
Lorenzen and constructive mathematics

Introduction

The goal of this paper is to present a short survey of some works of Lorenzen in constructive mathematics,
and its influence on recent development in mathematical logic and constructive algebra. We also present
some work in measure theory which uses in an essential way Lorenzen’s contributions.

1 Lorenzen as a mathematician and a logician

The school of mathematics in Germany between the two wars was truly exceptional (Noether, Herglotz,
Artin, Schmidt, Krull, Hasse, . . . ). This is described in P. Roquette’s survey [36], which emphasizes in
particular the importance of the work of Hasse. Lorenzen was Hasse’s student, and so was in direct
contact with several members of this school.

A new feature was the use of highly non effective methods in algebra. The axiom of choice was used
to show the existence of prime ideals (Krull), or to show the existence of real or algebraic closure of a
given field. A striking example was the use of the real algebraic closure by Artin and Schreier to solve
Hilbert’s 17th problem [1].

The following extract of a letter from Krull to Scholz (1953) illustrates well how Lorenzen’s contri-
bution was perceived: At working with the uncountable, in particular with the well-ordering theorem, I
always had the feeling that one uses fictions there that need to be replaced some day by more reasonable
concepts. But I was not getting upset over it, because I was convinced that at a careful application of the
common “fictions” nothing false comes out, and because I was firmly counting on the man who would
some day put all in order. Lorenzen has now found according to my conviction the right way. . .

Lorenzen was quite unique in this group of mathematicians in being aware of works in logic, in
particular the work of Gentzen. He was able to connect his work in algebra (lattice theory, Dedekind)
with proof theory. While connections between lattice theory and logic were known since the work of
Peirce and Schröder [34, 37], connections between lattice theory and proof theory were quite original
(except for the previous work of Skolem [40]). On this topic, Lorenzen seems to be now mainly known
only for the following result, which is actually only implicit in his fundamental paper [28].

Theorem 1.1 A lattice is distributive if, and only if, it satisfies the (cut) rule

a ∧ c ⩽ b a ⩽ b ∨ c
a ⩽ b

This result is cited e.g. in Curry’s book, Theorem B9, Chap. 4 [14]. As we shall see below, the
connections between proof theory and lattice theory discovered by Lorenzen go much deeper than this
result.

2 Lorenzen’s analysis of Gentzen’s work

2.1 Consistency proof

Gentzen’s consistency proof by Lorenzen [28] is presented as a proof about an infinitary cut-free calculus
showing that the cut rule is admissible (“zulässing”). Two highly original features of his argument are
that the metatheory is constructive (with use of generalised inductive definitions) and that there is no
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ordinal analysis. At about the same time, and independently, P.S. Novikov had a similar analysis, and
also introduced the notion of admissible/derivable rule [33, 10].

Apart from Novikov, most treatments in proof theory (Gentzen, Schütte, Takeuti) involve ordinal
analysis. From a constructive point of view (and for me personally) the purely inductive presentation is
much clearer. For strong calculus, such as Π1

1-analysis, one can even argue that the ordinal analysis is a
diversion. For instance, Takeuti proves consistency of this system with a system of ordinal diagrams in
a finitary way. To have a constructive explanation of Π1

1 comprehension, one needs further, as noticed
e.g. in Kreisel’s review of Takeuti’s proof [21] or in Feferman’s review of Takeuti’s book on proof theory
[15], to explain that ordinal diagrams are well-founded in an intuitionistic theory of inductive definitions.
A direct explanation of Π1

1-comprehension in an intuitionistic theory of inductive definitions (such as
one obtained by use of Buchholz’s Ω-rule [6]) seems thus to be preferred. Furthermore, the analysis of
Lorenzen provides, as we shall see below, an effective description of the free σ-complete Boolean algebra
on a given Boolean algebra.

To allow generalized inductive defined objects in a constructive setting was highly original. Apart
from Novikov, the only example I could find are proofs in [31]. There, however, infinitary objects are
not represented directly but only via coding as recursively enumberable sets (which arguably obscures
the main ideas).

In the paper [26], Lorenzen and Myhill’s paper analyses different ways to define subsets of natural
numbers and introduce the following stratification:

1. By explicit definition, quantifying only over natural numbers.

2. By inductive definition, quantifying only over natural numbers.

3. By explicit definition, quantifying only over the (denumerable) totality of sets previously obtained.

4. By inductive definition, with the same restriction on quantifiers.

5. By uninhibited use of function-quantifiers.

Use of generalized inductive definitions (4) is presented as the “method of Lorenzen” exposed in [23],
with the comment that this “exhausts those means of definition at present known which are acceptable
from a standpoint which rejects the actual infinite”. This analysis is quite similar to the one of Martin-Löf
for instance in his paper [32].

The last method (5) is impredicativity which has no constructive justification
The method (4) goes beyond what has been called “predicative” mathematics, after the work of

Schütte and Feferman [38, 16], but it is needed in constructive mathematics, as shown by Lorenzen in
his analysis of Cantor-Bendixson Theorem (which is explained below).

2.2 Inversion principle

In Lorenzen’s description of the mathematical universe, we have a calculus of inductively defined objects
and inductive proofs/recursively defined functions on these objects.

For instance we describe inductively natural numbers by two production rules

→ | x → x|

but we also describe inductively the relation of equality in the same way by the two production rules

→ | = | x = y → x| = y|
One important discovery of Lorenzen is the inversion principle [23]: with this inductive description

of equality, we have, as an admissible rule

| = x| → ⊥
since there is no way to derive an equality of the form | = x|.
This way of describing objects and proofs is now common practice in computer science. It is e.g. used

extensively for expressing and proving properties of semantics of programming language (as in Kahn’s
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natural semantics [20]) in interactive proof systems. Just to give an example, Lorenzen’s paper [24] could
almost be written as it is in proof systems for type theory.

In 1992, we noticed that this inversion principle corresponds to the notion of pattern-matching in
functional programming [12]. This provides a convenient notation for inductive proofs, which is closely
connected to the work [18] on definitional reflection. More recent works in this direction are N. Zeil-
berger’s [41] and J. Cockx Ph.D. thesis [11].

2.3 Entailment relations

The paper [28] contains a deep application of proof theory to the study of distributive lattice, via the
notion of entailment relation. An entailment relation is a relation a1, . . . , an ⊢ b1, . . . , bm between finite
subsets of a given abstract set such that

1. X ⊢ Y if X and Y intersect

2. X ⊢ Y if X ′ ⊢ Y ′ and X ′ ⊆X and Y ′ ⊆ Y

3. X ⊢ Y if X,a ⊢ Y and X ⊢ Y, a
Entailment relation is the key notion for presenting distributive lattices/spectral spaces in an elegant

way, as explained in [7]. If D is a (bounded) distributive lattice, an interpretation of E,⊢ is a map
j ∶ E → D such that X ⊢ Y implies ∧j(X) ⩽ ∨j(Y ). By universal algebra, there exists a universal
interpretation i ∶ E → L: it is an interpretation such that, for any other interpretation j ∶ E →D there is
a unique map f ∶ L→D such that j = fi. The following result [7] is essentially stated as such in [28].

Theorem 2.1 Let E,⊢ be an entailment relation. If L, i ∶ E → L is the universal interpretation then
we have X ⊢ Y if, and only if, ∧i(X) ⩽ ∨i(Y ).

Let us give an example in algebra. On a given domain R, a valuation for R is a domain V ⊇ R in
the field of fractions K of R such that, for any a ≠ 0 in K, we have a in V or a−1 in V . A fundamental
result, proved using Zorn’s Lemma, is that an element of K is integral over R (i.e. root of a unitary
polynomial in R[X]) if, and only if, it belongs to all valuation domain. Lorenzen was able to describe
directly and effectively a relation X ⊢ Y , which, classically, would be equivalent to the following relation:
for all valuation domain V , if X ⊆ V then V meets Y .

Lorenzen’s description was the following [27]. If x1, . . . , xn are elements in the fraction field of R we
write (x1, . . . , xn) the R-module generated by x1, . . . , xn.

Theorem 2.2 The relation (for non zero element of the field of fractions of R)

a1, . . . , an ⊢ b1, . . . , bm ↔ 1 ∈ Σi>0(a1b−11 , . . . , anb
−1
m )i

is an entailment relation, which is classically equivalent to the fact that if V is an arbitrary valuation
domain and all elements ai belongs to V then one of the element bj is in V .

For instance a ⊢ b holds if, and only if, b is integral over a. In particular, b is integral over R if,
and only if, we have ⊢ b, which can be seen as a constructive version of the result that an element is
integral if, and only if, it belongs to all valuation domain. We think this example illustrates well the
way Lorenzen’s work provides a constructive analysis of non effective methods in algebra (as evocated
in Krull’s letter cited above).

This was rediscovered in [13] but Lorenzen’s analysis is more perspicious, relying on the following key
Lemma, which shows that the cut-rule is valid for the relation defined in Theorem 2.2.

Lemma 2.3 For any R-module I and c ≠ 0 in K, if 1 in I[c] = Σn⩾0c
nI and in I[c−1] = Σn⩾0c

−nI then
1 in I.

Proof. (following [27]) It follows from the hypothesis that we have an equality of the form

(c−n, . . . , c−1,1, c, . . . , cn) = (c−n, . . . , c−1,1, c, . . . , cn)M
where M is a square matrix with coefficients in I. We then write (c−n, . . . , c−1,1, c, . . . , cn)(1 −M) = 0
and hence the determinant of 1 −M is 0, which shows that 1 is in I.
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3 Proof theoretic analysis of point-free spaces

In this subsection, we want to present Lorenzen’s analysis of Cantor-Bendixson’s Theorem [25]. This
analysis was crucially needed in Kreisel’s work [22]. What is remarkable about this result is that, as
shown by Kreisel, Cantor-Bendixson’s Theorem requires methods going beyond what has been called
“predicative mathematics” by Feferman and Schütte [15, 38].

In order to present this analysis as simply as possible, we will do it for Cantor space instead of
[0,1] (as is done in [25]). As a set of points, the Cantor space is the set Ω of infinite binary sequences
ω = ω0, ω1, ω2, . . . As a point-free space, where we describe directly in algebraic (and effective) term its
compact open subsets, it can be seen as the Boolean algebra of propositional logic C, i.e. the Boolean
algebra freely generated by countably many formal atoms written ωk = 1 (of formal complement ωk = 0)
For instance ω1 = 0 ∧ ω3 = 1 represents a compact open subset of Ω, namely all sequences ω such that
ω1 = 0 and ω3 = 1.

More generally any compact totally disconnected space X can be described using its associated
Boolean algebra B of compact open subsets [19]. An open subset of X corresponds to an ideal of B, and
so (by taking the complement) there is a correspondance between closed subsets of X and ideals of B.
If x is an element of B, it defines the ideal ↓ x = {y ∈ B ∣ y ⩽ x}.

The key insight of Lorenzen was that the derivative of a closed subset (the set of non isolated points)
gets a more effective description via this correspondance. It relies on the following simple observation.

Lemma 3.1 The open subset of isolated points of X corresponds to the ideal of B of elements x such
that ↓ x is finite.

It follows from this that the kernel of F , which is obtained by iterating the derivative operation trans-
finitely (taking the intersection at limit ordinals) can be described effectively by a generalized inductive
definition for Cantor space (and for [0,1]).

For Cantor space, we can describe more concretely an open subset (or closed subset as a complement)
as a set of binary finite sequences U which is upper closed and such that s is in U if both s0 and s1 are
in U . For each n we have 2n elements si0...in−1 = [ω0 = i0] ∧ ⋅ ⋅ ⋅ ∧ [ωn−1 = in−1] of length n. Starting from
a set U , which describes the complement of a given closed subset F of Cantor space, let us then consider
the following generalised inductive definition, which describes a set S of binary sequences

1. s is in S if s is in U

2. s of length k is in S if there exists a fixed l such that, for each n big enough, at least 2n−k − l
elements si0...in−1 extending s are in S

This set S defines an open subset of Cantor space.

Theorem 3.2 The complement of the open subset corresponding of S is the kernel of F .

4 Measure theory

4.1 Borel subsets of Cantor space

The analysis by Lorenzen of Gentzen’s cut-elimination contains an effective description the σ-complete
Boolean algebra generated by a given Boolean algebra. More generally, given an entailment relation E,⊢
as defined above, Lorenzen describes the σ-complete Boolean algebra B with an interpretation v ∶ E → B
universal for this property. He then shows

Theorem 4.1 For the universal σ-complete Boolean algebra B with an interpretation v ∶ E → B, we
have

a1, . . . , an ⊢ b1, . . . , bm ↔ v(a1) ∧ ⋅ ⋅ ⋅ ∧ v(an) ⩽ v(b1) ∨ ⋅ ⋅ ⋅ ∨ v(bm)

This result is cited in the reference [3] (which might be surprisingly the only published reference
to the fundamental paper [28]). If we start from the Boolean algebra C of propositional logic which
is the Boolean algebra generated from countably many atoms we get a σ-complete Boolean algebra B.
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As explained above, C can be seen as a point-free presentation of Cantor space, which is the set Ω of
all infinite binary sequences ω = ω0, ω1, . . . What is remarkable is that B can be seen as a point-free
presentation of the σ-complete Boolean algebra of Borel sets on Cantor space. This was noticed by P.
Martin-Löf [31]. If we start from the Boolean algebra with two elements we get the σ-complete Boolean
algebra of hyperarithmetical propositions.

In this point-free view, a Borel set X is given inductively: X is a propositional formula or X is of
the form ⋁

n

Xn or X is of the form ⋀
n

Xn. Lorenzen defines a sequent calculus X1, . . . ,Xn ⊢ Y1, . . . , Ym
and proves that the cut-rule is admissible. The same analysis is done in [31].

We can define X ⊆ Y by X ⊢ Y . We have X ⊆ X by induction on X and, using cut-elimination,
X ⊆ Z if X ⊆ Y and Y ⊆ Z

An example of a point-free description is the set of normal binary sequences

N =⋀
k
⋁
m
⋀
n⩾m

bn,k

with bn,k a point-free representation of

{ ω ∈ Ω ∣ − 1

k
⩽ Σi<n(2ωi − 1)

n
⩽ 1

k
}

In the classical approach this is thought of as a set of points (the complement of which is not countable
and of measure 0). In the present setting, it is a purely symbolic expression. We can test an effective
theory of measure of Borel sets by the fact that this set, defined in this “symbolic” way, should be of
measure 1.

4.2 Borel’s measure problem

As explained above, Borel sets can be described inductively. The following is then a natural question:
can we define the measure µ(X) of a Borel set X by induction on X? Borel’s own formulation [5] was
the following (for subsets of [0,1]): we design a formal theory which describes how the measure should
work, and we have to prove that this formal theory is consistent.

As presented by Lusin [30], it can be seen as a coherence problem: we have to provide an inductive
definition of the measure µ(X) of a Borel set X such that X ⊢ Y → µ(X) ⩽ µ(Y ). Lusin in his book [30]
asked for a purely inductive solution of this problem, and called this question Borel’s measure problem.
The usual definition of measure (Lebesgue, Daniell, Bourbaki) shows the consistency of the theory of the
measure, but it does it in a non effective way and goes beyond inductive reasonings.

4.3 An inductive solution of Borel’s measure problem

Here I explain how to define recursively r < µ(X) as a hyperarithmetical proposition by induction on
X. We take the usual measure on Cantor space: if X is a propositional formula µ(X) is a rational and
r < µ(X) is 0 or 1. For instance µ(ω1 = 0 ∧ ω3 = 1) = 1/4.

As stated by Borel, it is reasonable, starting from this closed open subsets, to require that the measure
of a disjoint countable union is the sum of the measure (if this sum actually converges). Thus, if we
define Xn+1 = ∧i<n[ωi = 0]∧ [ωn = 1] and X0 =⋀

k

[ωk = 0], we have 1 =⋁
n

Xn and µ(1) = 1 and µ(X0) = 0

and µ(Xn+1) = 1/2n+1. We can then check consistency since we have 1 = 0 + 1/2 + 1/4 + . . . .
The main difficulty in this inductive approach is: how to define r < µ(X) if X is a disjunction

or conjunction? One solution is provided by the remarkable paper of F. Riesz [35]: we instead define
recursively r < µ(b∧X) for each propositional formula b. We introduce a new relation r < µ(X, b) which
represents r < µ(b ∧X), which can be defined inductively on X and we recover r < µ(X) as r < µ(X,1).

The insight of F. Riesz was that, if X =⋁
n

Xn then

µ(b ∧X) = ⋁
b=b1,...,bk
n1<⋅⋅⋅<nk

µ(b1 ∧Xn1) + ⋅ ⋅ ⋅ + µ(bk ∧Xnk
)

where b = b1, . . . , bk is a partition of b.
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So µ(b ∧X) is defined in term of µ(c ∧Xn) for some c ⩽ b!
If X = c then we can compute r < µ(b ∧ c) and this is the value of r < µ(X, b).
If X =⋁

n

Xn then r < µ(X, b) is the formula

⋁
b=b1,...,bk
r=r1+⋅⋅⋅+rk
n1<⋅⋅⋅<nk

r1 < µ(Xn1 , b1) ∧ . . . ∧ rk < µ(Xnk
, bk)

For X =⋀
n

Xn we should have µ(b ∧X) = µ(b) − µ(b ∧⋁
n

X ′

n) and

µ(b ∧⋁
n

X ′

n) = ⋁
b=b1,...,bk
n1<⋅⋅⋅<nk

µ(b1 ∧X ′

n1
) + ⋅ ⋅ ⋅ + µ(bk ∧X ′

nk
)

From this, we deduce the value of r < µ(X, b), as the formula

⋁
r<s

⋀
b=b1,...,bk
n1<⋅⋅⋅<nk

⋁
s=s1+⋅⋅⋅+sk

s1 < µ(Xn1 , b1) ∧ . . . ∧ sk < µ(Xnk
, bk)

In this way, we define recursively r < µ(X, b) as a hyperarithmetical formula.
It is then possible [9] to show purely inductively the following result.

Theorem 4.2 If we have X ⊢ Y then [r < µ(X, b)] ⩽ [r < µ(Y, b)]. Hence if X and Y defines the
same Borel subset of Cantor space, we have µ(X) = µ(Y ).

This shows the consistency of our definition: if X and Y represent the same Borel set then r < µ(X, b)
and r < µ(Y, b) are equal.

As an application, we can show, purely inductively, that r < µ(N,1) is provable for each r < 1, where
N is the symbolic representation of the set of normal binary sequences described above. We get in this
way a proof of µ(N) = 1 which only involves inductive reasoning.

5 Game semantics

In this last section, I only briefly mention the work on game semantics, interpreting a proof as a winning
strategy. In particular, Lorenzen has a suggestive analysis (e.g. in [29]) of the formula ¬¬a → a and
why it is not intuitionistically valid. The idea is to consider a statement a for which the opponent has a
proof, which is not known by the proponent. If the opponent asserts ¬¬a, the proponent (who does not
know the proof of a) has to challenge the opponent by asserting ¬a (hoping that the opponent does not
know the proof of a either). But then the opponent wins by giving the proof of a.

This idea of game interpretation has been refined in various ways. An extension of this interpretation
to analysis is described in [4], providing in particular a different interpretation than Spector (1961). See
also the work [17] interpreting of the axiom of determinacy.

I suggested an analysis of cut-elimination based on this interpretation, describing cut-elimination as
an interaction between two strategies that both can backtrack [13]. We can in this way give a proof
of termination of the cut-elimination process, essentially different from Gentzen’s analysis. This has
recently been used by F. Aschieri (2015) for proving a non trivial refinement of Gentzen’s upper bound
(with a tower of exponential) in term of the level of backtracking of the strategies.

For instance, if one strategy has only one level of backtracking then we have a single exponential
(whatever the complexity of the cut formula).
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