Presheaf model of type theory

The set theoretic model of type theory interprets universes à la Russell. The (pre)sheaf models do not validate these universes. However we can validate a simpler version than universes à la Tarski, and this is what we present here, in the case of presheaf models.

1 Syntax

We list the rules of type theory, using a name-free syntax.

$$
\begin{aligned}
& \frac{\Gamma \vdash}{1: \Gamma \rightarrow \Gamma} \quad \frac{\sigma: \Delta \rightarrow \Gamma \quad \delta: \Theta \rightarrow \Delta}{\sigma \delta: \Theta \rightarrow \Gamma} \\
& \frac{\Gamma \vdash A \text { type }_{n} \quad \sigma: \Delta \rightarrow \Gamma}{\Delta \vdash A \sigma \text { type }_{n}} \quad \frac{\Gamma \vdash t: A \quad \sigma: \Delta \rightarrow \Gamma}{\Delta \vdash t \sigma: A \sigma} \\
& \overline{() \vdash} \quad \frac{\Gamma \vdash \quad \Gamma \vdash A \text { type }_{n}}{\Gamma \cdot A \vdash} \quad \frac{\Gamma \vdash A \text { type }_{n}}{\mathrm{p}: \Gamma \cdot A \rightarrow \Gamma} \quad \frac{\Gamma \vdash A \text { type }_{n}}{\Gamma \cdot A \vdash \mathrm{q}: A \mathrm{p}} \\
& \frac{\sigma: \Delta \rightarrow \Gamma \quad \Gamma \vdash A \quad \Delta \vdash u: A \sigma}{(\sigma, u): \Delta \rightarrow \Gamma . A} \\
& \frac{\Gamma \vdash A \text { type }_{n} \Gamma \cdot A \vdash B \text { type }_{n}}{\Gamma \vdash \Pi A B \text { type }_{n}} \quad \frac{\Gamma \cdot A \vdash b: B}{\Gamma \vdash \lambda b: \Pi A B} \quad \frac{\Gamma \vdash w: \Pi A B \quad \Gamma \vdash u: A}{\Gamma \vdash \operatorname{app}(w, u): B[u]} \\
& \frac{\Gamma \vdash A \text { type }_{n} \Gamma \cdot A \vdash B \text { type }_{n}}{\Gamma \vdash \Sigma A B \operatorname{type}_{n}} \quad \frac{\Gamma \vdash u: A \quad \Gamma \vdash v: B[u]}{\Gamma \vdash(u, v): \Sigma A B} \quad \frac{\Gamma \vdash w: \Sigma A B}{\Gamma \vdash \mathrm{p} w: A} \quad \frac{\Gamma \vdash w: \Sigma A B}{\Gamma \vdash \mathrm{q} w: B[\mathrm{p} w]}
\end{aligned}
$$

where $[u]=(1, u): \Gamma \rightarrow \Gamma . A$ if $\Gamma \vdash u: A$.

$$
\begin{gathered}
1 \sigma=\sigma=\sigma 1 \quad(\sigma \delta) \nu=\sigma(\delta \nu) \\
(\sigma, u) \delta=(\sigma \delta, u \delta) \quad \mathrm{p}(\sigma, u)=\sigma \quad \mathrm{q}(\sigma, u)=u \\
(A \sigma) \delta=A(\sigma \delta) \quad A 1=A \quad(a \sigma) \delta=a(\sigma \delta) \quad a 1=a \\
\operatorname{app}(w, u) \delta=\operatorname{app}(w \delta, u \delta) \quad \operatorname{app}(\lambda b, u)=b[u] \quad(\lambda b) \sigma=\lambda(b(\sigma \mathrm{p}, \mathrm{q})) \\
u, v) \delta=(u \delta, v \delta) \quad \mathrm{p}(u, v)=u \quad \mathrm{q}(u, v)=v \quad(\mathrm{p} u) \sigma=\mathrm{p}(u \sigma) \quad(\mathrm{q} u) \sigma=\mathrm{q}(u \sigma) \\
1=(\mathrm{p}, \mathrm{q}) \quad v=\lambda \operatorname{app}(v \mathrm{p}, \mathrm{q})
\end{gathered}
$$

We add the following rules for universes.

$$
\begin{array}{cc}
\frac{\Gamma \vdash A \text { type }_{n}}{\Gamma \vdash|A|: U_{n}} & \frac{\Gamma \vdash T: U_{n}}{\Gamma \vdash E l T \text { type }_{n}} \\
\frac{\Gamma \vdash A \text { type }_{n}}{\Gamma \vdash A \text { type }_{n+1}} & \frac{\Gamma \vdash T: U_{n}}{\Gamma \vdash T: U_{n+1}} \\
\overline{\Gamma \vdash U_{n} \text { type }_{n+1}} \\
E l|A|=A & |E l T|=T
\end{array}
$$

With this presentation, we can define $\pi T V=|\Pi(E l T)(E l V)|$ if $\Gamma \vdash T: U_{n}$ and $\Gamma . E l T \vdash V: U_{n}$. This satisfies $E l(\pi T V)=\Pi(E l T)(E l V)$.

2 Presheaf model

If \mathcal{C} is any small category, the presheaf model of type theory over \mathcal{C} can be described as follows.
To simplify the presentation, we don't consider the question of size.
We write X, Y, Z, \ldots the objects of \mathcal{C} and f, g, h, \ldots the maps of \mathcal{C}. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we write $g f$ the composition of f and g. We write $1_{X}: X \rightarrow X$ or simply $1: X \rightarrow X$ the identity map of X. Thus we have $(f g) h=f(g h)$ and $1 f=f 1=f$.

A context is interpreted by a presheaf Γ : for any object X of \mathcal{C} we have a set $\Gamma(X)$ and if $f: Y \rightarrow X$ we have a map $\rho \longmapsto \rho f, \Gamma(X) \rightarrow \Gamma(Y)$. This should satisfy $\rho 1=\rho$ and $(\rho f) g=\rho(f g)$ for $f: Y \rightarrow X$ and $g: Z \rightarrow Y$.

A type $\Gamma \vdash A$ over Γ is given by a set $A \rho$ for each $\rho: \Gamma(X)$. Furthermore if $f: Y \rightarrow X$ we have $\rho f: \Gamma(Y)$ and we can consider the set $A \rho f$. We should have a map $u \longmapsto u f, A \rho \rightarrow A \rho f$ which should satisfy $u 1=u$ and $(u f) g=u(f g)$.

An element $\Gamma \vdash a: A$ is interpreted by a family $a \rho: A \rho$ such that $(a \rho) f=a(\rho f)$ for any $\rho: \Gamma(X)$ and $f: Y \rightarrow X$.

This can be seen as a concrete description of what is respectively a fibration and a section of this fibration.

If $\Gamma \vdash A$ we can define a new presheaf $\Gamma . A$ by taking $(\rho, u):(\Gamma . A)(X)$ to mean $\rho: \Gamma(X)$ and $u: A \rho$. We define $(\rho, u) f=\rho f, u f$.

If we have a map $\sigma: \Delta \rightarrow \Gamma$ and $\Gamma \vdash A$ we define $\Delta \vdash A \sigma$ by $(A \sigma) \rho=A(\sigma \rho)$.
If $\Gamma \vdash A$ and $\rho: \Gamma(X)$ we define $|A| \rho$ to be the family $(A \rho f, f: Y \rightarrow X)$ with restriction map $A \rho f \rightarrow A \rho f g, u \longmapsto u g$ for $g: Z \rightarrow Y$.

We define $U(X)$ as the set of families of sets $P f, f: Y \rightarrow X$ together with restriction maps $P f \rightarrow P f g, u \longmapsto u g$ satisfying $u 1=u$ and $(u g) h=u(g h)$. We define then $\Gamma \vdash U$ by taking $U \rho=U(X)$ if $\rho: \Gamma(X)$.

If we have $\Gamma \vdash T: U$ we define $\Gamma \vdash E l T$ by the equation $(E l T) \rho=T \rho 1_{X}$ for $\rho: \Gamma(X)$.
We validate then $|E l T|=T$ and $E l|A|=A$.
If $\Gamma \vdash A$ we have $(E l|A|) \rho=|A| \rho 1_{X}$ and $|A| \rho$ is the family $A \rho f, f: \rightarrow X$, so that $|A| \rho 1_{X}=A \rho 1_{X}=$ $A \rho$. The restriction map $u \longmapsto u f,(E l|A|) \rho \rightarrow(E l|A|) \rho f$ is the restriction map defined by $A \rho \rightarrow A \rho f$. If $\Gamma \vdash T: U$ the family $(E l T) \rho f, f: Y \rightarrow X$ is defined by $T(\rho f) 1_{Y}=T \rho f$, and so $|E l T|=T$.
We can interpret dependent products $\Gamma \vdash \Pi A B$ and sums $\Gamma \vdash \Sigma A B$ if we have $\Gamma \vdash A$ and $\Gamma . A \vdash B$. For $\rho: \Gamma(X)$ we define $(u, v):(\Sigma A B) \rho$ to mean $u: A \rho$ and $v: B(\rho, u)$. We define $(u, v) f=u f, v f$ for $f: Y \rightarrow X$. On the other hand an element of (חAB) ρ is a family w indexed by $h: Y \rightarrow X$ with

$$
w h: \prod_{u: A \rho h} B(\rho h, u)
$$

and such that $\operatorname{app}(w h, u) g=\operatorname{app}(w h g, u g)$ if $h: Y \rightarrow X$ and $g: Z \rightarrow Y$. We define then $(w h) f=w(h f)$. We write $w=w 1$.

We can interpret $\Gamma \vdash \lambda t: \Pi A B$ whenever $\Gamma . A \vdash t: B$ and $\Gamma \vdash \operatorname{app}(v, u): B[u]$ if $\Gamma \vdash u: A$ and $\Gamma \vdash v: \Pi A B$. Here we write $[u]$ the map $\Gamma \rightarrow \Gamma . A$ defined by $[u] \rho=\rho, u \rho$. If $\rho: \Gamma(X)$ and $f: Y \rightarrow X$ we define $\operatorname{app}((\lambda t) \rho f, a)=t(\rho f, a): B(\rho f, a)$ for $a: A \rho f$. We take $\operatorname{app}(v, u) \rho=\operatorname{app}(v \rho, u \rho): B(\rho, u \rho)$. We can then check that we have

$$
\operatorname{app}(\lambda t, u) \rho=t(\rho, u \rho)=t[u] \rho: B(\rho, u \rho)
$$

if $\Gamma . A \vdash t: B$ and $\Gamma \vdash u: A$ and $\rho: \Gamma(X)$, which shows that the model validates the conversion rule $\Gamma \vdash \operatorname{app}(\lambda t, u)=t[u]: B[u]$.

