give a B-valued model of the propositional theory Sp(E). For this we
define [a > 0] € E as

[a > 0] = sup, [1 Ana™]

The sequence of elements [a < r] = [r — a > 0] is called the spectral decomposition of a.
Lemma 7.1. Any Dedekind o-complete Riesz space is Archimedean.

Proof. If a is a positive element of E such that na <1 for all n, let b = sup,, na. We have
b€ [0,1] and 2b = sup,, 2na < b. Hence b = a = 0. O

Theorem 7.2. The map a — [a > 0] defines a B-valued model of the theory Sp(F).
If a € [-n,n] we have [a<7r] =0 if r < —n and Ja<r] = 1 if n < r. Furthermore
[a <r] =V, la <s]. The map 7: F(B) = E is an isomorphism.

Proof. We show that v = [a > 0] is a component of E. We have clearly v € [0,1]. If
p=(1—u)Aa’ we have u + p < 1 and hence (1 Ana™)+p <1 for all n. But we have
also, since p < a*

(1Ana*)+p<(n+1)a*
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and hence
1Ana")+p<u

for all n. It follows that we have u + p < u and hence p = 0, that is (1 —u) L a*.

It follows from this, by 2.3 that we have (1 — u) L na™ for all n and hence, by 2.1, that
we have (1 — u) L u, which means that u is a component of E.

Using lemma 7.1 one checks then a — [a > 0] defines a G(E)-valued model of Sp(FE).
It follows from this that ¢(r) = [a < r] defines an element of F/(G(FE)), which is called the
spectral decomposition of a. One can then show [11] that we have t(7) < a < s(r) for any
partition 7 and hence

a=r()= [ adéfa)
where 7 is the map defined in theorem 2.7. O

In terms of points, if X is the space defined by Sp(F), the element [a > 0] corresponds
to the unique closed open subset of X which is equal to the open set a(z) > 0 up to a
meager set [17].

Corollary 7.3. The categories B and R are equivalent.

It follows from this result that a Dedekind o-complete Riesz space has always a canonical
structure of function ring.

7.1. o-completion of a Riesz Space. We have seen that any Riesz space E can be seen
as a purely algebraic description of a compact Hausdorff space X. It is now possible to
define the o-complete Boolean algebra of Borel subsets of X as the Boolean algebra B; of
components of the o-completion E; of E, while E; can be seen to be the Riesz space of
bounded Baire functions on X. We have also a direct description of B; and Ej.

Theorem 7.4. Let By be the o-algebra generated by the symbols a € E and theory Sp(E).
The Riesz space F(By) is the o-completion of E.

Proof. Let E; be any Dedekind o-complete Riesz space and f : E — FE; a map. Using
theorem 7.2 and the map f, we get a G(F;)-valued model of the theory Sp(F). Hence
there is a unique o-map from B, to G(E;). By theorem 2.7, there is a unique corresponding
o-map from F(By) to Ej. O

We conclude this section by an interpretation of Radon-Nikodym’s theorem in this
framework. Let By be the o-complete Boolean algebra of components of the space M
of I-bounded measure, as in theorem 4.1. We can see Bj as the measure algebra of I:
the Boolean algebra of measurable subsets quotiented by sets of measure 0. If b € B, the
measure of b is 1(b). A bounded measurable function can now be defined to be an element
of F(Bp). By theorem 7.2 we have an isomorphism between M and F(B,). Hence any
element of M (I-bounded measure) can be seen as a measurable function (the derivative
of this measure).
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FuTuRE WORK

We have given a map ¢; : V; — M from bounded Baire functions to bounded measurable
functions. One can ask if this map is surjective. This amounts to a refinement of Radon-
Nikodym’s theorem, where we prove that the derivative of a measure can be taken to be a
bounded Baire function. It seems possible to get this refinement if we choose for R the set
of hyperarithmetical reals, i.e. the free Dedekind o-complete Riesz space. In this case any
R-valued step function on B is represented by an element of V;, because V] can be seen as
a R-vector space. It should then be possible to represent an element [ € [0, I] as a limsup
of R-valued step functions: if B is seen as a direct limit of finite Boolean algebras, we take
for step functions the functions

br—1(b)/I(b)
which approximate the derivative of [. Classically, this would be a Baire function of level
2. Here this is not the case a priori because the step functions are R-valued. The proof
of this would follow the classical proof, which shows that the Borel set of points for which
this sequence converges is of measure 1.

Another direction of research will be to relate our work to measure in ordered vector
spaces. We think that our work gives an alternative way of obtaining the results of [18, 19].
We only point out the formulation of the example in [18] showing that one cannot expect
the measure to be regular in this framework: let B; be the algebra of Borel sets of {2 and
N the o-ideal of meager sets.® We have a measure s : B; — B;/N which takes values
in E = F(B;/N). If X is the set of all periodic sequences, then s(X) = 0 because X is
countable, while if U O X is open we have U = Q because X is dense and hence s(U) = 1.
Thus s is an E-valued measure which is not regular.
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