The strongest principles of reasoning that were
stated explicitly in the traditional intuitionistic litera-
ture (see Brouwer 1918 and, for a more explicit formulation,

Brouwer 1924%) are'the:principles of definitibn'eﬁd"ﬁfee}:ﬁ§> |

transfinite or generalized induction as formalized in the

 systems of Kleene and Vesley 1965 and Kreisel and Troelstra

1970. They are the principles that are needed in order to
develop, for example, the theory of Baire space, Bprelﬁeeps
and ordinals of the second'nuMber:elass; *i£~is'tfﬁefiha£4f
Brouwer 1918 introduced the notion of species and even
species of finite type but, since he did not touch upon the
crucial question whether or not te allow species to be
defined impredicatively, it is not possible to determine the
proof theoretic strength that results from the introduction
of the notion of species. In actual practice no more abstract
way of defining species than by generalized induction seems
to have been used.

Although the strength of the principles just
mentioned suffices for large parts of mathematical practice,
there are number theeretic problems arising in proof theory
whose logical form is so simple that their'meaningfulness
can hardly be doubted but whose solution is known to require
principles that are far more abstract than the pfinciple of
generalized induction.‘ A prime example is the problem of
consistency and normalization for second order arithmetie
with the full impredicative comprehension axiom. To solve

this problem, even so called iterated generalized induction,
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which is the strongest principle contemplated by Tait 1967,

does not suffice.

This lack of proof theoretic strength has been a

most serious objection against intuitionismaaséatbgsis;iggﬁ;:,h?;v

the whole of mathematics and also a stumbling block for

constructive proof theory.

The situation was radically changed when Kreisel

1967 pointed out the intuitionistic significance of the im-

predicative theory of species, that_is,_sech@é@;ggrﬁgtiﬁh;fjhg 2

metic with intuitionistic ipstead of‘ciassical logié; Once
the theory of species is acceptéd, one gets an intuitionistic
consistency proof for classical analysis by extending in the
obvious way the double negation interpretation of Kolmogorov
1925, Godel 1933 and Gentzen 1933. And, more informatively,
one gets an intuitionistic proof of normalization for intui-
tionistic second order logic (see Girard 1970; Martin-Lof 1970
and Prawitz 1970) improving Prawitz's 1968 earlier complete-
ness theorem for the cut free rules. The proof theoretieal
analysis‘adds to the convietion that there be no conflict
between the impredicativity and the intuitionistic intefbret-
ation of the notion of function and the 1ogica1 operations.
For example, it yields a mechanical method of transforming an
arbitrary numeral m and a formal proof of Vx dya(x,y) into
a numeral n and a formal proof of A(m,n).

Having accepted the theory of species, there is no
reason not to go one step further and accept the full

intuitionistic theory of finite types, that is, the simple

theory of finite types with intuitionistic instead of




classical logic, with the Peano axioms but without the axiom
of extensionality. This theory is proof theoretically as

strong as the corresponding cla851ca1 theory w1th exten91on-

ality, that is, as strong as Pr1n01p1a Mathematica. To see
this one interprets, first, the classical theory with exten-
gionality into the classical theory without extensionality
by means of Takeuti'1953 or Gandy 1956 and, second,'the-

'cla551ca1 theory without exten51ona11ty into the correspond- - B

ing intuitionistic theory by means of the double negat1on
interpretation. |

The simple theory of finite types, aithough proof
theoretically quite strong; has some unnatural limitations
(for example, it permits only finite iterations of the power
operation) and, above all, it is not adequate for a formal-
jzation of those parts of mathematics that télk about arbi-
trary sets and not just sets of natural numbers, sets of

sets of natural numbers, and so on. Therefore, the idea has

occurred to me of formulating a general intuitionistic theory
of types which could serve as a logical basis for intuition;
istic mathematics in somewhat the same way as set theory has
ser&ed as a basis for classical mathematics. The rest of

my talk will be devoted to an informal description of this
theory. For a formal account, see Martin-Lof 1971. As for
the strength of the theory, the best that I can say at
present is that it exceeds that of Zermelo's set theory.

We shall think of mathematical objects or

constructions. Every mathematical object is of a certain




kind or type. Better, a mathematical object is always given
together with its type, that is, it is not just an object,

it is an object of a certain type. I shall use the notation
x € A

to express that x is an object of type A. A type is well-
defined if we understand (or grasp as Kreisel would.say)
what it means to be an object of that type. The types are
Wiﬂ;hgéives ﬁéihema%igg{_ggjects;Vhameiy;7tﬁéée objects whose

type is the type of types. I shall denote the type of fypes

by the symbol V. Note that V is itself a type, namely, the

type of types, and hence an object of type V. In symbols,
VEV.

The type of types introduces a strong kind of selfreférence
which, as pointed out by Godel 1964, transcends the cumula-
tive hierarchy notion oI set and may seem to verge on the
paradoxes, but which is actually being used in category
theory, notably, in the construetion of the categﬁry‘of_all

categories.

A proposition will be represented by a certain

type, namely, the type of proofs of that proposition.
Conversely, if we accept the abstract intuitionistic expla-
nation of the notion of proposition, according to which a
proposition is defined by prescribing how we are allowed
to prove it, then we may think of a type as a propositidn,

namely, the proposition which we prove by exhibiting an



object of that type. In other words, we may simply identify

propositions and types and interpret
x €A

alternatively as
x is a proof of the proposition A.

On theAformal'leQQI;'the analogy between propositions and
'fyp;;léés diébé#éfédvgy Curry'and Feys 1958.

The idea of the fype"of types is forced upon us by
accepting simultaneously each of the following three prin-
ciples. First, quantification over propositions as in im-
predicative second order logic. Second, Russell's doctrine
of fypes according to which the ranges of significance of
propositional functions form types so that,'in particular,
it is only meaningful to quantify over all-objécts of a cer-
tain type. Third, the identification of propoSitions and
types. Suppose namely that quantification over propositions
is meaningful. Then, by the doctrine of types, the propositions
must form a type. But, if propositions ahd types are identified,

then this type is at the same time the type of types.

Suppose now that we have defined a function, rule

or method which to an arbitrary object x of type A assigns

a type B(x). Then the cartesian product

(TTx €A)B(x)

is a type, namely, the type of functions which take an




arbitrary object x of type A into an object of type B(x).
Clearly, we may apply an object f of type (T1x €A)B(x) to

an object x of type A, thereby getting an object

£(x)

of type B(x) If we think of B(x) as a proposition rather

than a type, (TTxéA)B(x) is the logical product or

conJunetlon of ‘the propositions B(x) obtained by letting

x range over A Aw?roof of (ﬁ:{éA)B(x) is a funct1on

which to an arbitrary object x of type A assigns a proof

of B(x). Functions may be introduced by explicit definition.
That is, if we build up a term from constants for already
defined objects and a variable x that aenotes an arbitrary
object of type A and if this term t denotes an object of
type B(x), then we may introduce a function f of type

(TTx €A)B(x) by means of the schema
f(x)

llere and in the following all mention of parameters is ..

suppressed.

If B(x) is defined to be one and the same type B
for every object x of type A, then (TTxeA)B(x) will be

abbreviated
A — B.

It is the type of functions from A to B. Thinking of

A and B as propositions, it is the proposition

A implies B.



. The power type of a type A

P(A) =A—>V

is the type of propositional functions defined on A or, in
jntuitionistic terminology, the type of species of objects
of type A.

If A and B are types, so is the disjoint union

B ¥

which is the type of objects of the form i(x) with x of

VS e b SR s

type A or j(y) with y of type B. Ilere i and j denote the
canonical injections. 1In case A and B are thought of as
propositions, A + B is their disjunction. Suppose that

g and h are functions of type (TixeA)C(i(x)) and

(Tiy €B)C(j(y)), respectively. Then we may define a function

B o Do,
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f of type (TTz€A + B)C(z) by means of the schema

£(i(x)) = g(x),
£(j(y)) = h(y).
? Given a function which to an iject x of type A

assigns a type B(x), we may form the disjoint union

(Zxea)B(x)

which is the type of pairs (x,y) where x and y are objects
of type A and B(x), respectively. When we think of B(x) as

a proposition rather than a type, (Zx€A)B(x) is the




'proposition

there exists an object x of type A such that B(x)

15’(£;y) where x is an ob-

which we prove by exhibiting a
ject of type A and y is a proof of B(x). A third inter-

pretation of (Zx€A)B(x) is as:

the type of all objects x of type A such that B(x)

to give an

because, from the intuitionistic poin
objecf x of type A such that B(x)‘is to give # together with
a proof y of the proposition B(x). This interpretation of
the-notion of such that is implicitly used by Bishop i967.
However, its explicit formulation fequires us to consider
proofs as mathematical objects. (See also Kreisel 1967 for
a discussion of this point.) Given a function g of type

(TTxe€A)(TTyeB(x))c((x,y)) we may introduce a function

f of type (Tlze(Zx€A)B(x))C(z) by means of the schema

£((x,y)) = g(x,y).

For example, the left and right projections p and q of type
(X x€A)B(x)—> A and (TTze (Zx€A)B(x))B(p(z)), respec-

tively, are defined by putting

p((x,¥))

q((x,y))

X,

Y-

In the special case when B(x) is defined to be

oné and the same type B for every object x of type A,




(Zx €A)B(x) is abbreviated N b

A X B.

It is at the same time the cartesian product and

conjunction of A and B.

For a nonnegative integer n we introduce a type N,
with precisely the n objects 1, 2, ..., n. @ ivan dbjéétQW1:

Cys +ees Cp of types C(1), ooy C(n), respectlvely ‘we -may

then define a function f of. type (T_kzéN')C(x)wby:the#schema

f(i) = éi’

f(n) = c,-

In particular, N, is at the same time the empty type &

and the logical constant falsehood L, and the function f
of type (TTX<ENO)C(x) is the empty function. Similarly,
N1 is not only the one element type but also the logiecal

constant truth T,

N is a type, namely, the type.of_natural numbers.

1 is an object of type N and, if x is an 6bject of type N,
so .is its successor x+1. Given an objedt c of type C(1)
and a function g of type (TTxeN)(C(x) = C(x+1)) we may

introduce a function f of type (TTrx eN)C(x) by the

recursion schema

£(1) =

£f(x+1) = g(x,f(x));
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rhinking of C(x) as a proposition for every object x of
type N, f is the proof of the universal proposition

(TTxesN)C(x) which we get by applying the pr1n01ple of

mathematical induction to the proof c of C(1) and the“proof'
g of (TTxeN)(C(x)—> C(x+1)).

To the axioms specified so far we may want to add
axioms for certain types defined by transfinlte 1nduct10n.
In the case of 0, the type of -ordinals of the second numbe
class, these axioms run as follows. 1 is an obJect of typ

If x is an object of type O, so is x+1. If y is a sequence

of objects of type 0, that is, a function of type N—>0,
then y(1)+y(2)+... is an object of type 0. Finally, if c is
an object of type C(1), g a function of type
(Ttxeo)(c(x) > C(x+1)) and h a function of typ_e
(TTyeN->0)((TTx€N)C(¥(x)) > C(y(1)+y(2)+...)), then

we may define a function f of type (TTx€0)C(x) by the

schema of transfinite recursion

(1) =
f(x+1) = g(x,£(x)),

£(y(1)+y(2)+...) = h(y,fey),

where as usual

(foy)(x) = 2(y(x)).

By interpreting C(x) as a proposition rather than a type,
this schema gives us at the same time the principle of proof

by transfinite induction over the second number class.
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This finishes the informal description of the.
theory of types. 1In the formal theory the abstract entities

(natural numbers, ordinals, functlons, types, and so on)

become represented by certain symbol conf1gurat1ons, called
terms, and the definitional schemata, read from the left to

the right, become mechanical reduction rules for these

symbol configurations. A term reduces to another'term
if the latter can be obtained by repeatedly applying the -
reductlon rules to parts of the former, and a term is

normal if it cannot be further reduced, that is, if it has
no part to which any of the reduction rules can be applied.

For example, with the usual definitions of addition and

multiplication,
X+1 = x+1, x-1 = x, .
x+(y+1) = (x+y)+1, x-(y+1) = (x:y)+x,

the term (1+1)-(1+1) reduces in three steps to the normal
term ((1+1)+1)+1. The normal terms have a very perspicuous
form which can be determined by purely combinatorial
reasoning. In particular, a normel numerical term is a

numeral, that is, of the form
(.oo((141)+1)+. . +1)+1,

and there is no normal term of type _\.

The principal result of the proof theoretical

analyéis of the formal theory is the normalization theorem

(proved in Martin-Lo?f 1971 for the fragment of the theory
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that is based solely on the axiom that there is a type of

types and the axioms for cartesian products) which says that
every term réduces t&ra'normal term.

Because of what was said at the end of the previous para-
graph, the consistency of the formal theory follows combi-
natorially from the normalization theorem. Hence, according
to Godel's second incompleteness theorem, it cannot be
prdved.without transcending the principleé of reasoning .
that are formalized in the thedry. What has turned out to
be most expedient is to prove in the theory itself for an
arbitrarily given term that it reduces to a normal term.

The normalization theorem then follows by an épplication of

the reflection principle

if A(n) is provable in the theory for every nu-

meral n, then A(x) for all natural numbers X.

The normalization theorem for the general
intuitionistic theory of types provides us for the firsf
time with an example of a number theoretic theorem (of the
form Nx yA(x,y) with A(x,y) primitive recursive) which
we know how to prove intuitionistically, namely, by using
the theory itself strengthened by the reflection principle;
but which we do not know to be provable in classical set
theory.

Formalization taken together with the ensuing

Proof theoretical analysis effectuates the computerization
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of abstract intuitionistic mathematics that above all
Bishop 1967 has asked for. Suppose, for example, that we

want to compute the value of a number theoretic function for

" @ certain argument. We then find the term that denotes the

function in the formal theory and apply it formally to the
numeral that denotes the argument. The resulting term,
which denotes the searched for value of the function, is a

numerical term which, according to the normalization theorem,

reduces to a"numeféi;  Thianumera1 is the final result of
our computation. It only remains to remark fhat reducing
a term to normal form is a mechanical process which can be‘
implemented on a computer. Similarly, as soon as we have
carried out the construction of.a real number in the formal
theory, we can program a machine to computé it with an
arbitrary degree of approximation. What is doubtful at
present is not whether it is possible to mechanize the
abstract computations of intuitionistiC-mathematics, because
we already know how to do that as a result of the‘prbof
theoretical analysis of formal intuitionistic theories,
but rather whether these proof theoretical normaligatipn
procedures are at all useful for numerical computation.
So far, they seem not to have found a single sigﬁificant ‘
application. . . _ | %-j )
I am indebted to Georg Kreisel and'Dag Prawitz |

for their criticism of the first draft of this paper. %A@‘
. @ . d L
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