
A direct proof of Ramsey’s Theorem

September 27, 2010

Introduction

The infinite version of Ramsey’s Theorem is clearly not valid intuitionistically: even in the
simple case where we color N in two colors in a recursive way, one cannot decide which color
will appear infinitely often, and even less enumerate an infinite monochromatic subset. However,
W. Veldman [3] found an elegant version of Ramsey’s Theorem, directly equivalent classically to
the infinite version, which is valid intuitionistically. Define a n-ary relation R to be almost-full
iff for any infinite subset x1, x2, . . . we can find i1 < . . . < ik such that R(xi1 , . . . , xik). The
intuitionistic Ramsey’s Theorem states that the intersection of two almost-full relations is almost
full (this can be seen as a generalisation of Dickson’s Lemma). This is valid intuitionistically
using Brouwer’s thesis [3]1 and implies another intuitionistically valid statement of Ramsey’s
Theorem [1] which can be seen as a generalisation of Paris-Harrigton’s Theorem. The goal of
this note is to present a simple direct proof of the intuitionistic Ramsey’s Theorem. Indeed,
this can be seen as a simple proof of the usual version of Ramsey’s Theorem.

Intuitionistic Ramsey Theorem

We consider an arbitrary set X, and the set S of finite sequences of elements in X. An element
of S is either the empty sequence () or of the form xσ for a sequence σ and x element of X.
The predicates on S form a distributive lattice for the operation (A∧B)(σ) = A(σ)∧B(σ) and
(A∨B)(σ) = A(σ)∨B(σ). If A is a predicate on S and x an element of X we write Ax for the
predicate Ax(σ) = A(xσ) and A[x] for the predicate A ∨Ax. To any k-ary relation R on X we
associate the predicate R on S defined as follows: R(x1 . . . xn) holds iff n > k and R(x1, . . . , xk)
holds. If there is no confusion, we may write simply R for R.

The set W of well-founded trees over X is defined inductively. The trivial tree 0 is in W ,
and if px is a well-founded tree for each x in X, then the tree sup(px) is in W . Given p and q
in W we define recursively for each natural number n an element p⊗n q of W

• 0⊗0 q = q and (sup(px))⊗0 q = sup(px ⊗ q)

• 0⊗n+1 q = 0, p⊗n+1 0 = 0 and p⊗n+1 q = sup((px⊗n+1 q)⊗n (p⊗n+1 qx)) if p = sup(px)
and q = sup(qx)

Using W we can define inductively when a relation is almost-full on X in the following way.
We say that p in W secures the predicate A on X iff p is 0 and A() holds or p is sup(px) and px

secures A[x] for all x in X 2. A n-ary relation R is almost-full iff there exists p in W such that
p secures R.

1The proof in [3] uses the finite version of Ramsey’s Theorem.
2Intuitively this means that for any infinite sequence x1, x2, . . . we can find i1 < . . . < ik such that A(xi1 . . . xik )

holds.
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Theorem 0.1 For any predicate A and B on S, and any n-ary relation R and S on X, if p
secures A ∨R and q secures B ∨ S then p⊗n q secures A ∨B ∨ (R ∧ S).

Proof. The proof is by induction on n and then by induction on p and q. This is direct if n = 0.
If n = m + 1, the difficult case is when p = sup(px) and q = sup(qx). In this case px secures
A[x]∨R∨Rx and qx secures B[x]∨S∨Sx for all x. Hence px⊗n q secures A[x]∨B∨(R∧S)∨Rx

by induction on p and p⊗nqx secures A∨B[x]∨(R∧S)∨Sx by induction on q. By induction on n
we have that (px⊗n q)⊗m (p⊗n qx) secures A[x]∨B[x]∨(R∧S)∨(Rx∧Sx) = (A∨B∨(R∧S))[x]
for all x, hence the result.

Corollary 0.2 For any n-ary relation R and S on X, if R and S are almost-full then so if
R ∩ S.

Comments

Classically, this result implies directly the usual version of Ramsey Theorem. For instance, if
we have a 2-coloring χ : N × N → {0, 1} of N, and we define Ri(n,m) to be χ(n,m) = i then
R0 ∩ R1 is the empty relation, so is not almost-full, and so R0 or R1 is not almost-full, which
gives an infinite monochromatic subset.

This argument is quite similar to the argument proving the so-called clopen version of Ram-
sey’s Theorem in [2] (W. Veldman had independently found an intuitionistic proof of this result).
Classically, the clopen version implies the usual infinite Ramsey’s Theorem. Intuitionistically,
the implication does not seem to hold and this simple argument for Ramsey’s Theorem may
have some interest.
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