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1 Introduction

As part of my first year of master’s degree in mathematics, I decided to explore a fairly recent field, between logic, category
and theoretical Computer Science. To that end, I did an internship under the supervision of Thierry COQUAND, in the logic and
types team at Chalmers University, in Sweden.

Before introducing the concepts involved, I would like to sincerely thank my supervisor for his help and patience, and the
time he took to talk to me about complicated concepts such as Topos or Higher Category Theory. On many occasions, I was
able to participate in moments of mathematical exchange, in conferences or in discussions with other members of the team such
as Felix CHERUBINI or David WÄRN. These opportunities allowed me to see the organization of the team, and even to some
extent to take part in the research work. What I would also like to underline is the complexity of the subject to be described
in a short internship report. For my part, understanding the concepts necessary for my internship this year was the result of a
journey of more than a year. Beginning with the discovery of proof assistants during a semantics course given at the ENS by
Xavier RIVAL and Jérôme FERET. I then had the chance to do a one and a half month internship supervised by Sylvie BOLDO, at
INRIA Paris-Saclay, where I used the COQ proof assistant to formalize the Bochner integral. And finally I studied Homotopy
Type Theory (HoTT) in my free time for about 1 year.

From now on, (Homotopy) Type Theory has become an extremely practical synthetic tool for formulating questions of
higher algebra and homotopy theory. It is a language of mathematical discussion, conducive to formalizing questions or
statements similarly to Set Theory. However, two major differences stand out between these two languages. The first notable
difference is the constructivist flavor of type theory, whereas the Mathematics as usually formalized in ZFC are classical and
non-constructive. While one can obtain the existence of functions (typically of choice) in Set Theory by arguments that do not
explain their construction or their computational behavior, in Type Theory functions can be used to calculate return values, in
the same way as a computer program does. The second difference between the two theories is that the first allows to naturally
formulate questions of higher category theory, where one can think of the objects described as being simplicial complexes, or
topological spaces up to homotopy. This stems from the fact that types naturally carry a structure of weak ω-groupoid [1]. (For a
historical introduction to this geometric understanding of type theory, see [5])

In algebraic topology, there is a family of spaces which make it possible to establish a link between cohomology and ho-
motopy. These are spaces of the EILENBERG-MACLANE type. These are spaces defined up to homopy equivalence by their
homology groups, which can be introduced into the formalism of HoTT. The first objective of my internship will have been the
formalization of these spaces, with the help of the proof assistant AGDA precisely developed by the team of Mathematics and
Theoretical Computer Science of Chalmers in which I was received. I was then led to work on the properties of cohomology.
I had to study in the HoTT formalism the existence of results such as fibration sequences or the values of the first cohomol-
ogy groups of spheres. I also spent some time working on the models of Homotopy Type Theory. It was a very interesting
experience, also very complex. I tried to obtain applications of the fibration sequence in algebra, within the framework of the
cohomology of groups. Unfortunately, I did not manage to complete this objective. Finally, I was led to compare different
notions of cohomology. And I tried to show that two possible definitions of group cohomology coincide in type theory. Now
I doubt the validity of this result to which I did not manage to obtain a complete answer, but it was also a subject of very
enriching reflection, and usefull for my understanding of the involved concepts.

This immersive situation allowed me to familiarize myself with research in sciences. Its rhythm really different from that of
studies. Sometimes involving weeks focused on the same issues, where it is necessary to change points of view and learn on the
job. Sometimes by reading or watching conferences. I sincerely thank the ENS for allowing me to carry out this mathematically
and humanly rewarding experience abroad.

2 Types and Logic

2.1 What is a type theory ?

Historically, the story of types theory begins in the 1900s. After the discovery of his paradox, RUSSELL, with the help of FREGE,
formulate the first ideas of type theory. In order to avoid self reference in a formal logic system, the key idea is to hierarchise the
objects, by giving a tag to each one: its type. In logic, this gives an alternative to set theory where instead of having every object
being a set, every object is now a point a of some type A, A being uniquely determined. This is to be related (but not confused)
with the mebership relation → of set theory: in a first approach, we may understand a : A as a → A. Since in such systems it is not
possible to have A : A, this prevents Russell-type paradoxes from appearing. But since its advent, types theory have become a
much wider field, used in Computer Science or as a logical framework suitable for constructive mathematics.

In computer science, the notion of type or typing system is closely related to functionnal programming and more generally
soundness of programs. In a large class of language, as C++ or JAVA, there is a rudimentary form of typing. It consists in flags
attributed to variables, as int, float or char, which allows to distinguish between datas that should represent an integer, a
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decimal or a letter even if in the computer they all turns out to be represented as 0s and 1s. This class of language is called weakly

typed but it is only the basic idea of type theory. There are also so-called strongly typed languages, and they usually corresponds
to fonctionnal programming ones, such as OCaml or Haskell. In functional programming, everything is a function. You can
define a function which takes in argument a function and returns a function, and even an entire program may be considered as
a huge function. In those languages, when defining a function you need to specify the type of its argument and the type of its
return value. If a function f eats elements of type A and spits out elements of type B, it will be given the type A ↑ B and in
this way, every object will come with a well defined type. The strong typing avoid problems of non-terminating functions. For
exemple, it is not possible to define a function which maps a function f to f ( f ) because there is no way to attribute a type to
such a function.

The notion of typing system that interests us is of this last form. It consists of a family of rules to derive the type of a variable.
This is really close (and actually closely related) to the natural deduction. In order to obtain a typing judgment such as a : A, you
should build a whole tree where the rules are nodes and the judgment appears as the root of the tree.

2.2 The Intuitionistic Theory of Type

I will describe now the Intuitionistic Theory of Type, originally formulated by MARTIN-LÖF in 1972 [7]. In what follows, con-
versely to Set Theory, we will not rely on the first order logic. Indeed, as we will further explain the operations on types will
also act as logical operators. First, there is a list of “basic types”, that we will use as building blocks to build more complicated
ones. They all go with constructors or native elements, which are the only way to introduce elements of this type.

• There is an empty type, which we will denote ↓ or 0. There is no native element or constructor of this type.

• There is a unit type, which we will denote ↔ or 1. There is one native element of this type, which we denote ↗. Hence, we
may write ↗ : 1.

• There is a type of booleans, which we will denote Bool or 2. There is two native elements of this type, which will be called
false and true or 0 and 1. Hence, we may write 0 : 2 or 1 : 2.

• There is a type of natural numbers, which we will denote N. There is one native element 0, so we have 0 : N. And there
is one constructor succ. Given an element n : N, we also have succ(n) : N. This is to be related with PEANO’s formulation
of Arithmetic. For exemple, we have succ(succ(succ(0))) : N and we should also write the term succ(succ(succ(0))) as
“3”.

Now we will also give types operations. There are really similar to the operation that we may form with sets, such as the
cartesian product or the disjoint union.

• When both A and B are types, we may form their arrow type A ↑ B. It is the type of maps from A to B. Their is
one constructor for this type, which will be denoted λ. Given an expression Φ(a) : B which may depend on the free
variable a : A, we may form the element λ(a : A). Φ(a) : A ↑ B. It is akin to the standard notation a ↘↑ Φ(a), which
mathematicians are more familiar with. As a first exemple, we may define the function plus_two : N ↑ N, which adds
two to a given natural number, as follows : λ(n : N). succ(succ(n)). When f : A ↑ B, and a

≃ : A, we may always
form the expression f (a

≃), and we have f (a
≃) : B. When f is λ(a : A). Φ(a), then this expression reduces to Φ(a

≃). In
our previous exemple, this means that our function plus_two computes as expected. For instance: plus_two(1) is the same
thing as succ(succ(1)), which is, by definition, 3. We have a native element N ↑ N, which is the constructor succ. More
generally, constructors (exepted λ) may be seen as native elements of arrows types.

• When A and B are a type, we may form their cartesian product type A ⇐ B. The only constructor for this type is the
pairing operation pair : A ↑ B ↑ A ⇐ B. This means that the only way to build an element in A ⇐ B is to give its first and
second component. Hence, if a : A and b : B, then pair(a)(b) : A ⇐ B. We will also more suggestively denote this element
by (a, b). For instance, (succ(succ(2)), ↗) : N ⇐ 1, and (plus_two, false) : (N ↑ N)⇐ Bool.

• When A and B are a type, we may form their sum type A + B. This is to be related with the usual disjoint union. Their
are two constrctors for this type, which are inl : A ↑ A + B and inr : B ↑ A + B. This means that to produce an element
c : A + B, we may use an element from a : A and define c as inl(a) or an element b : B and define c as inr(b). For instance
inl(↗) : 1 + N.

At this point, I need to introduce the concept of Universes. It is akin to the concept of universes in Set Theory, as introduced
by TARSKI or GROTHENDIECK. It seems natural to ask whether there is a “type of types”. However, stated like this, it will
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eventually leads to RUSSELL or BURALI-FORTI style paradoxes. Hence, here again we need to hierarchise. We will not assume
one universe of "all types", but a whole “cumulative” hierarchy of such.

U0 : U1 : U2 : . . .

And we assume 0, 1, 2, N to be of type U0. Moreover, we ask for each universe to be closed under product, sum, and
exponentiation (arrow types). Hence our previous rules stated as “When A and B are types, then so is A ⇐ B” should be read as
if A, B : Un, then A ⇐ B : Un. We may also now consider +, ⇐, ↑ to be maps Un ↑ Un ↑ Un. Since we think of Un+1 as beeing
bigger than Un, then we will suppose a cumulativity. There is two ways to handle this. The first one is to allow elements to have
several types in this specific case. Precisely, if A : Un, then A : Un+1. But this removes the desirable feature that everything gets
one and only one type. A “cleaner” way of doing this is to postulate the existence of lifting maps, ⇒ : Un ↑ Un+1. preserving all
the properties that we need in order that ⇒A behaves exactly as A does. But we will not worry so much about this subtlety, since
it may becomes a bit technical sometimes. However, note that when working with a proof assistant as I did in my internship,
you need to care about those universes !

Now, I will describe how to define functions out of some type. In type theory, every function is made from small bricks,
namely the constructors and the recursors. Roughly, a constructor explains how to map into certain type, and the recursor
allows to map out of a certain type. So for the 7 points introduced above, I explain now what are the recursors.

• For the empty type, since there is no way to introduce an element, you can define a map out of 0 without having to specify
anything. This is really similar to what happens in set theory with the empty set. Hence the recursor say the following :
For each universe U and type A : U , there is a map rec0(A) : 0 ↑ A.

• For the unit type, since there is only one native element ↗ : 1, specifying a map out of unit is the same as picking a value
for ↗ : 1. Hence, the recursor say the following. If A is a type and a : A, then there is a map rec1(A, a) : 1 ↑ A. Moreover,
we have the reduction (also called computation) rule rec1(A, a)(↗) ⇑ a.

• For the type of booleans, there is two native elements, hence we need to specify the value of both. If A is a type, and a0, a1 :
A, then rec2(A, a0, a1) : 2 ↑ A. And we have the computation rules rec2(A, a0, a1)(0) ⇑ a0 and rec2(A, a0, a1)(1) ⇑ a1.

• For the type of natural numbers, there is one native element and one constructor succ : N ↑ N. Hence, in order to define
a map N ↑ A for a certain type A, we should specify the image of 0, and how succ acts through the map we are defining.
The recursor for N works as follows : Given a type A, an element a : A and a map ε : N ↑ A ↑ A, we have a map
recN(A, a, ε) : N ↑ A, which compute as follows:

– recN(A, a, ε)(0) ⇑ a

– recN(A, a, ε)(succ(n)) ⇑ ε(n, recN(A, a, ε)(n))

This is really as defining by induction a function when programming. Indeed, recursors allows us to “pattern match” as
in some languages (OCAML, HASKELL, RUST...).

• For the arrow type there is not really a recursor. The way you use function is by evaluating them. But to my knowledge
there is no recursor for this type.

• In order to define a map A ⇐ B ↑ C out of a cartesian product, what you need is a map f : A ↑ B ↑ C. Since the only
way to introduce an element c : A ⇐ B is by pairing together two elements a : A and b : B, then f should suffice to define
the map A ⇐ B ↑ C. If C is a type and f : A ↑ B ↑ C, then we have a map rec⇐, A, B(C, f ) : A ⇐ B ↑ C with the
computation rule rec⇐, A, B(C, f )(pair(a)(b)) ⇑ f (a)(b).

• if A and B are types, the elements of A + B are introduced by inl : A ↑ A + B or inr : B ↑ A + B. Hence when C is a type,
in order to define a map A + B ↑ C it suffice to deal with those two cases. If f : A ↑ C and g : B ↑ C, then we have
rec+, A, B(C, f , g) : A + B ↑ C with the computation rules

– rec+, A, B(C, f , g)(inl(a)) ⇑ f (a)

– rec+, A, B(C, f , g)(inr(b)) ⇑ g(b)

Now, notice that the intriduction of universes allows us to define types families. That is maps A ↑ U for A a type and U a
certain universe. For exemple, we may define by recursion on N the finite types as

f (0) :⇑ 0 and f (succ(n)) :⇑ 1 + f (n)
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That is :
f :⇑ recN(U0, 0, λ(n : N). λ(A :U0). (1 + A))

There are 3 more type operations that we may introduce now : the dependant sum Σ, the dependant product Π and the
identity type Id. I describe the first two of them, which are respectively generalizations of the cartesian product and the arrow
type. And we will come back to the latter in the section “Types and Geometry”.

• Given a type A and a type family B : A ↑ U (we say that B is indexed by A or a type family over A), we may define
their dependant product: ∏(a:A) B(a). It is the type of dependant functions f such that, for every a : A, f (a) : B(a). The
adjective “dependant” here comes from the fact that the type of f (a) depends on the element a : A. It is a key feature of
our type theory, and the reason why this theory is called a dependant type theory. This is a generalization of the type of
functions, hence we will stick to the notation λ for the constructor. If Φ(a) is an expression potentially depending on the
free variable a : A, such that, for every a : A, Φ(a) : B(a) then we may form the term λ(a : A). Φ(a) : ∏(a:A) B(a). We
have the expected computation rule : (λ(a : A). Φ(a)) (a

≃) ⇑ Φ(a
≃). Notice that, for any type C (which does not depends

on a : A), A ↑ C is the same type as ∏(a:A) C.

• Given a type A and a type family B : A ↑ U , we may define their dependant sum: ∑(a:A) B(a). It is the type of dependant
pairs (a, b) with a : A and b : B(a). Here again, the element b lives in a type which may depends on the first argument.
To construct an element of this type, we need an element a : A and an other one b : B(a), then we may form the element
pair(a)(b) : ∑(a:A) B(a). Hence pair has the type ∏(a:A)

(
B(a) ↑ ∑(a≃ :A) B(a

≃)
)

. Notice that here again, the dependant
sum and the constructor pair generalize the product in the case B constant. As with the product, we will write more
suggestively (a, b) for the element pair(a)(b). The recursor for this type has the following form: Given a type C,

recΠ, A, B(C) : ∏
a:A

(B(a) ↑ C) ↑

(

∑
a:A

B(a)

)
↑ C

. Which means that given, for each a : A, a map ε(a) : B(a) ↑ C, we have a map recΠ, A, B(C, ε) :
(

∑(a:A) B(a)
)
↑ C.

It satisfies the computation rule, for a : A and b : B(a) recΠ, A, B(C, ε)((a, b)) ⇑ ε(a)(b). This is a generalized form of
curryfication.

Before going further, there is some conventions that I will describe. Firstly, the arrow are right associative, which means
that A ↑ B ↑ C ↑ D should be parsed as A ↑ (B ↑ (C ↑ D)). Secondly, every expression located after a binder Σ and Π is
by default considered as being inside its scope. Which means that ∏(a:A) B(a) ↑ C must be parsed as ∏(a:A) (B(a) ↑ C), and

not
(

∏(a:A) B(a)
)
↑ C. Finally, we implicitely currify functions : We we work with f : A ↑ B ↑ C, we write often f (a, b)

instead of f (a)(b). Even if it do not work out the details (the interested reader can find the proof in [8]), there is as expected an
isomorphism between A ⇐ B ↑ C and A ↑ B ↑ C, or more generally between

(
∑(a:A) B(a)

)
↑ C and ∏(a:A) B(a) ↑ C.

2.3 The CURRY-HOWARD correpondance

Instead of giving a precise theorem or isomorphism, I will try to give the flavour of what is the CURRY-HOWARD correpondance.
This is about types and logic. More precisely, there is a correspondance between writing a proof of a given logical statement, and
defining a type theoretic expression of a certain type. In this philosophy, elements of a certain type will correspond to proofs of
the associated logical statement.

Let A and B be two type. And think of it as being logical propositions. We also think of any element a : A as a certain proof
of A. Then what does it mean to proove the logical implication A ↑ B ? It means than we have a way to turn an evidence of A

into an evidence of B. Hence, whenever A, then we should have B to. This is exactly what we are doing when writting down
a proof of A ↑ B : We suppose A, then we try to produce an evidence of B. In the same fashion, building an evidence of the
proposition A ⇓ B will be the same as giving an element of the type A ⇐ B. When constructively proving that A ⇔ B holds, we
give either a proof a : A that A holds, or a proof b : B that B holds, hence A ⇔ B should corresponds to A + B. Actually, A + B

is not exactly the type corresponding to A + B but we will not dive in those details for now. You may also interprete the truth
value as ↔ and the false value as ↓. Hence, the negation of the proposition associated with the type A will be associated to
the type ¬A :⇑ (A ↑ ↓). Notice that the constructors and recursors gives us the logical laws of introduction and elimination.
For exemple, the explosion principles is given by the recursor of ↓, and the modus ponens is given by the evaluation map
f ↘↑ a ↘↑ f (a) : (A ↑ B) ↑ A ↑ B.

What about the first order logic then ? Suppose that A is a type and P(a) is another type, depending on a : A. We think
of P(a) as proposition depending on a : A. What does it mean to prove ↖(a : A)P(a) ? In order to derive such a statement,
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we assume a : A is an arbitrary element, and we try to find a proof ϱ(a) that P(a) holds. Hence, it is the same as defining a
dependant map ϱ of type ∏(a:A) P(a).
For the existential, it works in a similar way with the dependant sum : when constructively proving ↙(a : A)P(a), we pick a
certain a : A and we show that P(a) holds. Hence, it correponds to giving an element (a, p) : ∑(a:A) P(a). (Here we have the
same issue as before, but lets keep to this interpretation for now.)

And this is how the CURRY-HOWARD correpondance works in practice. Indeed, this is the conceptual base of proofs as-
sistants such as COQ, LEAN or AGDA. When working with a proof assistant, you translate and formalize the logic as types,
translate theorems as complicated types, and try to define elements of those types. Here is an exemple of proof that the dou-
ble negation of the excluded middle holds: Given a type A, the excluded middle for A is A + ¬A, its double negation is
¬¬(A + ¬A) Hence to give an evidence of this, we need to exhibite a map of type ((A + ¬A) ↑ ↓) ↑ ↓. So lets pick a map
ε : (A + ¬A) ↑ ↓. Then, by composing with inl, we have a map ε ∝ inl : A ↑ ↓. Hence an element ε ∝ inl : ¬A. We may now
apply our function ε to the argument inr(ε ∝ inl) to get an element ε(inr(ε ∝ inl)) : ↓. Finally, this means that

λ(ε : (A + ¬A) ↑ ↓). ε(inr(ε ∝ inl)) : ¬¬(A + ¬A)

And this is our proof that the double negation of the excluded middle holds !

3 Types and Geometry

3.1 Paths, paths between paths and the higher homotopy interpretation

3.1.1 The identity type

Pursuing in the interpretation of types as propositions, the logical statement “x = y” for x and y two terms of a given type A may
also be internalised as a type. This idea come from the intuitionist type theory, as first formulated by Per MARTIN-LÖF in [7].
We should stick to this idea by defining an identity type over any type A, or more precisely a family of identy types indexed by
the elements of A as follow:

IdA : A ↑ A ↑ U

for all a : A, refla : IdA(a, a)

So for any elements a, b of type A, we have a type of equalities in A, namely IdA(a, b), and we only know one way to
construct an element for the identity type: when a ⇑ b, with the constructor refla : IdA(a, a). And this should capture the notion
of equality.

for readability, we will now write the equality type with the usual symbol “=”, so a = b will be a notation for the type Id a b,
and we may also write “a =A b” to specify the type A.

Now, as with every other type construction in type theory, one should define a recursor for this type, in order to know how
to use an equality to produce other statements. We may give two recursors, and refer the reader to the HoTT reference for the
proof that they are equivalent.

Path induction:

ind=A
: ∏
(C:∏(x,y:A)(x=Ay)↑U )

(
∏(x:A)C(x, x, reflx)

)
↑ ∏

(x,y:A)
∏

(p:x=Ay)

C(x, y, p)

with the computation rule, for every a : A, ind=A
(C, f , a, a, refla) :⇑ f (a, refla)

Based path induction:

ind
≃
=A

: ∏
(a:A)

∏
(C:∏(x:A)(a=Ax)↑U )

C(a, refla) ↑ ∏
(x:A)

∏
(p:a=Ax)

C(x, p)

with the computation rule, for every a : A, ind≃=A
(a, C, d, a, refla) :⇑ d

What is worth noticing from those recursor is that they tells us the equality behave as the LEIBNIZ equality : if a =A b then
every property which holds for a will hold for b and inversely. But has every other types, the identity type could carry more
structure that the mere propositionnal one, and should be thought as an algebraic structure. Indeed that is the fundamental
consideration of Homotopy Type Theory, which give it its higher algebraic flavor as we will describe it later.

One can recover the usual properties of equality and the fact that it is an equivalence relation. This may be stated as the
existence of the following functions (Those functions may be defined by path induction, and the reader should refer to [8] for
this construction and the proofs of the following statement):
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Definition 3.1 : concatenation, inversion

Given a type A and x, y, z : A, one may form the concatenation of any two elements p : x =A y and q : y =A z. This
concatenation is denoted p ↭ q and has type x =A z

Given a type A and x, y : A, one may form the inverse any p : x =A y. This inverse is denoted p
′1 and has type y =A x

Moreover, given a type A, those operations respects the following properties :

unit for ↭ :
For every x0, x1 : A and for every p : x0 = x1,

reflx0
↭ p = p and p ↭ reflx1 = p

associativity of ↭ :
For every x0, x1, x2, x3 : A and for every p : x0 = x1, q : x1 = x2, r : x2 = x3,

p ↭ (q ↭ r) = (p ↭ q) ↭ r

inversion :
For every x0, x1 : A and for every p : x0 = x1,

p ↭ p
′1 = reflx0 and p

′1 ↭ p = reflx1

And these properties may be resumed as the following :

Theorem 3.1

the families of identity types (x =A y)
x y :A is equiped with a structure of groupoid.

3.1.2 The homotopical point of view

As previously mentionned, one should consider that two elements of a given type may be equal in differents ways. Thinking as
equality beeing paths, and types as spaces, we may imagine that two points could be linked along distincts paths. In fact, this
interpretation is really accurate in our context, and provides us a convenient way to think about identity types. For example, the
groupoid structure explicited in the previous section may be interpreted as the path-groupoid structure of a space. Following
this interpretation, the concatenation of identity proofs now become the concatenation of paths, and the inversion become the
reversal.

We may take this space-as-types interpretation further. Assume we have a type A, two elements a, b : A and two paths
p, q : a =A b between them. Then in the geometric setting, we may have a whole diversity of homotopies between p and q.
This may be considered to in type theory, and it will go by the name

p = a=Ab q

In fact, we already mentionned the existence of elements in this kind of type in the previous section, by claiming the unitarity,
associativity and inversibility properties for identity proofs operations. And as in homotopy theory, there is no reason to stop
at level two, and one would even consider types of the form isprop(P)

α = p=a=
A

b q β

Which we should write more readibly as α = β. As before, inhabitants of this kind of type could be properties about the
proof of associativity of types, or the proof of inversibility... The point is that more than beeing a convenient way to think
about identity type, this perspective guide us towards defining objects akin to classic homotopy theory ones. And beautiful
constructions of usual geometry may be reproduced in Homotopy Type Theory, such as loopspaces, n-spheres, homotopy
groups, suspensions, universal covers, Hopf fibrations, and so on. One may also prove type theoretic formulations of standard
theorems such as the WHITEHEAD principle, or the long exact sequence induced from a fibration. This last point will be at the
center of the following developement.
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3.2 Types dimension and connectedness

3.2.1 dimensionality

As sketched in the previous sections, the type of equality in a given type may host a rich diversity of elements. In order
to measure, given a type A, how complex this higher structure is, we may define a notion of “dimension” for types as the
maximal depth of a non-trivial identity type in A. That is the maximal height of an identity type tower (as in the previous
section) one may form and still having a non trivial type. The first notion to define here is the meaning of “trivial type” used
above, and it will be the starting point for the hierarchy.

Definition 3.2 : Contractible type

A type A is contractible, or a singleton, if there is a : A, called the center of contraction, such that a = x for all x : A.

isContr(A) :⇑ ∑
(a:A)

∏
(x:A)

(a = x).

Then the hierarchy is defined by recursion :

Definition 3.3 : Level of a type

Define the predicate is-n-type : U ↑ U for n ∞ ′2 by recursion as follows:

is-n-type(X) :⇑

{
isContr(X) if n = ′2,
∏(x,y:X) is-n≃-type(x =X y) if n = n

≃ + 1.

We say that X is an n-type, or that it is n-truncated, if is-n-type(X) is inhabited.

Notice that the “trivial type” case correspond to n = ′2. The firsts levels got specific names; given a type A, for

• is-(′1)-type(A), one say isProp(A), and that “A is a (mere) proposition”

• is-0-type(A), one say isSet(A), and that “A is a set”

• is-1-type(A), one say that “A is a groupoid”

When doing mathematics in a usual context, one do not matter about the algebraic structure of a proposition, and in how
many ways one can prove it. In the type-as-proposition interpreatation, this correspond to assume that given a type P, thinking of
it as being a proposition, every two elements p, q : P (i.e. two proofs of P) are equals. one can show that this assertion is actually
equivalent to isProp(P). So the types P such that isProp(P) behave as usual propositions, and this explains the terminology.

Now, given a type A such that isset(A), we know that for every two elements a, b : A, the identity type a =A b is a mere
proposition. And we recover in this way types whose identity types behave as in usual set theory: there is at most one way
to be equals as elements of a set. This is the reason why the level hierarchy begins at ′2; because that way one fix the set-like
behaved types at level 0.

Finally, when unfolding the definition, on get that given two points x, y of a given groupoid G, the identity type x =G y is a
set. And being equals as paths between x and y in now a proposition, so the structure G behave as a usual groupoid, in which
every x : G represent an object of G, and every path p : x =G y between two elements x, y : G represent an isomorphism x ↑ y

in the groupoid. The structure of groupoid is given by the one given in section 3.1.1.
For a deeper explanation of this concept, the reader should refer to chapters 3 and 7 of [8].
For any type A, one may think of “a best approximation of A by a mere proposition ∈A∈”. This type exists and is called the

propositional truncation of A. This type is caracterised by the following attributes.

• There is a function | · | : A ↑ ∈A∈.

• ∈A∈ is a mere proposition

• For each mere proposition B and map f : A ↑ B, f factors through | · | and yields a map ∈A∈ ↑ B.
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3.2.2 connectedness

Another (in some sens “dual”) way to study the higher homotopy structure of a type A, is to look at "how much" A is connected.
This consideration takes its motivation straightly in the types-as-spaces interpretation.

Given a space X, one can ask whether X is connected or not, and this is what will correspond for a type to be 0-connected. But
in homotopy theory, one is also interested in the property of being “simply-connected”, which in fact correspond to the property
of being connected, and having a connected path-space. this will correspond to our notion of 1-connected types. Once again,
there is no reason to stop the definition at n = 1, and one may consider also the property of having k-fold loopspaces connected
for every k ∋ n. This is what correspond to the definition n-connectedness in homotopy theory, and what is reproducible in type
theory. This leads naturally to a recursive definition, as follows :

Definition 3.4 : Connectedness

Define the predicate is-n-connected : U ↑ U for n ∞ ′1 by recursion as follows:

is-n-connected(X) :⇑

{
∈X∈ if n = ′1,
∈X∈ ⇐ ∏(x,y:X) is-n≃-connected(x =X y) if n = n

≃ + 1.

We say that X is an n-connected type if is-n-connected(X) is inhabited.

Actually, in [8], the definition of connectedness differ from the presentation given here. It makes use of the n-th truncation
of a type, while this definition only need the propositionnal truncation. The definition was suggested by Thierry COQUAND,
and one of the objectives of my internship was to redemonstrate known results on connectivity from this alternative definition;
more elementary and more conducive to inductive reasoning.

I started by proving, and formalising in Agda, the following lemmas about connectivity:

Lemma 3.1

Given A, B two types, and n ∞ ′1 such that is-n-connected(A) and is-n-type(B), the map

λ(a : A). (λ(_ : B). a) : B ↑ (A ↑ B)

is an equivalence.

Lemma 3.2

Given n ∞ ′1, A a n-connected type, and P : A ↑ U a family of (n ′ 1)-types over A, the projection map
(

∏
x:A

P x

)
↑ P a

is an equivalence.

Proof. This follows from the first lemma by noticing that the projection map is the composition of(
∏(x:A) P x

)
↑

(
∏(x:A) a = x ↑ P x

)
, which is an equivalence by the first lemma, and the map

(
∏(x:A) a = x ↑ P x

)
↑ P a which is always an equivalence by path-induction.

Lemma 3.3

Given n ∞ ′1, k ∞ ′2, A a n-connected type with a point a : A, and P : A ↑ U a family of (n + k + 1)-types over A and
b : P a, the type of pointed sections ∑(s : ∏(x:A) P a) (s a = b) is a k-type.
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4 Homotopy and cohomology

4.1 Looping, delooping

4.1.1 the loopspace functor

As suggested above, one should consider when working in the context of HoTT, identities type as a path space. We then define,
for a given type A, and a : A, the type Ω(A, a) :⇑ a =A a, and give it the name loopspace at a in A. As it was seen in the
section the identity type, we get a natural structure of group on Ω(A, a), and a distinguished element refla : Ω(A, a), which we
will also write 1a while thinking of it as the unit for the group structure on the loopspace. This makes the loopspace a pointed
type: (Ω(A, a), 1a). This way one may iterate the loopspace, and more generally define iterated loopspaces in the following
way:

Definition 4.1 : Loopspaces

the type family Ωn(A, a) for n : N is inductively defined by:

Ωn(A, a) :⇑

{
(A, a) if n = 0,
Ω(Ωn

≃

(A, a), 1) if n = n
≃ + 1.

For any n : N, Ωn(A, a) is then a pointed type, but we will identify it with its underlying space when needed.
The construction Ω gives rise to an important family of groups in Homotopy Type Theory. Moreover, any pointed map give

rise to a (pointed) map between the associated loopspaces:

Definition 4.2 : Looping of a function

Given any two pointed types (A, a), (B, b) and a pointed function f• = ( f , f0) : (A, a) ↑• (B, b)

Ω f• :⇑ λα. ( f
′1
0

↭ f↗α ↭ f0) : Ω(A, a) ↑ Ω(B, b)

(One can also make this function pointed; this follows from the identity f
′1
0

↭ f0 = 1b)

And we call Ω f• the looping of f• As for the loopspace case, we should overload the same notation for the looping of f• and
the pointed version of the looping of f• when it is clear from the context. One can check that Ω f• preserves the composition,
so it is even a group morphism between the loopspaces. By denoting U• the type ∑(X:U ) X of pointed types in the universe U , we
have the following result:

Theorem 4.1 : Functoriality of Ω

Ω defines a endofunctor in the category U• of pointed types and pointed maps

For the following discussion, I will now introduce a more specific category Hn as follows.

Definition 4.3 : Hn

Given n > 0, the (univalent) category Hn is defined by having:

• as objects the pointed types (X, x0) : U• such that X is a (n ′ 1)-connected n-type.

• as morphism from (X, x0) to (Y, y0) the pointed map (X, x0) ↑• (Y, y0)

For n = 1, it is moreover asked for the objects to be homogeneous.
And for n = 0, H0 is defined to be the category of abelian groups which are set. The category H0 will also be denoted Ab
in what follows.

Notice that the proofs of is-(n ′ 1)-connected(X) and is-n-type(X) are not considered in the above definition. This is because
those are mere propositions, so their proofs are irrelevant. And thus they are automatically preserved by the morphisms of the
category Hn. Thanks to this property, in what follows we should never worry about the proof terms of these propositions, and
just consider them as properties as it is usually done in mathematics.

Now, directly from the definitions of connectivity and type level, one get the following corollary from the functoriality of
Ω:
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Theorem 4.2 : Functoriality of Ω

For any n > 0, Ω defines a functor from the category Hn to the category Hn′1

(In the case n = 2, this follows from the fact that every loopspace is an homogeneous type, and in the case n = 1, this follows
from the property that every homogeneous type has abelian lopspaces)

4.1.2 delooping

One of the main objectives of my internship was to formalize the following impressive result :

Theorem 4.3 : Equivalence of Ω

For any n ∞ 2, the functor Ω : Hn ↑ Hn′1 is as equivalence of category.
In particular, any pointed type (A, a) in Hn may be delooped, that is there exist a unique pointed type (K, k0) up to
isomorphism in Hn′1 such that Ω(K, k0) = (A, a). And moreover, any pointed map ( f , f0) : Ω(A, a) ↑• Ω(B, b) gives
rise to a unique pointed map (g, g0) : (A, a) ↑• (B, b) such that Ω(g, g0) = ( f , f0)

The proof has been fully formalised in Agda, by taking advantage of the existing HoTT-Agda library, and I will now explain
some details of the proof, which involves the explicit definition of an inverse to Ω; which is the construction of torsors over a
pointed (homogeneous) type. This proof follows the crucial ideas of David WÄRN.

First, fix an integer n ∞ 1 and a type A in Hn, we have a notion of torsor over A given by the following definition:

Definition 4.4 : A-torsors

Given a n-type B which is (n′ 1)-connected, a structure of A-torsor on B correspond to an element of type ∏(b:B)(B, b) =U•

(A, a) Then we define a A-torsor to be such a type together with a structure of A-torsor. Formally, we may express the
type A-torsor as:

A-torsor :⇑ ∑
B:U

is-n-type(B)⇐ is-(n ′ 1)-connected(B)⇐ ∏
b:B

(B, b) = (A, a)

Intuitively, a A-torsor is a type which is isomorphic to (A, a) from any point of view, that with any choose of a distinguished
point. This is similar to the usual notion of G-torsor for a group G, which correspond to a set who inherit a group structure by
identifying the neutral element of G with any point on the torsor. In particular, it implies that every torsor in automatically an
homogeneous type.

Because it follows from the definition of Hn that A must be a homogeneous type, the type of A-torsors hosts a distinguished
torsor: namely the trivial torsor over A.

Definition 4.5 : Trivial torsor

The trivial torsor TA over A is defined by the following data:

• the base space is given by A itself

• the properties of being a n-type, and being (n ′ 1)-connected are satisfied by assumption on A.

• for every point a
≃ in A, the identification (A, a

≃) = (A, a) is given by the homogeneity of A.

Given B a A-torsor, every choice of point b on B induces an identification between (B, b) and (A, a), and a posteriori an
identification between the torsor B and the trivial torsor TA. One may indeed show that this is an equivalence, and that every
identification between the torsor B and the trivial torsor TA correspond to a unique point on B. I have formalised this result in
my Agda developement, and this is a cornerstone for the definition of the delooping. From this result, follows the corollary:

Lemma 4.1

The type of identifications TA =A-torsor TA is isomorphic (and thus equal, according to the univalence axiom) to the type
A. And under this identification, the distinguished point a of A correspond to the trivial path 1A-torsor. This may be
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synthetically reformulated as:
Ω (A-torsor, TA) = (A, a)

This motivate the following definition:

Definition 4.6 : Delooping of (A, a)

In order to make abstract the precedent construction, the pointed type of torsors over (A, a) is also denoted B(A, a) or just
BA, and is called the delooping of (A, a). We thus have the relation

ΩB(A, a) = (A, a)

Now for the other way around, let’s fix a pointed type (A, a) in Hn+1. Notice that there is a special class of torsors over the
loopspace Ω(A, a). For any x : A, one may define a ΩA-torsor structure on x =A a with the following isomorphism:

For every α0 : x =A a, Φα0 :⇑
(

λα. α′1
0

↭ α
)

: x =A a ↑ Ω(A, a)

Indeed, every torsor on ΩA arise in this way, in order to see this, it suffices to show that the map

λ(x : A). (x = a) : A ↑ ΩA-torsor

is an equivalence, i.e that for any ΩA-torsor TB, the fiber ∑(x:A)(TB =ΩA-torsor (x = a)) is contractible. But since being
contractible is a mere proposition, we may suppose to have a point b in the base space B of TB in order to show this. This point
gives us an identification TB = T (ΩA). So we are therefore reduced to showing that the type ∑(x:A)(T (ΩA) =ΩA-torsor (x =
a)). Now once more, this is equivalent, as previously mentionned, to choosing a path α0 : x = a. That is the fiber is equivalent
to the type ∑(x:A)(x =A a) which is known to be contractible. (see for example Lemma 3.11.8 in [8].)

Thus, we showed that the type BΩ(A, a) is identical to (A, a) itself.

Now, we show that the functor Ω is fully faithful. In order to get this result, fix (A, a), (B, b) in Hn+1 and a map g• =
(g, g0) : Ω(A, a) ↑• Ω(B, b). To begin with, one may show that giving a map f• = ( f , f0) : (A, a) ↑• (B, b) such that Ω f• = g•

is the same as giving, for every x : A, a point y : B and a map h : x = a ↑ y = b such that for every α : x = a the following
pointed map h

α

λω. (h α)′1 ↭ (h (α ↭ ω)) : Ω(A, a) ↑ Ω(B, b)

(with the proof of being pointed given by the inverse path property) is equal to g• as a pointed map. So this show that the fiber
of Ω at g• is isomorphic to the type

∏
(x:A)

∑
(y:B)

∑
(h:x=a↑y=b)

∏
(α:x=a)

h
α = g•

Then by a clever use of the lemmas previously stated about connectivity, one can show that this type is contractible.

Finally, I also formalised a part of an extension of the equivalence in the case n = 1:

Theorem 4.4 : Equivalence of Ω in the case n = 1

In the case n = 1, one may refine the definition of torsor (this is the traditionnal notion of G-torsor for a group G) such
that Ω and (′)-torsor are still inverses as functors. Given an abelian group G, the notation BG denotes the (pointed) type
G-torsor; its underlying type is an homogeneous, connected groupoid.

The result we hand up with is a beautiful way to identify the category of abelian group with any Hn.

4.1.3 EILENBERG-MACLANE space of a group

Fix an abelian group G (we implicitely assume that the underlying type of the group G is a set when making this assertion). By
using the previous lemmas, it is possible to deloop G as many times as wanted. And after n iterations this construction results
in an object K(G, n) which is a (n ′ 1)-connected n-type.

Definition 4.7 : EILENBERG-MACLANE spaces

Given n : N, the n-th EILENBERG-MACLANE space (EM-space) of an abelian group G is defined as

K(G, n) :⇑ Bn
G
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It is a pointed (n ′ 1)-connected n-type, and satisfies the property

Ωn(K(G, n)) = G

And, since Ωn : Hn ↑ H0 is an equivalence, K(G, n) is caracterized among the objects of Hn by the following universal
property:

For every (A, a) in Hn, HomHn
(K(G, n), (A, a)) △ HomAb (G, Ωn(A, a))

or by the dual one:
For every (A, a) in Hn, HomHn

((A, a), K(G, n)) △ HomAb (Ωn(A, a), G)

In Homotopy Type Theory, (or in the context of higher categories), there is a synthetic definition of what is the cohomology
group of a given type (or space) which is expressed by using the notion of EILENBERG-MACLANE space.

Definition 4.8 : Cohomology group of a type

Given a type A and n : N, the n-th cohomology group of A with coefficients in G is defined as

Hn(A, G) :⇑ ϱ0 (A ↑ K(G, n))

The group structure is given by the one induced from G to K(G, n).

And it turns out that this definition of cohomology satisfies the EILENBERG-STEENROD axioms, thus defining the usual
cohomology.

4.2 Homotopy of the n-sphere

A striking consequence of the existence of EM-spaces is that it makes it possible to compute synthetically the firsts (n) homotopy
groups of the n-sphere. This is an idea spotted by David WÄRN and I managed to retrieve the detailed reasonment wich is now
presented.

In order to keep synthetic the calculations, the explicit construction of the n-sphere will not be needed, and the only property
that is required is the following universal property:

There is a bijection, natural is the pointed type (A, a),
(
Sn

↑• (A, a)
)
△ Ωn(A, a)

where Sn denotes the n-sphere, which is here considered as pointed type.
The following universal property of Z is also used:

There is a bijection, natural is the group G, HomHn
(K(G, n), (A, a)) △ HomGp (Z, G) △ G

Where Gp denotes the category of groups, and G is identified with its underlying type.
By the universal property of the n-sphere, choosing a map Sn

↑• K(Z, n) is the same as choosing a point in Ωn(K(Z, n)).
Knowing that Z = Ωn(K(Z, n)), we can pick the point 1, and define [′] : Sn

↑• K(Z, n) to be the associated pointed map.

Lemma 4.2

For every n : N, the n-th EILENBERG-MACLANE space of the abelian group Z is a n-th truncation of the n-th sphere Sn.
That is, satisfies the following universal property:

For every n-type A, the precomposition by [′] defines an equivalence
(
K(Z, n) ↑ A

)
△

(
Sn

↑ A
)

Proof. Fix an arbitrary n-type A. First, notice that for any pointed type (B, b), there is an equivalence

(B ↑ A) △ ∑
a:A

((B, b) ↑• (A, a))

so it suffice to fix a point a : A, and to show that there is an equivalence
(
K(Z, n) ↑• (A, a)

)
△

(
Sn

↑• (A, a)
)

Now, the left hand side is equivalent to the type HomGp(Z, Ωn(A, a)) according to the universal property of EM-spaces. So it
is equivalent to the type Ωn(A, a) by the universal property of the group Z. Finally, this is equivalent to the right hand side by
the universal property of the n-sphere.

12



By universality, the EM-space K(Z, n) is then the n-th truncation of the n-sphere. And we may now use two classical results
(see for example the corollary 7.3.14 and the Lemma 8.3.2 in [8]) about the homotopy groups of connected and truncated types:

Lemma 4.3

Given n : N, and a pointed type (A, a) such that A is n-connected, ϱk(A, a) = 1 for every k ∋ n. And, for every pointed
type (A, a), and every k ∋ n, ϱk(A, a) = ϱk(∈(A, a)∈

n
)

Since K(Z, n) is a (n ′ 1)-connected n-type, and Ωn(K(Z, n)) = Z we know by the first point of the lemma and the
definition of the n-th homotopy group that

• For every k < n, ϱk(K(Z, n)) = 1

• ϱn(K(Z, n)) = Z

Then, by the second point of the lemma, we obtain the following theorem:

Theorem 4.5 : Homotopy groups of the n-sphere

for all n : N and k < n, ϱk

(
Sn

)
= 1 and ϱn

(
Sn

)
= Z

4.3 The fiber sequence

There is a fundamental phenomenon that arises when studying (co)homology; which is the existence of a long exact sequence
through (co)homology groups induced each time there is a short exact sequence of chain complex. More suprisingly, what we
only need in order to generate such a long exact sequence is only a fibration. Indeed, the sequence arising in (co)homology is
the manifestation of a deeper result, that may be understood in the context of the theory of ∞-groupoid, and thus may be stated
in the synthetic language of Homotopy Type Theory.

Theorem 4.6 : Fiber sequence of a fibration

If (A, a), (B, b) are two pointed types and f : (A, a) ↑• (B, b) is a pointed map, then there is a long exact sequence:

... ↑• Ωn+1(B, b) ↑• Ωn
ker( f ) ↑• Ωn(A, a) ↑• Ωn(B, b) ↑• ... ↑• ker( f ) ↑• (A, a) ↑• (B, b)

Where the kernel ker( f ) of f : (A, a) ↑• (B, b) is defined to be the fiber ∑(x:A) f x =B b

Proof. To begin with, remark that the definition of the fiber
ker( f ) yield a pullback square

ker( f ) •

(A, a) (B, b)
f

bfst

↫

But since the first projection fst is also pointed, we may
form the kernel of this projection. We then obtain a second
pullback:

ker
(
ker( f )

)
ker( f ) •

• (A, a) (B, b)
f

bfst

↫

a

fst

↫

But by pullback pasting, we may now identify the kernel
of the kernel with the loopspace Ω(B, b) And since the first

projection fst : ker
(
ker( f )

)
↑ ker( f ) is also pointed, one may

still form the pullback of this map, resulting in the following
diagram:

Ω(A, a) •

Ω(B, b) ker( f ) •

• (A, a) (B, b)

↫↫

↫

By iterating this construction, one get the desired sequence.
It is possible to carry out the exact computations of the map
involved in this diagram (see for example lemma 8.4.4 in [8]),
and one can identify in this way the map Ω(A, a) ↑• Ω(B, b)
with the map ′Ω f . That is the map Ω f ∝ (′)′1. So the se-
quence obtained is indeed the following:
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...
(′1)nΩn∂
′↑• Ωn

ker( f )
(′1)nΩnfst
′↑• Ωn(A, a)

(′1)nΩn
f

′↑• Ωn(B, b) ↑• ... ∂
↑• ker( f )

fst
↑• (A, a)

f

↑• (B, b)

For a deeper understanding of this situation, the reader may also visit the nLab, and especially the page about the fiber
sequence.
There is several corollaries to the existence of this sequence. For example, since the functor ϱ0 preserves the exactness, one can
derive from this sequence the long exact sequence in homotopy

... ↑gp ϱn+1(B, b) ↑gp ϱn

(
ker( f )

)
↑gp ϱn(A, a) ↑gp ϱn(B, b) ↑gp ... ↑• ϱ0

(
ker( f )

)
↑• ϱ0(A, a) ↑• ϱ0(B, b)

Another example is the following. Since, for any pointed type X, the functor

(Y, y0) ↘′↑
(
(X ↑ Y) , y0

)
: U• ′↑ U•

is exact, one get the exact sequence

... ↑• (X ↑ Ωn
ker( f )) ↑• (X ↑ Ωn(A, a)) ↑• (X ↑ Ωn(B, a)) ↑• ...

And, by taking the 0-th truncation, the sequence in cohomology

... ↑• H (X, Ωn
ker( f )) ↑• H (X, Ωn(A, a)) ↑• H (X, Ωn(B, a)) ↑• ...

In the context of my internship, I needed to obtain a specific consequence of this result, relating the cohomology in groups
which are linked by a short exact sequence. There is a preliminary useful result I proved for this purpose.

Definition 4.9 : Fibration sequence

Let (A, a), (B, b), (C, c) be three pointed types with f• = ( f , f0) : (A, a) ↑• (B, b) and g• = (g, g0) : (B, b) ↑• (C, c). then
the sequence

(A, a) ↑• (B, b) ↑• (C, c)

is said to be a fibration when there is a path family

γ : ∏
x:A

(g ∝ f )(x) = c

such that the induced map to the kernel of g (i.e the fiber of f over b) γ̃ : A ↑ ∑(y:B) g y = c is an equivalence. In this case
the following diagram commute:

A B C

∑(y:B) g y = c

γ̃

f g

fst

Lemma 4.4

For every n ∞ 2, and every sequence

(A, a)
( f , f0)
′↑• (B, b)

(g,g0)
′↑• (C, c) (S)

in the category Hn. (S) is a fibration if and only if the looped sequence Ω(S) is a fibration.

Proof. omited for concision

We also make use of this caracterisation of fibration in the case of group sequences:
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Lemma 4.5

For every sequence

(A, a)
( f , f0)
′↑• (B, b)

(g,g0)
′↑• (C, c) (S)

in the category H1, the short group sequence

1 ↑gp (Ω(A, a)) ↑gp Ω(B, b) ↑gp Ω(C, c) ↑gp 1 (ext′S)

is exact if and only if the sequence (S) of groupoid is a fibration.

Proof. also omited for brievety

5 Group cohomology and HoTT

During my internship, I also learned some notions of group cohomology and basic homological algebra. I mentionned previ-
ously that we may define in HoTT a notion of cohomology in terms of maps in an EILENBERG-MACLANE space. In a famous
article published in Tohoku, Grothendieck provides us with a very practical toolbox to identify different cohomologies, espe-
cially the notion of universal δ-functor. And the theorems related to this notion still apply in Homotopy Type Theory. Hence,
if the cohomology defined with the EM-spaces turns out to be a so-called universal δ-functor. Then it will coincide with the
others usual definitions of cohomology. I took part of this project to seek for such a result. Thanks to Felix CHERUBINI’s work,
a proof strategy has been identified, consisting in showing that we may cancel any cohomology class in a suitable extension of
the coefficients module. Hence I tried to prove this result for several cohomologies revolving around the one defined in HoTT,
and especially in the case of group cohomology. Even if I didn’t suceed in proving it in every degree, I managed to do so in
some cases, which I present in the following parts.

5.1 Some results about canceling cohomology

5.1.1 Group cohomology in coefficients

For a moment, I will work with the synthetic definition of group cohomology in terms of coefficients which I recall here.
Let G be a group and A a left G-module.

Definition 5.1 : H
k(G, A)

Let C
k(A) := G

k
↑ A for each k → N and C

′1(A) := 0. We may also define a coboundary operation ∂k : C
k′1(A) ↑

C
k(A) by

(∂k
a)g1, ..., gk

:= g1 · ag2, ..., gn
′ ag1·g2, g3, ..., gn

+ ag1, g2·g3, ..., gn
+ . . .

+(′1)n′1
ag1, ..., gn , gn′1·gn

+ (′1)n
ag1, ..., gn′1

We may check that ∂k+1
∝ ∂k = 0 so it defines a cochain complexe. We may now define H

k(G, A) as the quotient

H
k(G, A) :=

im(∂k)

ker(∂k+1)

Remark
a priori this definition requires the use of higher inductives types. (see [8], section 6.10 for more details about quotients in HoTT).
In the case k = 0, H

0(A) corresponds to the G-invariants of A.

5.2 Torsors and Group cohomology in coefficients

Finally, even if the attempts toward a proof that the cohomology is a universal δ-functor were not succesfull, I managed to relate
the two cohomologies (in terms of torsors and coefficients) in some specific degree or cases. This is the aim of the following
subsections.
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5.2.1 First cohomology group

Let G be an abstract group and BG the type of G torsors. We denotes ↗ : BG the trivial torsor in BG. Hence we have Ω (BG, ↗) =
G.

Let M : BG ↑ Ab be a family of abelian groups indexed over the delooping of G. It is possible to think of M as a G-module
via the following assignment.

• Let M :⇑ M(↗), it is an abelian (abstract group).

• To any g : G corresponds a path pg : ↗ =BG ↗. Hence it yields an equality M↗pg : M =Ab M. Since such an equality
corresponds to an isomorphism of abelian groups by univalence, we may encapsulate this data as a morphism ρ : G

op
↑

M = M, corresponding to a right action of G on M.

The first cohomology group of the space BG with coeeficients in M according to the EILENBERG-MACLANE-spaces definition
is given by H

1(BG, M) = ϱ0

(
∏(x:BG) EM(M(x), 1)

)
. Howether, from the previous section, we also have an other definition

of cohomology that we may associate to G and M, namely the cohomology of the group G with coefficients in the G-module M

; H
1 (G, M).
Now one may wonder if those two assignments turns out to be the same.
Let T be a M-torsor. In the following, we will need to understand what is the type of paths

transport
EM(M(·), 1)(pg, T) =EM(M,1) T

we unfold the definition of transport in EM(M(·), 1) by writing EM(N, 1) as

∑
(A:SetU )

∑
(α:N⇐A↑A)

∥∥∥A

∥∥∥ ⇐ isAction(α)⇐ ∏
a:A

isEquiv (α(·, a))

and T as (A, α, _) Hence, we may show

transport
EM(M(·), 1)(pg, T) =

(
A, (m, a) ↘↑ α(m · g

′1, a), _
)

where m · g := idtoeqv(ρ(g))(m). Now, we see that the path apdT(pg) is an equality

apdT(pg) :
(

A, (m, a) ↘↑ α(m · g
′1, a), _

)
= (A, α, _)

That is, a path σ(g) : A = A such that (it is a proposition)

∏
(m:M)

∏
(a:A)

α
(

m · g
′1, a · g

′1
)
· g = α(m, a)

where for a : A, a · g := idtoeqv(σ(g))(a) Finally, this may be stated as a right G-action σ on A such that, for every m : M, a : A

and g : G,
α (m · g, a · g) = α(m, a) · g

For now on, we let g · m := m · g
′1.

Notice that ∑(x:BG) EM(M(x), 1) with the pair (↗, T) as a distinguished element is a pointed connected groupoid. Hence,
we may apply the previously stated universal property of the delooping: giving a map BG ↑• ∑(x:BG) EM(M(x), 1) is the

same as giving a map G ↑gp Ω
(

∑(x:BG) EM(M(x), 1)
)

. We also have a group isomorphism Ω
(

∑(x:BG) EM(M(x), 1)
)
↑gp

∑(g:G) transport
EM(M(·), 1)(pg, T) =EM(M,1) T. And by expliciting the transport in EM(M(·), 1), this group is also isomorphic to

∑
(g:G)

∑
(σ:A△A)

∏
(m:M)

∏
(a:A)

σ(α(m, a)) = α(g · m, σ(n))

Where the group law is given by
(g, σ) · (h, τ) = (gh, σ ∝ τ)

Given an abritrary point a0 : A, we have an equivariant bijection a ↘↑ ma where α(ma, a0) = a determines ma. Under this map,
we have mσ(a) = mσ(α(ma , a0)) = mα(g·ma , σ(a0)) = g · ma + mσ(a0) Hence σ is fully determined by its image on a0 and the group
we care about is isomorphic to

G ⇐ M
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where the element m : M corresponds to mσ(a0). The group law is given by

(g, m) · (h, n) = (gh, g · n + m))

(because if σ(a0) = α(m, a0) and τ(a0) = α(n, a0), then σ ∝ τ(a0) = σ(α(n, a0)) = α(g · n, σ(a0)) = α(g · n + m, a0)) and we
recognize here the semi-direct product M ⊋ρ G.

Now, observe that giving a family of torsors T : ∏(x:BG) EM(M(x), 1) with T(↗) = T is actually the same as giving a non
dependant map T̃ : BG ↑ ∑(x:BG) EM(M(x), 1) which is constant on the first component. With the previously noticed group
isomorphism, those maps corresponds to the maps G ↑ M ⊋ρ G which are a section of the projection on G. That is to families
(mg)g:G such that mg·h = g · mh + mg. Hence, when giving a0 : A, giving T with T(↗) = T is the same as giving a cocyle in the
G-module M. But now we may check that this cocycle depend on the choice of a0 we made only up to a coboundary, because
when giving another a1 = α(u, a0) on A, we have for every (g, σ) : ∑(g:G) ∑(σ:A△A) ∏(m:M) ∏(a:A) σ(α(m, a)) = α(g · m, σ(n)),
if σ(a0) = α(m, a0) then

σ(a1) = σ(α(u, a0)) = α(g · u, σ(a0)) = α(g · u, α(m, a0)) = α(g · u + m, a0) = α(g · u + m ′ u, a0)

Hence by choosing a1 instead of a0, the cocycle (mg)g:G become (ng)g:G with, for each g : G:

ng = g · u + mg ′ u

Thus
[
(ng)g:G

]
=

[
(mg)g:G

]
does not depend on the choice of a distinguished point on A. Now, given a group morphism

(idG, σ) : G ↑ ∑
(g:G)

∑
(σ:A△A)

∏
(m:M)

∏
(a:A)

σ(α(m, a)) = α(g · m, σ(n))

we may caracterise the constructed cocycle class κ by

Q(κ) :⇑ ∏
(a0:A)

∑
(m:C1(G, M))

([m] = α)⇐ ∏
g:G

α(mg, a0) = σg(a0)

By choosing a distinguished point on A, we may derive that the property Q(κ) determines fully κ. Hence it shows

isProp



 ∑
κ:H1(G, M)

Q(κ)





and we may use
∥∥∥A

∥∥∥ to obtain an element of this sigma type by picking a point on A. This defines a map

∏
x:BG

EM(M(x), 1) ′↑ H
1(G, M)

and because H
1(G, M) is a set, it induces a map

H
1(BG, M)

Φ
′↑ H

1(G, M)

Now, we see the reciproque: Given a cocyle (mg)g:G in M, defines A to be the M-torsor M with the action given by translation
α(m, a) :⇑ m + a. The map

G ′↑ M ⇐ G

g ↘′↑ (mg, g)

defines a group morphism G ↑ M ⊋ρ G which is the identity on the second component. Hence, by choosing a0 := 0 : M as a
distinguished element on m, it defines a family of torsors T : ∏(x:BG) EM(M(x), 1), with T(↗) = M the trivial M-torsor defined
above. If instead of (mg)g:G we choose the cocycle (ng)g:G in the same class than (mg)g:G the torsor family obtained correspond
to the morphism

G ′↑ M ⇐ G

g ↘′↑ (ng, g)

If u : M is such that for every g : G, ng = g · u + mg ′ u, then we notice that the map

(m, g) ↘↑ (g · u + m ′ u, g)

defines a group isomorphism M ⊋ρ G △ M ⊋ρ G which identifies the morphisms associated to (mg)g:G and (ng)g:G. Hence the
families of torsors induced by both cocycles are equals, and they defines the same class in H

1(BG, M). This construction yield
a map

H
1(M, G)

Ψ
′↑ H

1(BG, M)

And now we may check (this is indeed by construction) that (Φ, Ψ) defines an equivalence.
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5.2.2 Second cohomology

Now, we may ask the same question for the second group. In what follows, we unfold the definitions of EM(·, 2) do describe
what it means to give a dependant family G : ∏(x:BG) EM (M(x), 2).

Giving such an element G is the same as giving an element of

∑
(A:BG↑H1)

∏
(x:BG)

∏
(a:A(x))

(A(x), a) △• (EM (M(x), 1) , ↗)

Since H1 is a groupoid, giving such a map A corresponds to chosing the image A :⇑ A(↗) and a group homomorphism G ↑gp

Ω (H1, A). i.e. to choose an homogeneous groupoid A with a left G-action. Then, defining an element of ∏(x:BG) ∏(a:A(x)) (A(x), a) △•

(EM (M(x), 1) , ↗) is the same as defining an element Γ : ∏(a:A) (A, a) △• (EM (M, 1) , ↗) together with a group homomor-
phism

G ↑gp ∑
g:G

transport
(x, a) ↘↑∏(a:A(x))(A(x), a)△•EM(M(x), 1) (

pg, Γ
)
= Γ

which is the identity on the first component. By writing Γ as (T, α, ζ) with T : ∏(x:BG)(Ax) ↑ SetU the carrier of the torsor,
α(a, b) the action on T(a, b) and ζa the distinguished point on T(a, a) which corresponds to a proof that b ↘↑ (T(a, b), α(a, b), _)
is pointed, The inner part of this sigma type may be rewritten as

∏(a, b:A) ∑(σg, a, b :T(a, g·b)△T(g′1·a, b) ∏(m:M) ∏(t:T(a, g·b)) σg, a, b (α(a, g · b)(g · m, t)) = α
(

g
′1

· a, b
)
(m, σg, a, b(t))

⇐∏(a:A) σg, g·a, a

(
ζg·a

)
= ζa

Which may be rephrased again as

∏(a, b:A) ∑(σg, a, b :T(a, b)△T(g·a, g·b) ∏(m:M) ∏(t:T(a, b)) α (g · a, g · b) (g · m, σg, a, b(t)) = σg, a, b (α(a, b)(m, t))

⇐∏(a:A) σg, a, a (ζa) = ζg·a

Denote this type by Sg, then the group law on ∑(g:G) Sg will be given by

(g, σg) · (h, σh) =
(

gh,
(

a, b ↘↑ σg, h·a, h·b ∝ σh, a, b

))

So a map G ↑gp ∑(g:G) Sg may be seen as a M-equivariant G-action on the family of torsors T. Actually, there is an intrinsic
description of this structure, which may be expressed on the path types of A itself: given a, b : A, the equivalence (A(↗), a) △•

(EM (M(↗), 1) , ↗) induces an equivalence on paths

(a =A b) △
(
↗ =EM(M, 1) T(a, b)

)
△ T(a, b)

where the left action of a =A a corresponds to the M-torsor structure on T(a, b) under the choice of the distinguished point
ζa : a = a. Since we have a family of such equivalences (A(x), a) △• (EM (M(x), 1) , ↗) for x : BG, the underlying map of
(A, a) △• (EM (M, 1) , ↗) is G-equivariant, hence so is the family of induced maps a =A b △ T(a, b) for b : A, that is we have
some sort of G-action on the paths of A (induced by the G-action on A) which sends an element g : G and a path p : a =A b to
a path g · p : g · a =A g · b, which corresponds to the isomorphisms σg, a, b previously described.

Given two points a, b : A and any path p : a =A b, we also have an equivalence (A, a) △• (A, b), which induces on
paths (a =A a) △ (b =A b) by conugaison with p (this may be seen by path induction on p). Since there is a family of maps
∏(a:A)(A, a) △• (EM(M, 1), ↗), the following diagrams should commutes

(A, a) (A, b)

(EM(M, 1), ↗)

ap(A, ·)(p) a =A a b =A b

M

ω ↘↑ p ω p
′1

Hence, for m : M and g : G, if m corresponds to ω : a =A a, the element g · m of M corresponds to the element p (g · ω) p
′1

in a =A a, for any p : a = g · a. Furthermore we may lift the G-action on M to a G-action on each a =A a by the formula
g ↗ ω := p (g · ω) p

′1 for any choice of a path p : a =A g · a (This does not depend on the choice of p because a =A a is abelian
since merely identical to M as a group).
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Assuming that G is finite, I describe now the construction of a 2-cocycle associated to a given gerbe G : ∏(x:BG) EM(M(x), 2).
We describe such an element G by the previously described structure and with the notations already introduced. First, choose
an element a : A on A. By using the finiteness of G, we may choose a family of paths pg : a =A g · a. Then we define a path ωg, h

as
ωg, h := pg (g · ph) p

′1
gh

which corresponds under the identification (a =A a) △ T(a, a) △ M to an element cg, h : M. Howether, we may work inside
the loop space by using the intrinsic presentation previously described. First, we may see that the cocycle ω is closed, that is,
for every g, h, k : G,

(g ↗ ωh, k)ω′1
gh, k

ωg, hk ω′1
g, h

= 1a

which, by abelianity is the same as the relation

(g ↗ ωh, k)ωg, hk = ωg, h ωgh, k

i.e

pg (g · (ph (h · pk) p
′1
hk

)) p
′1
g pg (g · phk) p

′1
ghk

= pg (g · ph) p
′1
gh

pgh (gh · pk) p
′1
ghk

i.e

pg (g · (ph (h · pk))) p
′1
ghk

= pg (g · ph) (gh · pk) p
′1
ghk

which is now clearly satisfied. Then we should check that modifying our choices of pg only modifies ω up to a 2-coboundary.
If instead of pg we choose the paths qg = θg pg, the resulting cocycle, which we denote ξ may be related to ω as follows: For
each g, h : G,

ξg, h = qg (g · qh) q
′1
gh

= (θg pg) (g · θh) (g · ph) q
′1
gh

θ′1
gh

= (θg pg) (g · θh) p
′1
g θ′1

gh
pg (g · ph) q

′1
gh

= θg (g ↗ θh) θ′1
gh

ωg, h

=
(
∂2 θ

)
g, h

ωg, h

Hence the class [ω] does not depend on our choice of (pg)g:G. We also need to check that it does not depend on the choice a : A

that we have made. So suppose that we choose instead b : A, the conjugaison by a path r : a = b translate the construction
of ω to a cocycle on b =A b, and since the conjugaison commutes with the identifications (a =A a) △ M and (b =A b) △ M it
defines the same cocycle in the abstract group M. Because of the unique choice principle, this yield a map

(

∏
x:BG

EM(M(x), 2)

)
′↑ H

2(G, M)

And because the target type is a set, this map factors through a map

H
2(BG, M) ′↑ H

2(G, M)
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6 Conclusion

To close this report from the mathematical point of view, I would say that Type Theory has proven to me in this work its
great capacity for expression. It allows in the context of cohomology, to describe and unify different definitions, topological or
algebraic, while bringing a new look at the question and in a more synthetic language than usual. the definition of cohomology
groups as a truncation of the type of sections

H
n(X, M) = ϱ0

(

∏
x:X

EM(M(x), n)

)

allows us to recover the simplicial cohomology in the case where X is seen as a space and M as a constant module. But also
to find the notion of cohomology of a group with coefficients in a module when X is seen as (the classifying space of) a group,
and M as a module equipped with an action of this group.

These two points of view actually unite in the field of site cohomology, where the base space happens to be both a general-
ization of topological spaces (or let us rather say locales) and groups. Unfortunately, I did not have time to explore these objects
below the surface during my internship.

From the point of view of the mathematician, this internship gave me the opportunity to discover a mathematical landscape
very different from the one I was accustomed to during my previous years of study. I would say that the point that struck me
the most was the understanding of Vladimir VOEVODSKY’s hierarchy of types. The latter makes it possible to unify logic and
mathematical structure, while giving both of them a geometric flavor. I also think that the language of Type Theory allows a
new and much more accessible description of complex mathematical objects, such as ∞-groupoids, while the usual definitions
of these will only be presented to me in class starting next year.

I will also remember from these four months at Chalmers the closeness between computer scientists and mathematicians,
which was very prolific. Especially in the field of Type Theory, where constructivism and calculus are central and essential
concepts of the theory. Ideas coming from computer science are new in mathematics, and sometimes bring a more pragmatic
vision. For example by structuring the formalization language so that its storage and processing can be computerized and
checked more easily. Beyond mathematical knowledge, I also learned about researching in mathematics, or talk about it. The
long exchange sessions with Thierry COQUAND allowed me to become aware of the extent of the subjects with which I was
confronted. I had to learn in breadth more than in depth, and see my subject of study evolve as the internship progressed.
Certainly this stay in Sweden was an extremely pleasant and enriching experience, from all points of view.
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