
Stack models of type theory

Nantes, April 27, 2017

Stack models of type theory

Stack models of type theory

The goal is to refine the notion of sheaf model, which is defined for simple
type theory, to dependent type theory

A sheaf is defined by a gluing condition of compatible local data

(By unique choice this also defines a structure)

The notion of compatibility refers to the notion of identification, so it is natural
that the univalence axiom, and the stratification of the notion of identification
play a crucial role

1

Stack models of type theory

Stack models of type theory

One application: to show that the principles

(Π(n : N) ‖A(n)‖)→ ‖Π(n : N)A(n)‖ (countable choice)

(Π(n : N) ‖B + T (n)‖)→ ‖Π(n : N)(B + T (n))‖

(T (n) decidable subsingleton)

are independent of type theory with univalence

Another potential application is to design a 〈〈 reactive type theory 〉〉 extending
functional reactive programming

2

Stack models of type theory

Groupoid model

We first try to use the groupoid model (model of one univalent universe)

It is also a model of propositional truncation

‖A‖ same objects of A but exactly one path between two objects

Do we have a counter-model of

Π(A : N → U) (Π(n : N) ‖A n‖)→ ‖Π(n : N)(A n)‖

if countable choice does not hold in the meta-theory?

U is the groupoid of sets with isomorphisms

3

Stack models of type theory

Groupoid model

For each given A, classically we can prove ‖A‖ → A

However, even classically, Π(A : U) ‖A‖ → A is empty

One surprise(?) is that, with this interpretation, countable choice always holds

Π(A : N → U) (Π(n : N) ‖A n‖)→ ‖Π(n : N)(A n)‖

We define an operation c A f = f and on path c α ω = 0

4

Stack models of type theory

Groupoid model

This means that, in order to get an independence proof of countable choice,
we cannot use the following approach: develop the groupoid model in a setting
where we have universes and countable choice does not hold (e.g. suitable sheaf
model of CZF)

5

Stack models of type theory

Sheaf model of universe

Let U be a Grothendieck universe

We suppose given a topological space with basic open sets U, V,W, . . .

We can define F (V) to be the collection of all U-presheaves on V

There is a natural restriction operation F (V)→ F (W) if W ⊆ V

So we get a presheaf

If we instead take F (V) to be the collection of all U-sheaves on V

There is a natural restriction operation F (V)→ F (W) if W ⊆ V

Gluing local data is possible, but only up to isomorphism

6

Stack models of type theory

Sheaf model of universe

I learnt this problem from Martin Escardó and Chuangjie Xu

A related question is discussed in EGA 1, 3.3.1

We replace strict equality by 〈〈path 〉〉 equality (isomorphism)

How to glue compatible (in the sense of isomorphism) locally defined sheaves?

When doing this, compatibility 2 by 2 is not enough: we should have
compatibility 3 by 3 with the cocycle condition

7

Stack models of type theory

Stack models

Instead we use the notion of stack (j.w.w. Bassel Mannaa and Fabian Ruch)

This sounds natural but one could expect coherence problems

The original insight that this might actually work is due to Bassel Mannaa

We have a family of groupoids Γ(U) for U basic open with restriction maps
that are now (strict) groupoid maps, for V ⊆ U

Γ(U)→ Γ(V)

a 7−→ a|V

8

Stack models of type theory

Descent data and stack structure

If C = (Ui) is a covering of U the gluing structure is formulated as follows

We write Uij = Ui ∩ Uj if Ui meets Uj

We first define the groupoid Γ(C) of descent data

A descent data is a family ai in Γ(Ui) with paths ωij : ai → aj in Γ(Uij)
satisfying the cocycle condition

9

Stack models of type theory

Descent data and stack structure

The descent data form a groupoid: a path (ai, ωij) → (bi, δij) is given by a
collection of paths ai → bi such that the following diagram commutes in Γ(Uij)

ai
ωij

-aj

bi
? δij

- bj
?

10

Stack models of type theory

Descent data and stack structure

Any element a in Γ(U) defines a 〈〈constant 〉〉 descent data ai = a in Γ(Ui)
with ωij = 1 in Γ(Uij)

We thus have a canonical map Γ(U)→ Γ(C)

Definition: Γ is a stack if this map is an equivalence

11

Stack models of type theory

Descent data and stack structure

This is one definition we can find in the literature

In order to interpret type theory, we need to refine this definition as follows

12

Stack models of type theory

Descent data and stack structure

First, we ask for an explicit adjoint map Γ(C)→ Γ(U)

This means that we have an explicit operation glue(ai, ωij) = a and an explicit
operation which build paths αi : a→ ai such that αi · ωij = αj

In general we cannot hope to have the strict equality a = ai on Ui

The elements a and ai are only path equal

The notion of stack is a structure (and not a simple property)

13

Stack models of type theory

Descent data and stack structure

Second, if V ⊆ U then we can consider the covering C ∩ V = (Ui ∩ V) of V

We require a strictly commuting diagram (also one for the universal map)

Γ(C)
glue

- Γ(U)

Γ(C ∩ V)
? glue

- Γ(V)
?

14

Stack models of type theory

Descent data and stack structure

In particular glue(ai, ωij)|V = glue(ai|V ∩ Ui, ωij|V ∩ Uij)

The gluing of compatible local data has to be 〈〈uniform 〉〉 w.r.t. restriction

We can then define the notion of family of stacks and build a model of type
theory with dependent products, sums, path types and one (univalent) universe

We stress the fact that we build a model of category with families: all required
equations hold strictly

This is never discussed in the literature (which does not look at the question
of interpreting dependent type theory): with the usual definitions, it is not even
clear if stacks form a cartesian closed category

15

Stack models of type theory

Universe

We give C = (Ui) is a covering of U and Fi is a sheaf on Ui and we have
isomorphisms ϕij : Fi|Uij → Fj|Uij satisfying the cocycle condition

There is a canonical way to define a sheaf F on U

An element of F (V) is a family ai in Fi(V ∩ Ui) such that ϕij(ai) = aj

We can check that F is a sheaf on U and we have isomorphims F |Ui → Fi

We get a (uniform) stack structure

Gluing would not be uniform if defined using global choice as in EGA 1

16

Stack models of type theory

Propositional truncation

If Γ is a stack, we define ‖Γ‖ (U) as follows

Given by a set of objects, and there is exactly one path between two objects

The objects are defined inductively (well-founded trees)

-any object of Γ(U) defines an object of ‖Γ‖ (U)

-if we have a covering C = (Ui) of U and a family ai of element in ‖Γ‖ (Ui)
this defines an element (ai) of ‖Γ‖ (U)

We get in this way a (uniform) stack structure

17

Stack models of type theory

Countable choice

The simplest counter model seems to be given by the lattice of basic open

Xn = [0, 1/2n) Rn = (0, 1/2n) ⊆ Xn

with Xn covered by Xn+1 and Rn and Rn+1 = Xn+1 ∩Rn

We define ϕ0(n) to be Xn and ϕ1(n) to be R0

ϕ0(n) ∨ ϕ1(n) is the total space Xn ∪R0 = X0

But both ϕ0(n) and ϕ1(n) are false at level Xl if l < n

So Π(n : N)(ϕ0(n) + ϕ1(n)) is empty at each level Xl

18

Stack models of type theory

One point space

In a groupoid we can 〈〈duplicate 〉〉 informations: we can consider a family of
objects ai with ai → aj satisfying the cocycle condition

Then we have an explicit 〈〈choice 〉〉 operation which selects an object a and
paths a→ aj

E.g. in the groupoid of sets we have a family of sets Ai and isomorphisms
Ai → Aj satisfying the cocyle condition

The 〈〈canonical 〉〉 choice of gluing for this family is the limit of this diagram

Any definable groupoid has such an extra choice structure

We get a new model of type theory in this way

19

Stack models of type theory

Inductive types

There is something subtle going on for interpreting the type of natural numbers

We interpret it by the constant presheaf N(U) = N

This is a sheaf only because the space is connected

This would not work for a disjoint covering, e.g. Cantor space

In the case of Cantor space a natural number at level U is given by a partition
of U and a selection of natural numbers for each block of the partition

20

Stack models of type theory

Inductive types

For a disjoint covering U1, . . . , Un we have to require an extra condition on
the gluing operation, the strict equality

ai = glue(a1, . . . , an)|Ui

These issues can only be seen because we try to interpret type theoretic
elimination rules with judgemental equalities, that are interpreted by strict
equalities in the model

In general, we don’t have glue(a|U1, . . . , a|Un) = a (e.g. for the universe)

21

Stack models of type theory

Inductive types

So we need two different kind of gluing operations for connected coverings
and for disjoint coverings

E.g. for the principle, with T n decidable subsingleton

(Π(n : N) ‖B + T n‖)→ ‖Π(n : N)(B + T n)‖

Andrew Swan considered the space (0, 1)× C where C is Cantor space

The groupoids are family Γ(U |b) where U basic open of (0, 1) and b basic
open of Cantor space and we have two kind of coverings

U |b covered by U0|b and U1|b (connected)

U |b covered by U |b1, . . . , U |bn (disjoint)

22

Stack models of type theory

Sites

So far we have only looked at stacks over topological spaces

We can also consider topology defined by sites, e.g. Schanuel topos

What is interesting in this situation is that we have a new situation of 〈〈self
intersection 〉〉: even in the case of a covering with only one map, the cocycle
condition is non trivial

23

Stack models of type theory

Cubical stacks

All that we have done so far can be generalized to the notion of cubical stacks
(thanks to several discussions with Christian Sattler)

What is crucial here is that we can consider new 〈〈path 〉〉 models of type theory,
e.g. a model where a type is interpreted by two types A and B and a path
connecting A and B

Theorem: This forms a model of cubical type theory, and hence of type
theory with univalence and propositional truncation

Follows from the fact that this can be seen as a model over the context i : I

24

Stack models of type theory

Presheafs

A presheaf Γ is given by a collection of sets

Γ(I|U)

where I finite set of names and U basic open

We have restriction maps

Γ(I|U)→ Γ(J |U) ρ 7−→ ρf

for f : J → I with the laws ρ1 = ρ and ρ(fg) = (ρf)g and

Γ(I|U)→ Γ(I|V) ρ 7−→ ρ|V

if V ⊆ U with the laws ρ|U = ρ and ρ|W = (ρ|V)|W

25

Stack models of type theory

Dependent presheaf

Given a presheaf Γ, a dependent presheaf Γ ` A is given by a presheaf on the
category of elements of Γ

Explicitely it is given by a family of sets A(I|U, ρ) with ρ in Γ(I|U) with
restriction maps, for f : J → I

u 7→ uf A(I|U, ρ)→ A(J |U, ρf)

and for V ⊆ U

u 7→ u|V A(I|U, ρ)→ A(V, ρ)

26

Stack models of type theory

Presheaf

We introduce the notation

`IV A

to mean that A is a dependent type on the presheaf represented by I|V

Explicitely, it is given by a family of sets A(f,W) for f : J → I and W ⊆ V
and restriction maps

All operations we consider will commute with substitutions and restrictions

If `IV Γ we define Γ `IV A to mean that A is a presehaf on the category of
elements of Γ

27

Stack models of type theory

Descent data

Given a covering C = (V0, V1) of a basic open V with a non empty intersection
V01 = V0 ∩ V1 and `IV A we define the type of descent data `IV DC(A)

28

Stack models of type theory

Descent data

The introduction rule for descent data is

`IV0 a0 : A `IV1 a1 : A `IV01 a01 : Path A a0 a1

`IV (a0, a1, a01) : DC(A)

Theorem: If A has a composition structure then so has the type DC(A)

There is a canonical map `IV λ(a : A)(a, a, 〈i〉a) : A→ DC(A)

29

Stack models of type theory

Stack structure

A stack structure is an equivalence structure for this map A→ DC(A)

30

Stack models of type theory

Stack structure

Let us write a for (a, a, 〈i〉a) (we may write simply a if there is no possible
ambiguity)

One way to express the stack structure is by giving two explicit operations

`IV ext([ψ 7→ a], d) : A

given a : A such that `I,ψV a = d : DC(A), which restricts to a on ψ, and

`IV ˜ext([ψ 7→ a], d) : Path DC(A) ext([ψ 7→ a], d) d

which restricts to the constant path a on ψ

31

Stack models of type theory

Stack structure

We can then define the stack structure by induction on the type

For instance the stack structure on T = Π(x : A)B is defined by the equation
(we give here only the definition for ext)

ext([ψ 7→ w], (w0, w1, w01)) a = ext([ψ 7→ w a], (w0 a,w1 a, 〈i〉w01 i a))

32

Stack models of type theory

Stack structure for the universe

We only give the definition of ext([ψ 7→ A], D) : U given D = (A0, A1, A01)
such that A = D on ψ

We consider the type B of elements a0, a1, a01 with a0 : A0 on V0 and a1 : A1

on V1 and a01 : Pathi (A01 i) a0 a1 on V01

B has a composition structure

Since A = D on ψ we can consider the map cD : A→ B defined on ψ which
sends a to (a, a, 〈i〉a)

Since A is a stack, this map is an equivalence

We can then define ext([ψ 7→ A], D) = Glue [ψ 7→ (A, cD)] B on I|V

33

