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Introduction

The negative translation provides a general way to make constructive sense of some non effective rea-
soning. However this method has some limitations. It does not work in presence of the axiom of
description/choice. In this note, we analyse the interaction of classical logic with generalised inductive
definition. In the metatheory, we allow generalised inductive definitions, but with an intuitionistic logic.
Actually, we can take as our metatheory a system like Martin-Löf type theory.

The starting motivation of this work was a comparison between the work of Tait/Schütte and the
work of Lorenzen/Novikov on cut-elimination. From a constructive perspective, the analysis of sequent
calculus is most elegantly expressed in Lorenzen/Novikov’s way, as the admissibility of the cut rule [2, 3].
Tait/Schütte’s approach introduces two extra parameters `α

ρ Γ which measures the depth of the proof
tree and the maximal degree of the cut in the proof (see for instance [1]). While this may be extremely
interesting for an evaluation of the complexity of the cut-elimination processes, if the goal is only to give
a constructive explanation of some classical reasoning, these extra parameters should be irrelevant.

Looking at the presentation of local predicativity in [1, 4], one may wonder if this is indeed the case.
We present a Lorenzen/Novikov version of two methods of analysis of inductive definitions with

classical logic. One is local predicativity due to W. Pohlers, and the other uses the so called Ω-rule and
is due to W. Bucccholz . Like in the book [4], we limit ourselves to the simplest case of classical system of
generalised inductive definitions. We are aware that we loose some of the detailed informations that we
can get by this method 1. The hope is however that this note will make these methods more accessible,
especially to people familiar with type theory and inductive definitions.

1 A Theory of Inductive Definitions

Language: a first-order language over natural numbers and lists of natural numbers. We have a decidable
property G(σ) over lists and we use B(σ) to express that the finite list σ is barred by B.

Let ID be the classical theory of B, which expresses that B is the least predicate containing G such
that B(σ) holds whenever B(σn) holds for all n. For the details, see for instance [4].

The goal of this note is to present a proof of the existence property of the system ID, that is that any
Σ1

0 formula provable in ID is valid intuitionistically.
This result is not obvious since ID claims in particular B(σ) ∨ ¬B(σ) while the property B is not, a

priori, decidable, even if the property G is. What is interesting here is that the usual method of negative
translation does not seem to work: in order to interpret the introduction rule of B, one would need the
implication

∀n¬¬B(σn) → ¬¬∀nB(σn)

which is not intuitionistically valid in general, since B is not decidable.
In order to achieve this goal, we shall embed ID in an infinitary propositional calculus. The formulae

of this calculus are defined inductively. The atomic formulae are 0, 1 and B(σ),B′(σ), where σ is a list of
natural numbers. The composed formulae are

∨
Ai and

∧
Ai, i ∈ I where I is either a finite set, or the

1However, in the case of the Ω-rule, it seems clear intuitively how to recover the missing informations.
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set of natural numbers N or the set L of list of natural numbers. The negation is defined recursively by
the de Morgan rules: we have ¬

∧
Ai =

∨
¬Ai and ¬

∨
Ai =

∧
¬Ai, and ¬B(σ) = B′(σ), ¬B′(σ) = B(σ).

We will express B as a cumulative union in term of G. We start by G0(σ) = G(σ) and then Gα+1(σ) =
Gα(σ) ∨ ∀nGα(σn), and Gα(σ) =

∨
k Gu(k)(σ) if α = sup(u).

Notice that the equality on formulae is not decidable. A formula is positive iff it has no occurences
of an atomic formula of the form B′(σ). We let Pos denote the set of all positive formulae.

It is direct how to translate a formula A of ID in a formula A∗ of the present infinitary propositional
calculus. For instance, the formula ∀σ[∃nB(σn)∨¬∃nB(σn)] is translated in the formula

∧
σ[

∨
n B(σn)∨∧

n B′(σn)].

2 A Partial Cut Elimination

The sequents are finite sets of the infinitary propositional calculus. We write Γ, A for Γ ∪ {A} and Γ,∆
for Γ ∪∆. A seqyent is positive iff it contains only positive formulae. We shall build a sequent calculus
(S1) such that, if A is provable in ID then ` A∗ in (S1). Furthermore, we show that if An is a sequence
of decidable formulae, and `

∨
Ai in (S1) then there exists i0 such that Ai0 is true.2 We establish in

this way existence property of ID.
Ideally, we would like to show that if Γ is provable, then it is provable without cuts. This can be

reformulated as the fact that the cut rule is admissible. What we find interesting here is that this is
shown only if there is no negative occurence of B is Γ.

2.1 A First Sequent Calculus

We introduce first a sequent calculus (S0) with the rules

1. ` Γ whenever 1 is in Γ,

2. ` Γ, Ai0 → ` Γ whenever
∨

Ai is in Γ,

3. [∀i ` Γ, Ai] → ` Γ,
∧

Ai,

4. ` Γ,Gα(σ) → ` Γ whenever B(σ) is in Γ,

5. [∀α ` Γ,¬Gα(σ)] → ` Γ,B′(σ).

Alternatively, one may think of a proof in (S0) as a tree built from the following rules.

Γ, 1

` Γ,
∨

Ai, Ai0

` Γ,
∨

Ai

. . . ` Γ, Ai . . .

` Γ,
∧

Ai

` Γ,B(σ),Gα(σ)
` Γ,B(σ)

. . . ` Γ,¬Gα(σ) . . .

` Γ,B′(σ)
.

Notice that the branching of this tree may be (intuitionistically) uncountable if the last rule is used.

Remark 1: If Γ ⊆ ∆ and ` Γ then ` ∆.

Remark 2: For any formula A we have ` A,¬A.

Lemma 1: The cut rule is admissible for (S0).

2Notice that this means in particular that we can find such a i0 explicitely, since our metalanguage is constructive.
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Proof: This means that we have

` Γ, A, ` ∆,¬A → ` Γ,∆;

the proof is similar to the usual proof of admissibility of cut, by doing an induction first on the cut
formula A, and then on the proofs of ` Γ, A and ` ∆,¬A (see [2, 3]).

The following lemma is a kind of partial inversion for the introduction rule of B(σ).

Lemma 2: If ` Γ,B(σ) in (S0) and Γ is positive then ` Γ,Gα(σ) in (S0) for one α.

Proof: In the case of the closure rule, we have by induction hypothesis a sequence αn such that
` Γ,Gαn(σn) in (S0) for all n. It follows that ` Γ,Gα(σn) for all n, where α = sup(αn). Hence we have
` Γ,

∧
n Gα(σn) and hence ` Γ,Gα+1(σ) in (S0).

Since Γ is positive, the other difficult case is that ` Γ,B(σ) follows from a sequence ` Γn,B(σ) where
each Γn is positive. By induction hypothesis, we have ` Γn,Gαn(σ) in (S0) for some αn and hence
` Γn,Gα(σ) for all n, where α = sup(αn). This implies ` Γ,Gα(σ) in (S0).

The formal system PA can be embedded in infinitary propositional calculus; the key point there is
that the induction axiom becomes provable. Surprisingly, the same does not hold for the system ID,
which cannot be embedded in (S0). Furthermore, the problem is in the following introduction rule of ID

[∀nB(σn)] → B(σ).

The translation in (S0) would be the sequent ` B(σ),
∨

n B′(σn) which does not seem to be provable
in (S0).

2.2 The closure rule

We need thus to extend the system (S0) in such a way that this sequent becomes provable. One way to
do it is to add the following rule, called the closure rule

[∀n ` Γ,B(σn)] → ` Γ,B(σ).

From this, it follows that (S1) is strong enough to interpret the classical theory of the predicate B. In
particular, the sequent ` B(σ),

∨
n B′(σn) is provable by the closure rule, since we can show for all n0

` B(σn0),
∨

n B′(σn) in (S0) (and hence in (S1)).
However, the cut rule does not seem to be admissible for this extended system and we have to add

also the cut rule restricted on formulae of the form B(σ)

` Γ,B(σ), ` ∆,B′(σ) → ` Γ,∆.

Lemma 3: The cut rule on any formula is admissible for (S1).

Proof: As the usual proof of admissibility of cut.

However, it seems hard to remove the cut rule on formula B(σ) from the system (S1). At this point,
we cannot conclude the existence property of ID. We are going to show that, if Γ is positive then these
cut rules can be eliminated from a proof of ` Γ in (S1).3

From the admissibility of the general cut rule in (S1), it is not hard to conclude

Corollary: If A is derivable in ID then ` A∗ in (S1), where A∗ is the translation of A in infinitary
propositional calculus.

3It has to be noted that Tait has a similar restriction in his analysis of Σ1
1-AC [5].
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2.3 Partial Cut Elimination

We can now state our main lemma:

Lemma 4: If Γ ⊆ Pos and `S1 Γ,B′(σ1), . . . ,B′(σk) then `S0 Γ,¬Gα1(σ1), . . . ,¬Gαk(σk) for all
α1, . . . , αk.

Proof: We look at the case of a cut rule, when ` Γ,B′(σ1), . . . ,B′(σk) follows from4

` Γ,B′(σ1), . . . ,B′(σk),B(σ)

and
` Γ,B′(σ1), . . . ,B′(σk),B′(σ).

By induction hypothesis, for all α1, . . . , αk, α we have

` Γ,B(σ),¬Gα1(σ1), . . . ,¬Gαk(σk)

and
` Γ,¬Gα(σ),¬Gα1(σ1), . . . ,¬Gαk(σk).

By lemma 2, we have
` Γ,Gα0(σ),¬Gα1(σ1), . . . ,¬Gαk(σk)

for one α0 and hence, by lemma 1,

` Γ,¬Gα1(σ1), . . . ,¬Gαk(σk)

in (S0).

Theorem: If Γ ⊆ Pos and ` Γ in (S1) then ` Γ in (S0).

Proof: This is a particular case of lemma 4.

Corollary: If each Ai is 0 or 1, and `
∨

Ai in (S1) then there exists i0 such that Ai0 is 1.

3 The Ω-rule

It turns out that another approach, the Ω-rule, due to Buccholz [1], is actually more appropriate to a
representation in Type Theory. Interestingly, the two methods do not look so far apart when formulated
in a type theoretical framework.

In this formulation we don’t need to consider ordinals and formulae Gα. The system S0 has now for
rules

Γ, 1

Γ,B(σ)
(if G(σ))

` Γ,
∨

Ai, Ai0

` Γ,
∨

Ai

. . . ` Γ, Ai . . .

` Γ,
∧

Ai

together with the closure rule

[∀n ` Γ,B(σn)] → ` Γ,B(σ).

The system (S1) has for rules the restricted cut rule

` Γ,B(σ), ` ∆,B′(σ) → ` Γ,∆
4In general, it will follow from ` ∆, B(σ) and ` Θ, B′(σ) with ∆, Θ is Γ, B′(σ1), . . . , B′(σk). But this general case can

be treated in the same way as the case we present here.
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and the remarkable Ω-rule:

∀∆ ⊆ Pos[`S0 ∆,B(σ) → `S1 ∆,Γ] → `S1 Γ,B′(σ).

Intuitively, we use arbitrary proof of ` B(σ) instead of using ordinals.
For instance, we have clearly

∀∆ ⊆ Pos[`S0 ∆,B(σ) → `S1 ∆,B(σ)]

because S0 is a subsystem of S1 and hence, by the Ω-rule

`S1 B(σ),B′(σ).

It follos by the usual argument that we have `S1 A,¬A for any formula A.
It is then direct to prove

Proposition 1: The cut rule on any formula is admissible in (S1).

Proof: This is direct by induction first on the cut formula, and then on the two derivations.

It follows from this that we can embed (ID) in the new system (S1).

Proposition 2: If Γ ⊆ Pos then Γ is provable in (S1) iff it is provable in (S0).

Lemma: If Γ ⊆ Pos and `S1 Γ,B′(σ1), . . . ,B′(σk) then for any ∆1, . . . ,∆k ⊆ Pos if we have `S0

∆1,B(σ1), . . . ,`S0 ∆k,B(σk) we also have `S0 Γ,∆1, . . . ,∆k.

Proof: For k = 0, we get proposition 2. Let us take for instance for the case of a restricted cut rule.
In this case

`S1 Γ,B′(σ1), . . . ,B′(σk)

follows from
`S1 Γ′,B′(σ1), . . . ,B′(σk),B(σ)

and
`S1 Γ′′,B′(σ1), . . . ,B′(σk),B′(σ)

with Γ = Γ′,Γ′′.
By induction hypothesis, we have

`S0 Γ′,∆1, . . . ,∆k,B(σ)

and hence by induction hypothesis
`S0 Γ′′,Γ′,∆1, . . . ,∆k

that is
`S0 Γ,∆1, . . . ,∆k.

As before, we deduce from this the existence property for (ID).

Conclusion

Why do we need intuitively to extend the system (S0) to interpret ID? It seems that the intuitionistic
notion of ordinals is not enough to represent the closure ordinal of the classical version of B. The definition
of ordinals use the notion of function, which is quite different intuitionistically and classically. May be
the need of an extension of (S0) comes from this difference.

Another question is if we really need an inductive definition with “uncountable branching” (from
the reference [1, 4], one should expect that it is not needed). This should come from an analysis of the
given proof. For instance, it seems that we are really working in the fragment of (S0) with only positive
sequents, and that we never really need to do an induction on a tree with uncountable branching.

It is easier to see this for the Ω-rule: the uncountable branching there comes from the quantification
over all proofs in (S0). If we start from a fixed finitary formulation of a system of inductive definitions,
then we can replace this uncountable branching by a countable one.
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