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Abstract

A sequence of successsively stronger universes or reflection principles Uy, Uy, ...
was introduced for intuitionistic type theory by Martin-Lof, however the indexing
was external to the theory. We introduce rules for a universe operator which, given
A Set and a family of sets B(x) Set(x€ A) over A, produces a collection of sets
which includes each B(x) for x in A, the set A itself and is closed under the
operations [], X, + and I (as well as W if desired). Thus this collection together with
the sets it contains comprise a family of sets, which in turn can be taken as an input
for this universe operator.

In this talk we describe the rules for the first of what can be called a higher-
order universe or reflection principle V for intuitionistic type theory which, in
addition to closure under 1, 2, +, I (and W), is itself closed under the above
universe operator. The strategy is completely general and an abstract theory of
higher-order reflection principles follows entirely similar lines.

Among the rules for higher order universes we formulate reflection rules
which can be seen as expressing the commutation of certain formal diagrams usually
associated with an inductive system. Our use of the term reflection differs somewhat
from its use by Martin-Lof in that set equalities, and not only set existence, via set
constructors are reflected. However, as an example of a general elimination rule for
these universes we give an elimination rule for our universe operator and remark
that this rule, for any universe beyong the universe Uy, together with the reflection
rules yields a theory where all sets are provably equal. In particular, Ny and Ny are
provably equal and, hence, the theory is inconsistent. Thus, in general, reflection of
all judgments of the forms C Set and C=C' is incompatible with the principle of
transfinite induction embodied in the elimination rule for higher universes.

As an application of higher-order universes, we argue, via a naive set-
theoretic interpretation of the elementary set construction principles, that they
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provide a means of understanding Mahlo numbers. In particular that V, in this sense,
naturally corresponds to &, ;.

Introduction

In this article we outline an extension of Martin-Lo6f's intuitionistic theory of types
(see Martin-L.of [1984]) to transfinite universes, socalled since, as the finite universes
provide for internal iteration of the elementary set construction principles, transfinite
universes provide a mechanism for internal transfinite iteration of universe
operators(a similar operator was used by Palmgren [1989] in the context of partial
type theory to give a construction of Type:Type). Our original interest was aroused
by comments by Per Martin-Lof to the effect that, under a standard set-theoretic
interpretation of type theory's elementary set constructors, the finite universes for
type theory should correspond to the first @ inaccessibles. This together with
seminal papers by Mahlo[1911] on cardinals in set theory exhibiting successively
stronger closure properties, brought us to formulate an intuitionistic theory of
transfinite universes which could give constructive meaning to Mahlo numbers .

We begin by giving a complete set of rules for Martin-Lo6f's finite universes in order
to motivate our construction of a higher-order universe in the sections that follow.
We define a sequence of successive universes (Uy),. iy and decoding functions
(Tpren by an external induction on k.

Uj-formation

ae Uy a=be Uy
Uy Set Tk(a) Set Tk(a)=Tk(b) Set
Uy-introduction
(xe Tx(a)) (xeTx(a))
ae Uy be Uy ae Ug be Ug )
d(a,(x)b)e Ug Ti(8(a,(x)b) = (Axe Ty(a))Ti(b)’

for & each of 7, 6 and w and A each of the respective set construction principles IT, ¥,
and W.



acUy belUg acUp beU;

a+be Uy Tk(a+b) = Tk(a) + Ti(b)
aclUg b,ceTy(a) aeUy b,ceTk(a)
i(a,b,c)e Uy Tk(i(a,b,c)) = I(Ti(a),b,c)

Remark: Each of the above forms of canonical elements in Uy, has its

corresponding substitution rule stating that equal inputs to a code for a type
constructor give rise to equal codes for constructions, e.g., in the case of © we would
have

(xe Ti(a))

a=a'eUy b=b'elU;
n(a,(x)b)=n(a',(x)b")e Ux.

Unless otherwise stated these rules are assumed in the sequel, although we refrain
from giving them explicitely.

Ground Types (for k=0)

nelUg Tym)=N; nelUy Ty(ng) =N, for s=0,1.

Remark: Our choice of ground types differs from the usual one in that we include
only the first two finite sets Ny and Ny. However, a standard argument shows that

the remaining finite sets Ng (for s>1) together with their rules are derivable from
these two with the help of +.

Embedding of Uy
we Uy Ty = Uy
ae Uy ae Uy
tg(a)€ Uk Ti+1(t(a)) = Ti(a)

We will refer to the mapping (x)t(x) as the inclusion between Uy and Uy, . While
these last rules reflect judgments of the form C Set from Uy to Uy, 4, the substitution

rule
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a= a'e Uy
te(a)=tx(a")€ Uk

ensures that the inclusion into Uy, is well-defined and that judgments of the
form C= C' Set in U, arereflected in Uy, . To reflect judgments C = C' in

Set, which arise as a result of the interpretation of &, ¢, +, i and w in Set as [],
Y, +, L and W (for example, by the rules for Ty, we have Ty (a+b)=T(a)+Ty(b)

in Set), we include the reflection rules

aclUy belj
te(a+b) = (@) + tx(b)€ Uksy

(xe Tk(a))
ae Uk be Uk
t(8(a,(x)b)) = &(tx(a),(x)tk(b))€ U1

(for d each of &, ¢ and w);

acUg b,ceTi(a) .
t(i(a,b,c)) = i(t(a),b,c)€ U4y

The Universe U,

To serve as motivation for the higher-order universe to be presented we exhibit some

aspects of the pattern of definition by giving the rules for the first transfinite
universe, which we denote U,

U,,-formation

ac Ua) a=b€ Uﬂ)
Uy, Set Te(a) Set To(2)=Te(b) Set
U,-introduction
o€l €U for k=0,1,...
tyo(c)€ Uy To(t,0(c))=Tk(c)



(xeTo(a)) (xeTo(a))

ac Ua) be U(o ae U(D be U(O
O(a,(x)b)e Uy To(8(a,(x)b))=(Ax€ Ty (2)) T (b)’

(for d each of m, ¢ and w and A the corresponding set constructor IT, Z or W);

aeU, beU, aeU, beU,
a+be U, Teath) = Typ(a) + Ty(b)
acU, b,ceTy(a) acU, b,ceTy(a)
i(a,b,c)e Uy To(i(a,b,c)) = I(Te(a),b,c)
Uw-reflection
a,beU,

t 0(a+b)=t o (a)+, o (D)€ Up

(x€Ti(a))

ae Uy be Uk
tr,0(0(a,(X)b))=0(t, (a),(X)tx, o (b))€ Up

(for d each of @, ¢ and w),

acUg b,ceTk(a)
tr,0(i(a,b,c))=i(ty 0(a),b,c)€ Uy

reflecting judgments of the form C=C' to U, Finally, to reflect to U, judgments
C=C" which arise as a result of the U_-introduction rule giving T, on elements
inserted in Uy, via ty , from Uy, we have

ce Uk .
tir1,0(t(C)) =§;a)(c)e Uo




Formulation a la Russell

The formulation of rules for universes we have chosen here is refered to as the
formulation a la Tarski due to the similarity between the family T(x)(xe U) and
Tarski's truth definition. We now give examples of an alternate formulation, refered
to as the formulation 2 la Russell, where [, X.... are viewed both as set forming
operations and as operations for forming canonical elements of the universe in
question, i.e., the universe is viewed truly as a set of sets.

U, -formation (for a=0,1, ... @)

AeU, . A=Be U,
Ua Set A Set A=B Set
U,-introduction (for a=0,1,...,0)
(x€ A)
A€Us BeUs £ A each of IS and W;
(Axe A)Be Uy,
AeU, BelU, AeU, b,ceA
A+Be U, I(A,b,c)e Uy
Ground Types(k=0)
NeU, Ne Uy, for s=0,1.
Embedding of Uy
Ce Uy Ce Uy
Uke Uk+1 Ce Uk+l Ce Uo)

Remarks: Again we assume the standard substitution rules without explicitely
stating them.

Despite the relative simplicity of the formulation  la Russell, we have not chosen to
use it for two reasons. First, the formulation & la Tarski ensures a monomorphic
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theory, i.e., one where terms carry complete typing information (presuming a
monomor phic formulation of type theory itself; see Nordstrom, Petersson and
Smith[1990]). Secondly it leaves open the choice whether to have or not to have the

reflection rules (which, as we shall see, are incompatible with the natural elimination
rule even for the universe Uy).

The Operator U(A,(x)B)

The operator U together with T(-) is given as a collection of rules
parameterized by a family of sets which may or may not be included as a
construction principle under which a universe is closed. These rules should
be compared with those giving Martin-Lof's finite universes.

U-formation

(x€A)
ASet B Set together with
U(A,(x)B) Set
(xeA)
A=A' B=B'

U(A,(x)B) = U(A',(x)B')

and
ce U(A,(x)B) c=c'eU(A,(x)B)
T(A,(x)B,c) Set T(A,(x)B,c) = T(A,(x)B,c").

U-introduction (ILX and W-closure)

(xe T(A,(x)B,a))

ac UA,x)B)  beU(A,(x)B)
d(a,(x)b)e U(A,(x)B)

with



(xe T(A,(X)B,a))
ac UA,x)B)  beU(A,(x)B)

T(A,(x)B,8(a,(x)b) = (AxeT(A,(x)B,2)) T(A,(x)B,b)

U-introduction (+-closure)

ae U(A,(x)B) be U(A,(x)B)
a+be U(A,(x)B)

with

a€ U(A,(x)B) beU(A,(x)B)

T(A,(x)B,a+b) = T(A,(x)B,a) + T(A,(x)B,b)

U-introduction (I-closure)

a€e UA,x)B) b,ceT(A,(x)B,a)

i(a,b,c) e U(A,(x)B)
with
ae UA,x)B) b,ceT(A,x)B,a)
T(A,(x)B,i(a,b,c)) = I(T(A,(x)B,a),b,c)
Rules of Reflection

We introduce rules to ensure that judgements of the forms C set and C = C'
set, which hold in the universe (A,(X)B), i.e., in case A is U(A',(x)B') and
(x)B is (x)T(A',(x)B',x) for some family of sets (A',(x)B'), are reflected in

the universe (U(A,(x)B),(x)T(A,(x)B,x)):

ceA .
I(A,(x)B,c)e U(A,(x)B)’

and



ceEA
T(A,(X)B,I(A,(x)B,c)) = B(c/x) |

Aside from the above interpretation of these three rules in terms of the
reflection of judgements, they (together with the suppressed substitution
rules) can be viewed as stating that (x)/(A,(x)B,x) is a well-defined function
from A to U(A,(x)B), i.e., the inclusion map from A into U(A,(x)B).
Finally, if (A,(x)B) is the result of applying the universe operator, we add
rules to guarantee that equalities in Set are reflected in U(A,(x)B):(for the
sake of readability we introduce the abbrevations

U' for U(A',(y)B") and (x)T" for (x)T(A',(y)B',x)
until we explicitely state otherwise)

(xe A"

A'Set B'Set speu ,
KU, (x)T" a+b) = [(U',(x)T",a) + I(U',(x)T",b)e U(U',(x)T")’

(yeA) (zeT'(a))
A'Set  B'Set acU' beU'
(U (x)T",(a,(2)b)) = 8((U",(x)T",2),(2)(U",(x)T" b)) UU',x)T") °

for O each of , ¢ and w; and
(yeA")
A'Set B Set acU' b,ce T'(a)
I(U',(x)Ti(a,c,d)) = i((U',(x)T",a),c,d) € U(U',(x)T")

Remark: The right hand side of the equality in this last rule is meaningful

since, by the third of these reflection rules, we have that:
TU,®T, (U, (x)T" 2)) = T'(a/x).

Iteration Rules

Thus far the rules for U(A,(x)B) do not introduce sets not already in A. The
following are designed to insure that the iteration is true or proper, i.e., they
introduce a name for A: (they can be viewed as U- introduction rules)

#(A,(x)B) € UA,(x)B)  and T(A,(x)B,#(A,(x)B)) = A.

The Universe Operator in the Logi;al Framework



The logical framework, due to Martin-Lof (see, for example, Palmgren and
Stoltenber g-Hansen [1990]), is a typed A~—calculus with dependent types.
This section is not essential to those that follow, but is included to put to rest
any worries the reader may have about the typing of those canonical
constants new in the universe operator. Briefly, the logical framework has
the judgment forms:

I" context

I' = atype

I'sa=p

I'=saeq
and

I'sa=beq;

where lower-case Roman letters are used for elements of a type and lower-
case Greek letter for types. It has rules for contexts

I' = o type and X1€ 0y, ..., Xn€ O, context
I', xe o context X1 €U, ..., Xp€ Op = X;E O

for i=1,...,n; as well as rules for the constant Set:

I' = xeSet

I' = Set type and =
P I' = X type

(with a rule stating that equal sets go to equal types under . ). We have
formation and application of families of types and their elements given by
the following rules:

I'sotype T,xeo= P type
I' = (xea)p type

[, xea = bef
I' = (x)be (xe )p

and
Ixea=bef T aca

I' = ((x)b)a = b(a/x)e P(a/x)
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where (xe€ o) is abbreviated by (a)f, if B does not depend on x.

We shall not plague the reader with derivations in the logical framework,
but simply give the typings and equations for the constants involved in our
formulation of the universe operator U(A,(x)B) and T(A,(x)B,-), first U and
T themselves

Ue (AcSet)((A)Set)Set
and

Te (Ae Set)(Be (A)Set)(U(A,B))Set.

The typings for the operations on the universe are:

——— e it

7,0,we (A€ Set)(Be (X)Set)(ae U(A,B))((T(A,B,a))U(A,B))U(A,B)
i€ (A Set)(Be (A)Set)(ac U(A,B))(T(A,B,2))(T(A,B,2))U(A,B)
+€ (A Set)(Be (A)Set)(U(A,B))(U(A,B))U(A,B)

Then for 8 each of &, ¢ and w, respectively, A each of [], Y. and W, we have
the following equalities

(A)B)(@)(®)T(A,B,5(A,B,a,b)) = (A)(B)(@)(b)A(T(A,B,a),(X)T(A,B,b(x)))
€ (A Set)(Be (A)Set)(ac U(A,B))((T(A,B,a))U(A,B))Set

Analogous equalities are added for T's commutation with + and i. For the
constants % and /, we have

« (AeSet)(Be (A)Set)U(A,B)

with
(A)B)T(A,B,+(A,B)) = (A)B)A€ (Ac Set)(Be (A)Set)Set;
and
le (A€ Set)(Be (A)Set)(A)U(A,B)
with
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(A)B)(2)T(A,B,I(A,B,2))=(A)(B)(a)B(a)e (A Set)(Be (A)Set)(A)Set.

The reflection rules for the universe operator, which state that the mapping
I(A,(x)B,-) commutes with the elementary set constructors, are of particular
interest. We give only the case of +:

(A)B)(@)(b)/(U(A,B),T(A,B),+(A,B,a,b))

=(A)B)(@)(b)+(U(A,B),T(A,B),/(U(A,B),T(A,B),a),/(U(A,B),T(A,B),b))

€ (A€ Set)(Be (A)Set)(U(A B))(U(A B))U(U(A,B),T(A,B)).
Remark: Since a universe is at the same time the type of each set it
contains, one can see here concretely how the formulation of universes a la
Tarski preserves typing information, i.e., the inclusion maps / carries with it
the information about where the set was constructed.  Implicit logical
information is, as we've seen above, made explicit through the theory's
presentation in the logical framework.

Elimination Rules for Universes

Sets in intuitionistic type theory are generally given by rules giving their
canonical elements, i.e., elements as they are given by the definition of the
set and not as they may be obtained as the value of some function, for
example, as 1+1 gives the numeral 2(introduction rules); rules specifying
that canonical constants are well-defined operations with respect to
Judgmental equality(substitution rules); and rules giving a schema for
defining a function on a set(elimination and equality rules).

In the case that the set A is an inductively defined set, i.e., one or more of its
introduction rules itself has an hypothesis of the form te A, the elimination
rule can be viewed as a schema for proof by induction or definition by
recursion with a case corresponding to each of A's introduction rules. Two
examples are the sets N and (Wxe A)B(x), the former an example of an
elementary inductive definition and the latter of a generalized inductive
definition.

The universes we consider here are clearly inductively defined sets, although
we have refrained until now from giving elimination and equality rules for
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them. We begin by giving these rules for type theory with a single universe.
Our notation for the assumptions of a rule differs for typographical reasons
in that sets of assumptions are given horizontally with the help of =
denoting derivability. It should be noted that subsequent application of the
elimination rule entails the dischar ge of those hypotheses occuring to the left
of =. We denote this universe by U and (x)T and suppress the assumption
that one has given a family of sets C(z)(ze U):

U-elimination
Let I" denote the following sequence of sets of assumptions:
xe U, yeT(x)-U, ue Cx], ve (ITwe T(x))C[App(y,w)] =

dg(x,y,u,v)e C[3(x,(W)App(y,w))],
for 0 each of &, ¢ and w;

x,ye U, ue Cx], ve Cly] = d (x,y,u,v)e C[x+y];

xe U, ye T(x), ue T(x), ve C[x] = d;(x,y,u,v)e Cfi(x,y,w)};
d,eCln]

dne C[ny), for i=0,1.

Then the elimination rule is

sesU T
H(s,dng, Ay, G ,(X,Y,10,V)dr, (2, ,0,V)dg, (X,¥,0,V)dy, (X,y,0,V)d,, (X,y,0,v)d;)e O]

the conclusion of which we abbreviate by H(s; ).

U-equality

Under the assumptions in I" the following judgments are immediately
derivable:

H(n;7) = dne Oni) for §=0,1;
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H((a,(x)b); ) =
dgla,(Ax)b,H(a; 7),(Ax)H(b; t)le C[d(a,(x)b)], for & each of &6 and w;

H(i(a,b,c); ) = difa,b,c,H(a; T)]eCli(a,b,0)};
H(a+b; 1) =d, [a,b,H(a; 7),H(b; T)]e Cla+b).

The elimination rule for the universe operator U(A,(x)B) and

(y)T(A,(x)B,y) will differ from that for a single universe in that:
(1) the assumptions for the sets N, N; and N are replaced by

d«€ C[x(A,(x)B)]

and
xe A = dfx)e C[l(A,(x)B,X)};

while (2) the function H will also depend on the family B(x)(x€ A).

Using I" to denote this new sequence of sets of assumptions and 7' to denote
the corresponding sequence of ar guments to H, we have

U(A,(x)B)-elimination

scUA,XB) I
H(A,(x)B,s;T') = (]

U(A,(x)B)-equality

With the above mentioned notational changes in H, we have the equalities for

7,0, w, and i as well as: B
H(A,(x)B,#(A,(x)B); ') = dse C[+(A,(x)B)]

and
H(A,(x)B,/(A,(x)B,a); ') = d,fale C[/(A,(x)B.a)].

Universe Elimination and Reflection Rules

The elimination rule for Uy and (x)T is that we gave for a single universe and
that for Uy and (x)T; is easily seen from that for the universe operator with the

notational changes: « for «(A,(x)B), dy, for d; and (x)ty(x) for (y)I(A,(x)B.y).
By the reflection rules we have for a,be Uy, that
to(a+b) =ty(a) + ty(b) € Uj.

However the elimination rule for U; and (x)T allows us to define a function
from Uy into, say, Uy such that d, is constant ny and du is constant n;. Hence,
14



by the substitution, elimination and corresponding equality rules, we derive the
judgment ny = ny€ Uy and consequently that Ng=N;. Thus, in general, the
reflection rules together with elimination rules for higher universes (beyond that
for Uy and (x)Ty) yield a logically inconsistent theory where all sets are equal.
The embedding of one universe into the next together with the reflection rules
give rise to a non-deterministic (or, in the terminology of Kleene[1952], non-
fundamental) inductive definition, hence the difficulty in defining a function on
that set by the corresponding principle of recursion.

A Second-order Universe

Because we have parameterized the process of constructing a universe i la
Tarski closed under [], ¥, + and I over a given family of ground sets (which
may or may not itself be a universe), we refer to U(A,(x)B) and
(z)T(A,(x)B,z) as a universe operator. Notice that if A Set and xe A = B
Set, i.e., (A,(x)B) is a family of sets, then U(A,(x)B) Set and xe U(A,(x)B)
= T(A,(x)B,x) Set, i.e., (U(A,(x)B),(x)T(A,(x)B,x)) is a family of sets.
Thus the value of this operator on a family of sets is also a family of sets and
we have set the stage for an internal iteration of the process of giving the
next universe. We shall now give a reflection principle or universe V
which is closed under the operator U. Distinguishing the set construction
principles [1, 2, +, I and W from reflection principles, it is reasonable and,
as we shall see, quite precise to call V a second-order reflection principle.

V-formation
aeV a=aeV
V Set S(a) Set S(a) = S(a") Set
V-introduction
neV S(n)=N
meV S(ny) = Ny, for k =0,1,...
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(x€ 5(a)) (x€S(a))

aeV beV aeVv beV
&(a,(x)b)e V 5(d(a,(x)b)) = (Ax€ 5(a))S(b),

for & each of m, o or w and A the corresponding set constructor [], 3 or W;

aeVbeV acVbeV
a+beV S(a + b) = S(a) + S(b)
aeV beS(a) ceS(a) aeV beS(a) ceS(a)
i(a,b,ceV S(i(a,b,c)) = I(S(a),b,c).

In addition to the above introduction rules for V we now add those giving

the operator U(A,(x)B). As before we continue to suppress the substitution
rules.

V-introduction (U-closure)
(xe S(a)) (x€ S(a))
aeV beV acV beV
u(a,(x)b)e V S(u(a,(x)b)) = U(S(a),(x)S(b))
(xe 5(a))
*) acV beV ce U(S(@),(x)S(b)
t(a,(x)b,c)e V
and
(x€ S(a))
(+4) acV beV ce U(S(a),(x)S(b))

S(t(a,(x)b,c)) = T(S(a),(x)S(b),c)
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(*) gives the insertion into V of codes from some local U and (**) that the
inserted codes are interpreted as the same sets as they were locally. Thus
these two rules guarantee that judgements of the form C Set in U(A,(x)B)
for (A,(x)B) a family of sets over V are reflected in V. Finally, to ensure
that judgements of the form C = C' Set are reflected in the same manner:

(x€ 5(a))

acV beV c,de U(S(a),x)S(b))
t(a,(x)b,c + d) = t(a,(x)b,c) + t(a,(x)b,d) € V

for & each of 7, ¢ and w;

(xe S(a)) ce U(S(a),(x)S(b))

aeVv beV d,ee T(S(a),(x)S(b),c)
t(a,(x)b,i(c,d,e)) = i(t(a,(x)b,c),de) € V

Once again the right hand side of the equality in the last rule is meaningful
since, by a previous rule, we have that

S(t(a,(x)b,c)) = T(S(a),(x)S(b),c),
while
S(t(a,(x)b,i(c,d,e))) = T(S(a),(x)S(b),i(c,d,e))

= I(T(S(a),(x)S(b),c),d,e).
Finally, we add

(x€ S(a))
aeV beV ce U(S(a),(x)S(b))
t(u(a,(x)b),(y)t(a,(x)b,y),l(S(u(a,(x)b)),(y)S(t(a,(x)b,y)),c) = t(a,(x)b,c) € V

and

(x€ $(a))
acV beV .
t(a,(x)b,«(5(a),(x)S(b))) = ae V
17




The Universe Operator and V a la Russell

U-formation
(yeA)
A Set B(y) Set CeU(A,(y)B)
U(A,(y)B) Set C Set
U-introduction
acA
AcU(A,(y)B) B(afy)e U(A,(y)B)
(xeC)
CeUAGB) DEUMAMB) for A each of IS and W
(Axe C)De U(A,(y)B)
CeU(A,(y)B) DeU(A,(y)B)
C+De U(A,(y)B)
CeU(A,(y)B) aeC beC
I(C,a,b)e U(A,(y)B)
V-formation
AeV
V Set A Set
V-introduction

NeV NieV, for k=0,1,...

(xeA)

AeV BeV for Aeachof I, Z and W
(AxeA)Be V
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(x€A) (xeA)

AcV BmeV AeV Bx)eV  CeUA,x)B)
U(A,(x)B)e V CeV

Two Applications of V

In this section we use the universe V to give Martin-Lof's external sequence

of finite universes as an internal sequence and then to interpret the universe
Uy

The Sequence (Upke N

In the introduction we defined the sequence of finite universes by a recursion
on natural numbers external to type theory. We shall now construct this
sequence as an internal sequence with the help of V. Since V Set we have
that (Xxe V)(S(x)—>V) Set, which we will denote by PAR. For zeN let C
be the constant family of sets given by C(z)#PAR. Thus ([Tze N)C(z) Set
and gives a plausible typing of our sequence of universes, since each consists
of a set (of codes) together with a function taking these codes to sets.

Consider first the case of obtaining a pair of codes for Uy and T. We have
that u(ns,(x)R3(x,n,ng,ny))€ V and for ze S(u(ns, (x)R3(x,n,ny,n;))) we have
that t(ns,(x)R3(x,n,ng,n;),z)e V and hence that
(Az)t(n3,(x)R3(x,n,n,n),2)€ (S(u(nz,(X)R3(x,n,n4,n,)))—>V). Thus, we
have that

(u(nz,(X)R3(x,n,n,ny)),(Az)t(n3,(X)R3(x,n,n9,n;),z))e C(0),

which we denote by (ug,(Az)ty).

In general, using N-elimination, one shows analogously that the desired
sequence is

(MR, (g, (A2)tg), (k,)(u(p(©),(2)Ap(q(c),2)), Aw)t(u(p(c),(2)Ap(q(©),z), W)€ (
ITke N)C(k),

10



which we denote by (Ak)d(k) in the application of V that follows. In particular
we take: U 4S(p(d(k))) and Ty (a)S(Ap(q(d(k)),a)). To verify that these

give an interpretation of the finite universes in V, one must interpret the rules of
Uk asrulesin V.

Interpretation of the w-hierarchy of universes in V

We define an interpretation (-)* of terms and types from the universes U, for
0=0,1, ... 0, as terms and types in V. Let U.* be S(p(d(k))) and Ty *(x) be
S(Ap(q(d(k)),x)) so that Ty(a)* = Ty *(a*). We have that Uy* =
U(N3,(x)S(R3(x,ng,ny,n))) and Ty*(a) = T(N3,(x)S(R3(x,ng,ny,n)),a). A simple
computation shows that

Ue1® = S(p(d(k+1))) = S(u(p(d(k)),(z)Ap(q(d(k)),z)) =
U(S(p(d(k)),(z)S(Ap(q(d(k)),z)) = U(Up*,(2)Ty*(2))

and

Ty41*(a) = S(Ap(q(d(k+1)),a)) = S(t(p(d(k)),(2)Ap(q(d(k)).z),a)) =
T(S(p(d(k))),(z)S(Ap(q(d(k)),2)).a) = T(Uy*,(2)T*(2).2).

Now let u* be x(Up*,(x)T*(x)) and notice that u*e Uy, *. Then we have that

Ty 1* = Ty ¥ *) = TUK, @ T * @), x(U*, ()T * (X))
= Uk*.

Furthermore, if we let n;* be I(N3,(x)S(R3(x,ng,ny,n),i3), for i=0 and 1, and let
n* be /(N3,(x)S(R3(x,ng,nq,n),23), then n;*,n*e Uy* and we have that

To(m)* = To*(n;*)
= T(N3,(x)S(R3(x.ng,n{,n),/(N3,(x)S(R3(x,ng,ny,n),i3)
= S(R3(i3,ng,ny,n)) = S(n;) = N;.

If we let t,*(a) be I[(Up*,(z2)Ty *(z),a), then we have that

Ty (e@)* = Ty 1 * (4 *(@%) = TUK, @) T * @) J(U*, () Ty *(2),2%))
= Ty*(a*) =Ty (a)*.
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For & each of &, ¢ and w, we let 8(a,(X)b)* be d(a*,(x)b*) as well as (a+b)* be
a*+b* and i(a,b,c)* be i(a*,b*,c*), then we have for example that

ti(a+b)* = t*(@*+b*) = [(Up*, ()T *(2),a%+b*)
= (U*, @) T *(2),a%)+H(UH, (2) Ty *(2),b%)
= t*(@¥)+ K (b*) = (t(a)+ (b))*.

Now let tk,m* (c) be Ap(q(d(k)),c) and Uy * be V, then we have that t, ,w(uk)* =
tk+1,00" (™) and one shows by induction on k that if ce Uy*, then t, ,*(c) € Ug*.
Let T ,*(c) be S(c), then obviously we have that

Tt (0)* = S(Ap(q(d(k)),c*) = Ty*(c*) = Ty(c)*.

Finally, the interaction between inclusions is verified by the computation:

tiea1,0(t(O)* = Ap(q(d(k+1)),/(U*,(2) Ty *(2),0)) =

tp(d(k)),(2)Ap(q(d(k)),z),/(S(p(d(K))),(2)S(Ap(g(d(k)).2) ,c*) =
t(p(d(k)),(z)Ap(q(d(k)),z),c*) =ty ;,(©)*.

Reflection Rules and Commutative Diagrams

What we have called reflection rules are of distinct sorts, those expressing the fact
that mappings defined in the formulation of a universe 4 la Tarski are inclusions
between the collections of sets defined, those expressing the fact that these
mappings are homomorphisms in the sense that they commute with elementary set
constructors and those stating that our global mappings cohere with the local
mappings between universes.

As an example of a rule of the first sort, consider the rule for the universe
operator:

ceA
T(A,(x)B,I(A,(x)B,c)) = B(c/x) |
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This rule can be graphically interpreted as the commutation of the following
diagram:

B(x)

N
> Set

IA.(%1B.2) /

L Tawgy

U(A.(x)B)

As an example of a rule of the second sort, consider the following rule of V
stating that global mappings commute with sums:

(xe5(a))

aeV beV c,de U(S(a),(x)S(b))
t(a,(X)b,c + d) = t(a,(X)b,c) + t(a,(x)b,d) € V

and the formal diagram it can be seen as stating is commutative:

t(a,(x)b,z) t(a,(x)b,z)
U(S(a).(x)S(b))  U(S(a).(x)S(b)) ——% vy

NY NV
U(S(@).()S(b) >V
t(a,(x)b,2)

As an example of a reflection rule of the third sort, consider the following rule
for V stating that global mappings commute with local mappings:
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(x€ S(a))
acV beV ce U(S(a),(x)S(b))
t(u(a,(x)b),(y)t(a,(x)b,y),/(S(u(a,(x)b)),(y)S(t(a,(x)b,y)),c) = t(a,(x)b,c) € V

This also can be viewed as asserting that the formal diagram

t(a,(x)b.y)
U(S(a).(x)S(b)) > v

I(S(u(a,(x)b)).(y)S(t(a.(x)b.y)).)

NY% t(u(a,(x)b).(y)t(a,(x)b.y).W)

U(S(u(a,(x)b)),(y)S(t(a,(x)b,y))
is commutative.

These diagrams are purely formal, however the similarity with the commutative
diagrams and homomor phisms of an inductive system in a category-theoretic
setting is striking. They do nonetheless provide a pattern for giving the rules for
such limit universes. In the sequel to this paper we shall see that there is more
than a formal analogy.

Cardinality and Mahlo Numbers
A Hierarchy of Universes

Just as with the universe operator, the universe V can itself be given as a
collection of rules parameterized by afamily of sets, i.e., a second-order
operator: V(A,(x)B) together with S(A,(x)B,:). Then, as with V, one can give a
universe V' which, aside from closure under elementary set constructors, is closed
under V(A,(x)B) with S(A,(x)B,). Repetition of this sort of diagonalization gives
rise to a hierarchy of universes. Suppose we let Uy 0, for k=0,1, ..., enumerate
externally the finite universes. A similar sequence of universes can easily be
given Ug 1, Uy 1, ... starting with V and proceeding as with Uy o. In general,
assume that we have defined a universe operator of order n and let Uy, for

23



k=0,1, ... , enumerate successive universes closed under that operator. In this way
we obtain a doubly indexed hierarchy of universes Uk,l’ for k,1=0,1, ... .

Remark: The theory of universe operators is actually far more subtle and will
be studied in a sequel to this article, for example, carrying out these constructions
internally, formulating correctly the corresponding reflection rules and indexing
the resulting hierarchy into the transfinite.

Mahlo Numbers

In Mahlo [1911], a hierarchy of successively more strongly closed cardinals in set
theory is defined: m, ,, for ordinals p and v. The sequence gy, Ty y, ... Ty, ys

..., for all ordinals y are called 7,-numbers. The my-numbers are just the regular
cardinals and, in general, o, is a 77,-number, if for all 6<v o is a Ty-number, wy 4,
such that Ty o= 1> 1.¢., a fixed point in the enumeration of my-numbers (for all v,
o,y = 0). For example, m, ; enumerates the weakly inaccessible cardinals (a

regular cardinal k¥ >® such that X(7) <k, for all T < k; where X(x) is the Hartog
function).

Cardinality in Type Theory

One way of investigating the size of a set-theoretic universe is to study those
cardinals which it contains. In ZFC there are two ways of constructing a cardinal
larger that a given cardinal x: exponientiation 2¥ and the Hartog number x*(the
least W such that there is no surjection of x onto ).

In order to draw a parallel between Mahlo's hierarchy of cardinals and the above
hierarchy of universes, we intend to study the closure of a universe for type
theory under constructions of new cardinals. To do so we require a means of
comparing the size of sets. Throughout this section we abbreviate I(A,a,b) by a
=b, which denotes intentional equality (a = be A is reserved for definitiona

equality).

Definition (i) fe A—B is injective, if
(Va,be A)[f(a) =g f(b) > a=p b];
(ii) fe A-B is surjective, if
(Vbe B)(Jac A)[f(a) =g b].
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If fe A—B is surjective, then we can produce a right inverse for £, i.e., a ge B—A

such that (Vb€ B)[f(8(b)) =B bl, since the axiom of choice holds. Note that if f is
both sur jective and injective, then g is an inverse: if a€ A, then f(g(f(a))) =g f(a)
and hence, by injectivity, g(f(a)) =4 a.

We shall use the notation A 2 B for the claim that there exists a sur jection of A
onto B. Now there is no reason to believe that we can construct a surjection in
A-B given an injection in B=3A or that the Schroeder-Bernstein theorem should
hold in type theory. In contrast to ZF we cannot show from the axiom of choice
that all sets can be "well-ordered", e.g., N-N (a proof here would be of
considerable interest). We shall describe a diagondlization principle for sets and
try to construct well-ordered families of cardinals.

The well-ordering type (Wxe A)B(x) provides a diagonalization principle in type
theory. First a lemma stating that a free in (Wxe A)B(x) cannot be equal to any
of its immediate subtrees.

Lemma Let W denote (Wxe A)B(x), then

(Vee W)(Vxe B(p(c))) - ¢ =w Ap(q(©),x)],

(where p(c) denotes T(c,(x,y,z)x) and q(c) denotes T(c,(x,y,z)y), i.e., the two
projection functions on W).

proof: We show the proposition C(z), which is defined to be

(Vxe B(p(2)))—z =y Ap(q(z),x) by induction on z. Suppose that ce W, a¢ A and

that be B(a)—W, as well at that de ([Ive B(a))C(Ap(b,v)). Assume further that
ve B(p(sup(a,b))), ue sup(a,b) = Ap(q(sup(a,b)),v). But p(sup(a,b)) = a, so

dv)e (Vxe B(p(p(Ap(b,v))))— Ap(b,v) =y Ap(q(Ap(b,V)),x).
The construction u gives
J(u,(x")d(v))e (Vxe B(p(Ap(b,v)))— Ap(b,v) =y Ap(b,v),

which is a contradiction. Thus — sup(a,b) = Ap(q(sup(a,b),v) and, hence,
C(sup(a,b)) true. By W-elimination, we have C(c) true. O
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Per Martin-Lof has pointed out that (Wxe A)B(x) is a set larger than all
B(x)(x€ A) in the following sense: if we try to define a surjection
fe B(a)—>(Wxe A)B(x), then there is always an element not in the range of f,
namely sup(a,f).
Theorem (Vae A)-B(a)2(Wxe A)B(x)

proof: If fe B(a)—W is a surjection with the corresponding right inverse

g€ W—B(a), then let b be sup(a,f)e W. Then g(b)e B(a) and hence f(g(b)) =w
sup(a,f), which contradicts the lemma. O

Given a set A, define

At & (Wxe Nz)Rz(X,No,A).

Then by the above theorem, we have that ~(A=A*). More generally, (-)* is
monotone with respect to <.

Theorem If A<B, then A*<B*+

proof: omitted.

Thus, for every set A in a universe U, we have that A* is also an element of U.
The following theorem states that a universe is larger than any of its sets. First, a
technical lemma whose proof we omit. We note, however, that the proof of the
lemma makes use of U-elimination.

Lemma (Vae U)(Vfe T(a)-U)(Vxe T(a)) - o(a,(x)Ap(f.x)) =y f(x).

Theorem (Vae A)—-T(a)2U.

proof: Suppose that fe T(a)—U is a surjection with right inverse
geU—-T(a). Let b denote o(a,(x)Ap(f,x)), then f(g(b)) =(; b, contradicting the

lemma.
O

We mentioned in the introduction the naive set-theoretic interpretation of all of
the elementary set constructors with the exception of the well-ordering type. It
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can also be interpreted as a set in the classical sense naively by given by a
generalized inductive definition (see Salvesen [] for details). Hence, viewing

universes as limit cardinals, we have a rough interpretation of the Mahlo number
of finite level, Ty, 1 1,1, as the universe Uy, 1. In particular, the universe V

“corresponds” to the Mahlo number ; 5. It should be possible to formulate the

formal theory of Mahlo numbers and interpret it in intuitionistic type theory with
universes along these lines.

Concluding Remarks

Very little is known about the proof-theoretic strength of these higher-order
universes. By Aczel [1977]:

MLy =IDj|

where ML, denotes type theory with one universe and without the wellordering

type and |TDi| denotes the theory of a single inductive definition where the axioms

for the fixpoint do not state that it is the least such. This result was later extended
by Feferman [1982] to ML _,;:

IM-'<(D| = IID;ml = I‘0,

where ML, is type theory with all the finite universes but still without the well-

ordering type and ID<o is the theory of iterated inductive definitions with the
weak fixpoint axioms mentioned above. The second author has recently
interpreted an intuitionistic theory of iterated, strictly positive inductive

definitions, 5-P--ID<o, in type theory with the well-ordering type and all the finite
universes, MLW_,,. On the other hand, W. Sieg ([], p.184) has shown that the

theory of finite constructive tree classes, IDi«n(O), is included in S-P--IDi«o, ie.,
|IDk(0)| = [IDco.

Hence we have that: IMLW_ | 2 lID_|. In point of fact, no interesting upper
bound even for ML W), is known (other than the stated analogy with the Mahlo
number 7 ), but we conjecture that

IMLW |2 [IDeg,|,
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which by |ID<e| = 125 'AC| and the result that ’E% 'AC| = |A5 'CAl, would give

[MLW; |2 |A} -CA|

by viewing iterations of constructive tree classes as iterations of the well-ordering

type.

These considerations would seem to suggest that intuitionistic type theory with
higher-order universes itself can provide a more uniform setting for the study of
the proof-theoretic strength of a large variety of theories.
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