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Introduction

If it is difficult to give the exact significance of consistency proofs from a classical point of view,
in particular the proofs of Gentzen [2, 6], and Novikoff [14], the motivations of these proofs
are quite clear intuitionistically1. Their significance is then less to give a mere consistency
proof than to present an intuitionistic explanation of the notion of classical truth. Gentzen
for instance summarizes his proof as follows [6]: “Thus propositions of actualist mathematics
seem to have a certain utility, but no sense. The major part of my consistency proof, however,
consists precisely in ascribing a finitist sense to actualist propositions.” From this point of
view, the main part of both Gentzen’s and Novikoff’s arguments can be stated as establishing
that modus ponens is valid w.r.t. this interpretation ascribing a “finitist sense” to classical
propositions.

In this paper, we reformulate Gentzen’s and Novikoff’s “finitist sense” of an arithmetic
proposition as a winning strategy for a game associated to it. (To see a proof as a winning
strategy has been considered by Lorenzen [10] for intuitionistic logic.) In the light of concurrency
theory [7], it is tempting to consider a strategy as an interactive program (which represents
thus the “finitist sense” of an arithmetic proposition). We shall show that the validity of modus
ponens gets then a quite natural formulation, showing that “internal chatters” between two
programs end eventually2.

We first present Novikoff’s notion of regular formulae, that can be seen as an intuitionistic
truth definition for classical infinitary propositional calculus. We use this in order to motivate
the second part, which presents a game-theoretic interpretation of the notion of regular formulae,
and a proof of the admissibility of modus ponens which is based on this interpretation. Proofs of
regularity of a formula then get identified with winning strategies for a certain game associated
to this formula. Another possible way of making intuitionistic sense of classical propositions
is the double negation translation, which can be seen as giving a functional interpretation of
classical proofs (see for instance [13]). We compare the two approaches on a special problem of
composition of proofs.

∗coquand@cs.chalmers.se. This is a revised version of a paper with the same title presented at the Basic
Research Action Logical Framework meeting, Edinburgh, May 1991.

1The meaning of “intuitionistic” here will be close to the one described in Kleene’s book [8]. Particularly rele-
vant is the discussion after the proof of Theorem 61 [8], which presents a truth definition for Heyting arithmetic.
This term is used with a similar meaning in [14].

2A similar point of view is presented in the different framework of classical linear logic in [1].
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1 Novikoff’s calculus

In order to motivate the introduction of interaction sequences, and our game-theoretical de-
scription of classical provability, we think that it may be helpful to present briefly the calculus
of Novikoff [14]. Notice that this can be seen as a variation of the notion of statable sequent [6]
of Gentzen.

The formulae of this system are of two sorts, existential and universal, and are inductively
defined:

• the atomic formulae 0 and 1 are both existential and universal,

• if (Ai) is a family of universal formulae, then ΣAi is an existential formula,

• if (Ai) is a family of existential formulae, then ΠAi is an universal formula.

We may write a formula Σi(ΣjAij) instead of Σ(i,j)Aij , and similarly Πi(ΠjAij) instead of
Π(i,j)Aij . It is possible also, and direct, to define a sum of two formulae A + B. As in [15], we
also leave imprecise the exact form of the index sets over which we can form sum and product
of a family of formulae. In what follows we only use for these sets decidable subsets of the set
of natural numbers.

Negation is defined by the usual de Morgan rules.

Alternatively, we can think of any such formula simply as a tree, with a “polarity”, that
says whether or not this tree is considered as an existential or universal formulae. We shall use
this presentation in the next section.

It is quite straightfoward to represent any formula of Peano arithmetic in this infinitary
propositional calculus. We do not do it in detail here, but refer to Tait’s or Novikoff’s paper [14,
15]. We hope however that the examples presented below give a clear idea of this transformation.

The notion of provable or regular formulae, according to Novikoff’s terminology [14], is
defined inductively as follows:

• 1 is provable,

• ΠAi is provable iff each Ai is provable,

• ΣAi is provable iff there exists i0 such that Ai0 = 1 or Ai0 = ΠAi0j and, for all j, the
formula Σi6=i0Ai + Ai0j is provable.

Except for the non-redondancy condition i 6= i0, we can recognize in this definition the usual
definition of cut-free provability in sequent calculus [15].

This notion can be compared to the definition of intuitionistic truth:

• 1 is intuitionistically true,

• ΠAi is intuitionistically true iff each Ai is intuitionistically true,

• ΣAi is intuitionistically true iff there exists i0 such that Ai0 = 1 or Ai0 = ΠAi0j and, for
all j, the formula Ai0j is intuitionistically true.
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In the definition of regularity, we take our meta-language to be intuitionistic. We can then
consider this definition of regularity as an intuitionistic explanation of classical truth. It can be
seen as a “semantics of evidence” for classical truth, following Constable’s terminology [5].

A quite similar approach is taken in Martin-Löf’s monograph [11], for explaining intuition-
istically the classical meaning of inclusion between Borel sets over Cantor’s space.

1.1 Game-theoretic formulation

The inductive definition of regularity of a formula has a natural game theoretic interpretation.
A formula can be thought of as specifying a perfect information game between two players
that are called ∃loise, who plays for existential formulae, and ∀belard, who plays for universal
formulae.

We present first the game which corresponds to the notion of intuitionistic validity of a
formula A. This formula describes the configuration of the game. If ∃loise (resp. ∀belard)
has to play and the formula is atomic, then ∃loise (resp. ∀belard) wins if the formula is 1 (resp.
0) and looses if the formula is 0 (resp. 1). If the formula is non-atomic, there are two cases.
If A = ΣAi is existential, then ∃loise has to play by choosing an index i0, the configuration
becomes Ai0 and it is ∀belard’s turn to play. If A = ΠAi is universal, then ∀belard has to
play by choosing an index i0, the configuration becomes Ai0 and it is ∃loise’s turn to play. It is
clear in this case that ∃loise has a winning strategy for the game of configuration A iff A is an
intuitionistically true formula.

To get the corresponding notion of classical truth, analysed intuitionistically, we break the
symmetry between ∀belard and ∃loise. Intuitively, the game becomes rather unfair to ∀belard:
now ∃loise can change her mind, and can backtrack in her choice, and can even resume a
position that she had for a while taken back! Poor ∀belard, on the contrary, is forced to answer
to ∃loise’s latest move.

More precisely, the rules of the game are defined as before for an atomic configuration. If
the formula is non-atomic, there are two cases. If A = ΠAi is universal, then ∀belard has to
choose an index i0, the configuration becomes Ai0 and it is ∃loise’s turn to play. If A = ΣAi

is existential, then ∃loise chooses an index i0, wins if Ai0 is atomic and is 1, looses if it is 0,
and ∀belard must choose an index of the universal formula Ai0 = ΠAi0j in the other case. The
formula becomes then Σi6=i0Ai + Ai0j0 and it is ∃loise’s turn to play.

It is easy to see that ∃loise has a winning strategy for the game of configuration A iff A is
regular.3

1.2 Examples

The following arithmetical formula (with a parameter f denoting an arbitrary function)

E1 = ∃x.∀y.f(x) ≤ f(y)

expresses that any function has a minimum. It is understood that f(x) ≤ f(y) is 1 if f(x) is
less or equal than f(y), and is 0 if f(x) is strictly bigger than f(y). It is standard that there

3A similar kind of game has been also considered by A. Blass [3], who gives a game-theoretic interpretation
of propositional intuitionistic logic.
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is no computable functional Φ(f) which computes a value on which f is minimum, so that the
formula E1 cannot be proved intuitionistically.

However E1 is a regular formula. This is most easily seen by describing a winning strategy
for ∃loise in the game of configuration E1 = ΣxΠy f(x) ≤ f(y) :

• ∃loise starts by choosing x = 0,

• ∀belard has to answer by choosing y = y1; if f(0) ≤ f(y1) then ∃loise wins,

• otherwise, f(y1) < f(0) and ∃loise changes her mind by playing x = y1,

• ∀belard has to answer by choosing y = y2; if f(y1) ≤ f(y2) then ∃loise wins,

• otherwise, f(y2) < f(y1) and ∃loise changes her mind by playing x = y2, etc.

∃loise will win eventually if she follows this strategy because < is well-founded on integers.

By a similar argument, the formula

E2 = ∀x∃y ≥ x∀z ≥ x.f(y) ≤ f(z)

is regular.

The formula
E3 = ∃M∀x.f(x) ≤ M + ∀N∃y.N < f(y)

which expresses that f is either bounded or unbounded is also directly seen to be not valid
intuitionistically.

But E3 is regular. It is enough to describe a winning strategy for ∃loise:

• ∃loise starts by asking a value for N,

• ∀belard has to answer a value N = N0,

• ∃loise changes her mind and play M = N0,

• ∀belard must give a value x = x0,

• if f(x0) ≤ N0, then ∃loise wins; otherwise ∃loise wins by playing y = x0.

Notice that, in this case, we can give a bound a priori of the length of the game. This was
not the case for the two other examples.

1.3 Markov’s principle

There are two important cases where the notion of classical truth and intuitionistic truth coin-
cides: if the formula is Σ0

1 or Π0
2. This fact was used by Novikoff’s [14] to derive a form of closure

under Markov’s rule: if a Σ0
1 formula is derivable classically, then it is valid intuitionistically.

This nice proof seems to have been curiously unnoticed for a long time in the West (see Church’s
review [4] of Novikoff’s article and Mints’ survey article [12], which contains a presentation of
Novikoff’s paper).
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1.4 Admissibility of modus ponens

The principal result of Novikoff’s paper is an intuitionistic proof that, if both ¬A+B and A are
regular, then B is regular. According to standard proof-theoretic terminology, this expresses
that modus ponens is admissible. We present a short version of this argument in an appendix,
which is quite remarkable in that it does not use any induction on the cut-formula (contrary to
the argument presented in [15], or in [11]).

The examples show that it is convenient and intuitive to present proofs of regularity of
a formula as the description of a winning strategy. We thus expect that a game-theoretic
formulation will provide interesting new light on the admissibility of cut.

In what follows, we shall do this analysis in the case where B is Σ0
1. We suppose given a

winning strategy σ for A and a winning strategy τ for ¬A + B. The problem is now to build
a witness for the Σ0

1 formula B from σ and τ. Intuitively, this will be done by “letting σ play
against τ.” In the special case where B is Σ0

1, we prefer to look at τ as a partial strategy for
A : indeed, as soon as τ provides us with a move in B, we get a witness and we have finished
our construction.

The problem is thus reduced to the following. Define a partial strategy as a strategy that
may fail to indicate a move in some situations. Say that such a strategy is non-loosing if for
any given game, this strategy eventually either wins or fails to suggest any move. (In particular,
a winning strategy is non-loosing.) Given a non-loosing strategy σ for a formula ΣAi and for
each i a non-loosing strategy τi for ¬Ai, we want to produce a game in which one τi or σ fails
to answer. In the next section, we show that this can be done in a systematic way, providing
us with a new proof of the elimination of modus ponens. We shall define generally a particular
sequence of games between σ and (τi), and express a combinatorial property of this sequence
that implies that it must terminate if σ and τi are non-loosing.

2 Games, strategies and interaction sequences

2.1 Trees, occurences

We recall first our inductive definition of tree (or formula without indication of its polarity,
existential or universal):

1. 0 and 1 are trees,

2. if (Ai) is a family of trees, then sup(Ai) is a tree.

The tree ¬A is defined inductively. We have ¬0 = 1, ¬1 = 0 and ¬sup(Ai) is sup(¬Ai).
We associate to any tree A its set of occurences, that can be seen as a set of finite sequences

of indexes. We use the letters t, u, v, . . . for denoting occurences in a tree. This set is defined
inductively: the empty sequence <> is an occurence of any tree, and if u is an occurence of
Ai, then the sequence iu is an occurence of the tree sup(Ai). We write f() instead of f(<>)
when the empty occurence <> is used as an argument of a function. To any occurence u in
A, we can associate a tree Au, called subtree of A at occurence u : we have A<> = A and
if A = sup(Ai), then Aiu = (Ai)u. If u = i1 . . . in, then n is the length of u. We say that
a sequence v extends the sequence u iff v is of the form uj1 . . . jp. A direct extension of u
occurence in A is an occurence in A of the form uj1.
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2.2 Strategies

Given a tree A, a partial strategy for the game of configuration A is a function φ defined on a
set Dom(φ) of sequences u1 . . . un of non-empty occurences of even length in A. If φ(u1 . . . un)
is defined, it has to be an occurence v ∈ A satisfying two properties

1. it is a direct extension of exactly one of the ui or of <> (in particular, φ() is an occurence
of length 1),

2. none of u1, . . . , un is an extension of v.

Furthermore, if u1 . . . un+1 ∈ Dom(φ), then u1 . . . un ∈ Dom(φ) and un+1 is a direct exten-
sion of φ(u1 . . . un).

An element of Dom(φ) is called a branch of φ. We use letters L,M,N, . . . for denoting
branches of a strategy. A branch L is directly winning iff φ(L) is an occurence of the form
u1. A branch L is directly loosing iff φ(L) is of the form u0, or the direct extension φ(L)1 of
φ(L) is an occurence of A. A branch of φ represents a possible beginning of a game played by
the strategy φ.

We define inductively when a branch is winning:

1. it is winning if it is directly winning, or

2. it is winning if all its extensions in Dom(φ) are winning.

In the same way, we define inductively when a branch L is non-loosing:

1. it is non-loosing if it is not directly loosing, or

2. it is non-loosing if all its extensions in Dom(φ) are non-loosing.

Notice that a winning branch is necessarily non-loosing.
We say that φ is non-loosing iff <> is a non-loosing branch of Dom(φ). A strategy φ is

winning iff <> is a winning branch in Dom(φ). (Notice that a winning strategy is automatically
non-loosing.)

These definitions can be seen as a precise intuitionistic counterpart of the informal presen-
tation contained in the previous section. In particular, there is a winning strategy for a tree A
iff this tree is regular seen as an existential formula.

2.3 Debate

Let A be a formula and (Ai) the family of its immediate subtrees. Given a strategy σ for A
and a family of strategies τi for ¬Ai, we are going to define a sequence of branches alternatively
in Dom(σ) and in one of Dom(τi). This sequence will be finite if σ and all τi are non-loosing,
and furthermore, in this case, it gives an algorithm for computing an extremal branch of σ or
one of the τi which is not directly winning.

We define the debate associated to σ and τi. A debate consists in a sequence of moves:
(f1, u1), (f2, u2), . . . where the nth move (fn, un) is a pair of an integer fn < n and an occurence
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un in A. The integers fn and n are of different parity, and fn indicates to what move the nth
move is answering.

This sequence is built by steps, using values of σ and τi. The debate stops as soon as one
strategy fails to answer. First, we compute σ() = i1 and (0, i1) is the first move. Next, let us
suppose that we have already computed the first n moves, and we try to compute the (n+1)th
move. There are two cases:

• n is even: we compute the sequence n1 = n, n2 = fn1 − 1, . . . until we find np such that
fnp = 1, and compute σ(unp . . . un2un1) = un+1 which is a direct extension of exactly one
of unk

or of <> . If it is a direct extension of <> we take fn+1 = 0. If it is a direct
extension of unk

, we take fn+1 = nk,

• n is odd: similarly, we compute the sequence n1 = n, n2 = fn1 − 1, . . . until we find
np+1 such that fnp+1 = 0. Inductively, all values un1 , un2 , . . . start with the same index i
and we define vnk

by ivnk
= unk

. We compute then τi(vnp . . . vn2vn1) = vn+1, which is a
direct extension of exactly one of vnk

or of <> . If it is a direct extension of <>, we take
fn+1 = np+1. If it is a direct extension of vnk

, we take fn+1 = nk. In both cases, we take
un+1 = ivn+1.

It may help the intuition of the reader to think about what happens during a real debate
on a given topic between two persons. Both defend arguments, can change for a while their
position, but also, at any point, can resume the debate at a point it was left before. This is
what happens here, the integer fn representing to what move the nth move is answering. (By
convention, we take f1 = 0 for the first move.) The topic of discussion is represented by the
formula A.

2.4 Example

Given a function f on integers as a parameter, both formulae

E2(x) = ∃y ≥ x.∀z ≥ x. [f(y) ≤ f(z)]

and
E4 = ∃x¬E2(x) ∨ ∃u3 > u2 > u1.[f(u1) ≤ f(u2) ≤ f(u3)]

are regular. The second formula is even provable intuitionistically, if we read it as

(∀xE2(x)) ⇒ ∃u3 > u2 > u1.[f(u1) ≤ f(u2) ≤ f(u3)]

but as we have seen, E2(x) holds only classically.

We define a family of winning strategies τx for E2(x) and a winning strategy σ for E4. This
strategy σ will also be considered as a non-loosing strategy for the formula

(∃x)¬E2(x) = ∃x.∀y ≥ x.∃z ≥ x.[f(y) > f(z)]

We shall write the debate between these two strategies that produces a witness for

∃u3 > u2 > u1.[f(u1) ≤ f(u2) ≤ f(u3)].

The strategy τx for E2(x) has been already described above. Here is a description of a
winning strategy σ for the formula E4.
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• σ chooses x = 0,

• the opponent chooses a value y = a1,

• σ changes its mind and plays x = a1 + 1,

• the opponent chooses a value y = a2, such that a2 > a1,

• if f(a1) > f(a2), σ resumes the game with its initial value 0 for x, and wins by playing
z = a2. If f(a1) ≤ f(a2), σ changes its mind and plays x = a2 + 1,

• the opponent chooses a value y = a3, such that a3 > a2,

• if f(a3) > f(a2), σ resumes the game with the value a1 +1 for x, and wins by playing z =
a3. Otherwise, f(a1) ≤ f(a2) ≤ f(a3), and σ wins by playing u1 = a1, u2 = a2, u3 = a3.

We are going now to show an example of the debate between these two strategies, in the
case where the values of f are given by

f(0) = 10, f(1) = 5, f(2) = 3, f(3) = 7, f(4) = 4, f(5) = 11, f(6) = 29, . . .

1. σ plays x = 0,

2. τ0 plays y = 0, responding to the move 1,

3. σ changes its mind, plays x = 1, starting with a new opening,

4. τ1 plays y = 1, responding to the move 3,

5. f(0) > f(1), hence σ plays z = 1, responding to the move 2,

6. τ0 plays y = 1, responding to the move 1,

7. σ plays x = 2, starting with a new opening,

8. τ2 plays y = 2, responding to the move 7,

9. f(1) > f(2), hence σ plays z = 2, responding to the move 6,

10. τ0 plays y = 2, responding to the move 1,

11. σ plays x = 3, starting with a new opening,

12. τ3 plays y = 3, responding to the move 11,

13. f(3) ≥ f(2), hence σ plays x = 4, starting with a new opening,

14. τ4 plays y = 4, responding to the move 13,

15. f(4) < f(3), hence σ plays z = 4, responding to the move 12,

16. τ3 plays y = 4, responding to the move 11,

17. f(4) ≥ f(2), hence σ plays x = 5, starting a new opening,

18. τ5 plays y = 5, responding to the move 17,

19. f(5) ≥ f(4), hence σ plays u1 = 2, u2 = 4, u3 = 5.

The computation of (u1, u2, u3) consists in an exchange of values between τx and σ, until a
value (u1, u2, u3) = (2, 4, 5) is found by σ.
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2.5 Interaction sequences

For proving that a debate between non-loosing strategies terminates eventually, we single out
one special property of the sequence of integers f1f2 . . . associated to a possible debate. We
define an interaction sequence as a sequence f1f2 . . . such that f1 = 0 and the integer fp+1

is one of the values p, fp − 1, ffp−1 − 1, . . .
It is clear by construction that if (f1, u1)(f2, u2), . . . is a debate between strategies, then

f1f2 . . . is an interaction sequence. The following lemma is proved directly from the definition.

Lemma 1 Let f1f2 . . . fn be an interaction sequence. If all values fp+1, fp+2, . . . , fn are differ-
ent from p, then f1 . . . ffp−1f

′
p+1 . . . f ′

n, where f ′
q = fq if fq < fp and f ′

q = fq − (p − fp + 1) if
fq > p, is an interaction sequence.

Given an interaction f1f2 . . . fn, let us call a definite interval an interval [fp, p] such that
p is different from all values fp+1, . . . , fn. (In terms of debate, this corresponds to a move that
has not yet been “refuted”.) The previous lemma can be stated by saying that if we take away a
definite interval from an interaction sequence, what is left is still an interaction sequence. From
this, we deduce:

Lemma 2 The definite intervals of an interaction sequence form a nest structure.

This means that any two distinct definite intervals are either disjoint or one is included
strictly in the other, where [a, b] is included strictly in [c, d] iff c < a and b < d.

In order to simplify our treatement, we suppose now that the formula A is of bounded
depth4, that is, such that there exists a bound N to the length of all occurences in A. In terms
of interaction sequence, this means that we can suppose that there exists a bound N to the
length of sequences i, fi, ffi

, . . . The length of this sequence is the depth of i and we say then
that the interaction sequence f1f2 . . . is of bounded depth ≤ N. Notice that, in such a case, any
interval [fp, p] where p is of maximal depth N is definite.

Proposition 1 Let N be an integer. Given any well-founded ordering <, the tree built of
sequences (f1, α1) . . . (fn, αn) such that f1 . . . fn is an interaction sequence of depth ≤ N and
αn < αm whenever m = fn − 1, is well-founded.

Proof: By induction on N . This is direct for N = 1. If the proposition holds for N − 1, we associate
to any sequence s = (f1, α1) . . . the sequence φ(s) = (g1, β1) . . . that we get from s by taking away all
intervals [fp, p] where p is of depth N. The lemmas above show that g1 . . . is an interaction sequence,
which is of depth ≤ N − 1 and it is direct that βn < βm whenever m = gn − 1.

Notice next that if s′ extends s, then either φ(s′) extends φ(s) or else φ(s′) = (g′
1, β

′
1)(g

′
2, β

′
2) . . .

is such that β′
1β

′
2 . . . < β1β2 . . . for the lexicographic ordering. The proposition for N follows then by

standard arguments from the induction hypothesis.

The example of the previous subsection is a debate of depth ≤ 3. The interaction sequence
associated to this interaction is the following sequence of integers:

0, 1, 0, 3, 2, 1, 0, 7, 6, 1, 0, 11, 0, 13, 12, 11, 0, 17.

The maximal intervals are [2, 5], [6, 9] and [12, 15]. If we take away these intervals, what is left
is the interaction sequence 0, 1, 0, 3, 0, 5 of depth ≤ 2.

4It would be possible to extend our treatment to the general case. The main ideas however are present in this
special case, which is enough for representing arithmetical formulae.
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Corollary 1 Any debate between non-loosing strategies ends eventually.

If σ and τi are all non-loosing, no strategy can be directly winning in the debate and the
debate must end because σ or one of the τi fail to answer.

The notion of debate gives an algorithm for solving the following problem:

Problem 1 Given a Σ0
1 formula B, and winning strategies for the formulae ¬A + B and A, to

compute a witness for B.

It works as well if we have a winning strategy for ¬A + B and A + B, which corresponds to
a situation which occurs in mathematical practice [9]: we prove the formula B both from the
hypothesis that A holds and from the hypothesis that ¬A holds, and we deduce (classically)
that B holds5. Notice that the algorithm is non-deterministic in the trivial case where both
strategies give directly a witness for B. We have then to choose arbitrarily one of these two
witnesses.

The solution of the more general problem, where we compute a winning strategy for a
formula B, not necessarily Σ0

1, from a winning strategy for A and ¬A + B, will involve similar
non-canonical choices. Rather than presenting this generalisation, we prefer to analyse in the
next section a situation which seems to require such a generalisation: B is Σ0

1 and given winning
strategies for A0 + A1, ¬A0 and ¬A1 + B, we want to compute a witness for B.

3 Non-functional composition of strategies

In this section, we compare the present intuitionistic explanation of classical proofs with the
double negation interpretation on a particular problem of composition of strategies.

3.1 Distributivity law

The composition problem we consider is the following:

Problem 2 Given a proof of A = ΣAi and a proof of B = ΣBj , how to produce a proof of
Σ(i,j) AiBj?

This expresses one direction of the distributivity law, and we refer to this problem as the
“distributivity problem”. We shall see that there are essentially three ways to do this compo-
sition of strategy.

We need first a general lemma about well-founded ordering.

Lemma 3 Let X and Y be two well-founded orderings. The following operations define a well-
founded ordering on the product X × Y :

• (x1, y1) < (x2, y2) iff x1 < x2 or both x1 = x2 and y1 < y2,

• (x1, y1) < (x2, y2) iff y1 < y2 or both y1 = y2 and x1 < x2,

• (x1, y1) < (x2, y2) iff both x1 < x2 and y1 = y2 or both x1 = x2 and y1 < y2 or both
x1 < x2 and y1 < y2.

5In Kreisel’s example [9], B is Littlewood’s theorem, and A is Riemann’s hypothesis.
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This is standard. Notice that the third ordering is included in the two other orderings and
is symmetric in X and Y .6

We suppose now given a winning strategy σ for ΣAi and a winning strategy τ for ΣBj . We
try to build a winning strategy δ for Σ(i,j) AiBj .

In order to simplify the notations, we suppose that the indexes in the “A part” are disjoint
from the ones in the “B part”. Any occurence in Σ(i,j) AiBj can thus be written (i, j)k2 . . . kn

and, if this occurence is of length > 1, we associate to it an occurence in A if k2 is an index
of the A part, namely ik2 . . . kn, or an occurrence in B if k2 is an index in the B part, namely
jk2 . . . kn.

In this way, to any sequence L of occurences of length > 1 in Σ(i,j) AiBj , we associate a
pair (p(L), q(L)) of sequences of occurences in A and B.

We define now the strategy δ. First, δ() = (i0, j0), where σ() = i0 and τ() = j0. Next, a
sequence L of non-empty occurences, whose last element is an occurence in the A part (resp.
B part), is in the domain of δ iff

1. p(L) is in the domain of σ,

2. q(L) is in the domain of τ,

3. τ(q(L)) = jL is a sequence of length 1 (resp. σ(p(L)) = iL is a sequence of length 1).

Furthermore, in this case, δ(L) is defined as follows: we compute first σ(p(L)) = i1 . . . in,
and take δ(L) = (i1, jL)i2 . . . in. In the case where the last occurence of L is in the B part, then
we compute τ(q(L)) = j1 . . . jm and we take δ(L) = (iL, j1)j2 . . . jm.

In this way, we see that any branch of δ is an interwoven sequence of a branch of σ and a
branch of τ, that is, it is of the form M1N1M2 . . . where M1M2 . . . is a branch of σ and N1N2 . . .
a branch of τ. The map

Dom(δ) → Dom(σ)×Dom(τ)

L 7−→ (p(L), q(L))

is then increasing if the product is given the third possible ordering of lemma 3. By this lemma,
δ is a winning strategy.

We can formulate this result as follows

Lemma 4 if ΣAi and ΣBj are regular, then so is Σ(i,j) AiBj .

but this formulation fails to emphasize the main point that our construction of δ is symmetric
in σ and τ.

By contrast, two other non-symmetric constructions of δ are also possible. One of them
“favours” σ : each time the last occurence of L is in the A part, and σ(p(L)) = i1 . . . in, then
δ(L) is (i1, j0)i2 . . . in where j0 = τ() is the first move of τ. In the case where the last occurence
of L is in the B part, δ(L) is defined as above: we compute τ(q(L)) = j1 . . . jm and take
δ(L) = (iL, j1) . . . jm with iL = σ(p(L)). A branch of δ is of the form: M1N1M2N2 . . . where

6The usual argument for proving that the third ordering is well-founded breaks this symmetry. I have not
been able to produce an argument symmetric in X and Y for showing that the third ordering is well-founded.
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M1M2 . . . is a branch of σ but now each N1, N2, . . . is a branch of τ. By lemma 3, δ so defined
is a still a winning strategy. There is a similar construction that “favours” τ instead.

In this way, we get three different solutions for the following problem:

Problem 3 Given (Ai), (Bj) two families of existential formulae, C a Σ0
1 formula, for all i, j

a winning strategy for Ai + Bj , and winning strategies for the formulae Σ¬Ai, and C + Σ¬Bj ,
to compute a witness for the formula C,

which can be seen as an example of “multiple” cut-elimination: from a proof of Πij(Ai + Bj),
a proof of Σ¬Ai and of C + Σ¬Bj , we compute a witness for C.

3.2 Comparison with the double-negation interpretation

The double negation interpretation is another possible intuitionistic explanation of classical
provability. We do not recall it here, but refer for instance to [13]. Via Curry-Howard corre-
spondance between functional programs and proofs, it can be seen essentially as an interpreta-
tion of classical proofs as functional programs (see [13]). We find it interesting to analyse what
the “distributivity problem” becomes in this framework: we get in a natural way two possible
compositions of proofs, that are not symmetric. It seems furthermore quite difficult to get a
symmetric composition.

Via double negation, the problem of distributivity becomes: given a proof f of ¬(Πi¬A′
i)

and a proof g of ¬(Πj¬B′
j), how to produce a proof of ¬(Π(i,j)¬(A′

iB
′
j))? (We denote by C ′ the

double negation translation of C.) It is very convenient to use functional notations to analyse
this problem, using λ terms for representing proofs in natural deduction. Recall that ¬C is an
abreviation for C ⇒⊥ . Two ways are possible for combining f and g in order to produce a
proof of ¬(Π(i,j)¬(A′

iB
′
j)) :

1. one is λh.f(λiλu.g(λjλv.h((i, j), (u, v)))),

2. the other is λh.g(λjλv.f(λiλu.h((i, j), (u, v)))).

These two ways are non-symmetric. There does not seem to be any functional way to get a
symmetric composition which solves the distributivity problem. If this conjecture holds, there
appears to be a fundamental difference between functional interpretation of classical logic (based
on double negation interpretation) and our present explanation based on the notion of regular
formulae and interaction between strategies.

Conclusion

We have presented a game-theoretic semantics of evidence for classical arithmetic, and a proof of
validity of modus ponens based on this analysis. A natural extension, much needed for analysing
mathematical arguments, will be the treatment of quantification over function symbols. It is
likely that, for such a generalisation, in the case of an existential quantification ∃α . . . , ∃loise has
to conjecture a law for α, law that may be refined according to the moves of ∀belard.
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Appendix: Novikoff’s proof

In this section, we present briefly Novikoff’s proof (slightly modified) of the validity of modus
ponens.

Lemma 5 If B + A and B + ΣCi are regular then so is B + ΣACi.

We refer to Novikoff’s paper for a proof of this statement, which can also be proved directly
using the notion winning strategy.

Let us say that a formula A is eliminable iff B is regular whenever ¬A + B is. The core
of Novikoff’s argument is to show that A is eliminable whenever A is regular, by induction on
the proof that A is regular.

Lemma 6 If B + Σ¬Ai is regular, and each Ai is an eliminable existential formula, then B is
regular.

Proof: By induction on the proof that B + Σ¬Ai is eliminable.

Corollary 2 If Ai is a family of eliminable existential formulae, then ΠAi is regular.

Proposition 2 Any regular formula is eliminable.

Proof: By induction on the proof that A is regular, we prove that it is eliminable. If A is universal,
this follows from the corollary above. Otherwise, A = ΣAi and we prove by induction on the proof that
B + Π¬Ai is regular that B is regular. This follows directly from lemmas 5 and 6.

We conjecture that, when we compare our notion of debate and this proof seen as an
algorithm for computing a witness of a Σ0

1 formula B from a winning strategy for A and ¬A+B,
we get the same witness, and that both computations proceed actually in the same way (i.e.
the values exchanged between the proofs are the same).
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