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Introduction

We present an abstract version of the notion of cuts between proofs. This
leads to an argument of normalisation based on an analysis of what hap-
pens during the process of cut-elimination (and not on an induction on the
complexity of the cut formula).

This paper is mathematically self-contained. A knowledge of infinitary
propositional calculus, as presented in [6], may be useful for reading section
6.

1 Motivations

1.1 General Remarks

The idea of identifying a proof with a winning strategy for a game seems to
come from Lorenzen [4, 2]1. This identification is especially clear if we con-
sider intuitionistic provability of arithmetical prenex formulae. For example,
the game defined by a formula

∃x.∀y.∃z.A(x, y, z),

where A(x, y, z) is decidable, is that a player chooses a value for x, the
opponent a value for y and then the player chooses a value for z. The player
wins iff the formula A(x, y, z) becomes true for this choice of values for x, y, z.
In this case, it is clear that a winning strategy for this game corresponds
exactly to an intuitionistic proof of the above formula.

Looking at examples of prenex formulae that are classically valid, such as
∃x∀y [f(x) ≤ f(y)], it seems natural to try to extend this analogy between

1The author was lead to this identification by reading [1]
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proofs and winning strategy in the case of classical logic by allowing the
proof, when it has to make a move, to answer to any previous move of its
opponent, or to play a new initial move. One can then hope to identify
classical proofs with winning strategy for such games. This was suggested
by Lorenz, then a student of Lorenzen [2].

To take into account connectives, we move directly to infinitary propo-
sitional calculus (see for instance [6]) and consider universal quantification
as an infinite conjunction, and existential quantification as an infinite dis-
junction. Negation is not a primitive symbol, and is defined by the usual de
Morgan rules.

Another idea, that comes from concurrency theory [3], is to interpret a
strategy as an interactive programs and modus ponens as internal commu-
nication: given a winning strategy for A⇒ B, which is classicaly defined as
¬A ∨B, and a winning strategy for A, one hopes to get a winning strategy
for the game corresponding to B by letting the strategy for A ⇒ B play
against the strategy for A whenever its play concerns A. One expects then
that the result of cut-elimination will be replaced by a proof showing that
“internal chatters” end eventually.

When trying to put these ideas together, the difficulty is in the exact
definition of what it means to “let two strategies play against each other”.
Trying to precise this leads to the notion of interaction sequence, which is a
purely combinatorial notion.

One surprise is then that the main concepts about proofs, like the one of
normal proofs, can be lifted at the level of interaction sequence. Basic facts
about proofs, like cut-elimination, can also be expressed and proved at the
level of interaction sequences.

We first present the notion of interaction sequence, and some of its basic
properties. These are directly applied to a definition of classical provability
for infinitary propositional formulae [6], for which modus ponens can be
interpreted by internal communication. At the end, we present a concrete
example of such a communication between proofs.

1.2 Introduction to interaction sequences

In order to motivate the introduction of interaction sequences, and our game-
theoretical description of classical provability, we think it may be helpful to
present briefly the calculus of Novikoff [5], which seems to be the first place
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in print where it is explicitely noticed that a Σ1
0 formula provable classically

has an intuitionistic proof.

The formulae of this system are of two sorts, existential and universal,
and are inductively defined:

• if (Ai) is a family of universal formulae, then ΣAi is an existential
formula,

• if (Ai) is a family of existential formulae, then ΠAi is an universal
formula.

In these clauses, we restrict the index sets to be countable. Furthermore,
Π and Σ are taken to be associative, commutative operations. Two formulae
that differs by renaming on the indexes are identified. In particular, we can
define the binary sum of two formulae (there are four cases according to
the kind of formulae we add, but we get always an existential formula as a
result). Negation is defined by the usual de Morgan rules. Notice that the
true formula is the universal formula over the empty family of exsitential
formulae, and the false formula is the existential formula over the empty
family of universal formulae.

Notice that we can think of any such formula directly as a tree, with a
“polarity”, that says whether or not this tree is an existential or universal
formulae. In our game-theoretic treatment of classical logic later, we simply
introduce one connective, a generalised Sheffer connectives, that identifies a
formula with a tree.

It is quite straightfoward to represent any formulae of Peano arithmetic
in this infinitary propositional calculus. We do not do it in detail here (see
the example at the end), but refer to Tait’s or Novikoff’s paper [5, 6].

The notion of provable formulae is defined inductively as follows:

• ΠAi is provable iff each Ai is provable,

• ΣAi is provable iff there exists i0 such that, for all j, the formula
Σi 6=i0Ai +Ai0j is provable.
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Except for the non redondancy condition i 6= i0, we can recognize in this
definition the usual definition of cut-free provability in sequent calculus. We
will come back later to this non redondancy condition.

The idea is now to notice that this inductive definition has a natural
game theoretic interpretation. A formula can be thought canonically of as
specifying a perfect information game between two players I and II (the
polarity tells which player starts). Let us fix things, and say that player
I starts playing for an existential formula. The inductive definition of the
provability of the game A can be seen as describing a winning strategy for
player I in a (rather unfair) game where the player I can at any point change
his mind about a previous play, but also at any point resume a game where
he has left it. Let us call this game the game CF (A), because it corresponds
to the notion of cut-free provability.

The principal result of Novikoff’s paper is an intuitionistic proof that,
if both A + B and A are provable, then B is provable. In particular, we
should be able, from a winning strategy q for CF ( A + B) and a winning
strategy p for CF (A), to compute a winning strategy for CF (B).

It turns out, and that is one of the main point in this approch, that in
term of strategies, there is a quite natural procedure to do this computation.
I will describe it only in order to compute the first move in B, assuming, in
order to simplify things, that B is existential and A universal (so that A is
existential). The strategy p is waiting for a move of II. The strategy q gives
a move for I in A+B. There are two cases.

If this move is in the B part, we get the first move for the resulting
strategy, and the computation is finished.

If this move is in the A part, this can be considered as a move for II
in A that is transmitted to p. The strategy p gives then a move that can
be interpreted as an answer to the move of q, and we examine what q plays
next. There is again two cases. If this move is in the B part, we get the first
move for the resulting strategy, and the computation is finished, and so on.

We see that this computation is almost forced in term of strategies.
Notice that in particular, we expect from Novikoff’s result that this com-
putation cannot go on forever, that is, eventually, the strategy q will play
in the B part. We will show a direct combinatorial proof of this fact in
proposition 1 (which is our main combinatorial result).

In order to get this result, we give a direct combinatorial characterisation
of the kind of sequence moves that we get when we let such strategies p and q
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interact. We retain only as information to what previous moves the strategy
is answering, and this is surprisingly enough in carrying out the termination
argument. The characterisation of the sequences we can get is captured by
the notion of interaction sequences.

Finally, we must say a word about the non redondancy condition. The
definition of cut-free provability that we shall later consider will be the
following

• ΠAi is provable iff each Ai is provable,

• ΣAi is provable iff there exists i0 such that, for all j, the formula
ΣAi +Ai0j is provable.

This is the same as Novikoff’s definition, except that we allow the strat-
egy to play twice (or more) the same move. This looks clearly strange in
term of strategies for games, but it corresponds more closely to what is
done in sequent calculus (see [6] for instance). Also, it should be pointed
out, that even if we start with strategies that are not redondant, we produce
naturally by cuts strategies that are redondant. It seems extremely likely
that it is possible to complicate a little our present notion of cut as internal
communication in order to eliminate this redondancy, but we have not yet
complete results in this direction.

2 Interaction Sequences

2.1 Definition

An interaction sequence is a pair (V, f) such that V (0) is empty, V (1) =
{0}, f(1) = 0, the function f is defined on an initial segment [1, N ] and for
n < N

V (n+ 1) = {n} ∪ V (f(n)), f(n+ 1) ∈ V (n+ 1).

If (V, f) is defined for all positive integers, and for all N , (V, f) is an
interaction sequence on [1, N ], we say that (V, f) is an infinite interaction
sequence.

Notice that, if (V, f) is an interaction sequence, we always have f(n) < n
and f(n), n are of distinct parity. Furthemore, V is uniquely determined by
f and we must have f(1) = 0 and f(2) = 1. There is a choice for the next
value f(3) that may be 0 or 2, and if f(3) = 0, we must have f(4) = 3.
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It may help the intuition of some readers to think of such an interaction
sequence (V, f) to be built progressively in “stages”: at the stage n+ 1, the
choice of f(n+ 1) is limited and has to be in the set {n} ∪ V (f(n)).

For a motivation of the notion of interaction sequence, see the example
in the last section. This notion comes naturally when one tries to analyse the
interaction of two cut-free proofs in infinitary classical propositional logic.
Here it is defined abstractly, without any references to proofs, and the main
properties of interaction sequences can be seen as abstract formulation of
the corresponding notion on proofs (the proposition 2 below corresponds to
cut-elimination).

We let y ≺ x mean that x ∈ f(V (y)). By a direct induction on y, y ≺ x
iff there exists a sequence y1, . . . , yn such that y1 = f(y−1), yk+1 = f(yk−1)
and yn = x. Hence ≺ is transitive.

Lemma 1 If y ≺ x, then V (x) is a strict initial segment of V (y).

Proof: By the alternative definition of ≺ .

We shall need a slight generalisation of the notion of interaction se-
quence. If A = {n0, . . . , nk}, with n0 < . . . < nk and f is a function defined
at least on {n1, . . . , nk}, we say that f defines an interaction on A iff there
exists an interaction sequence (V, g) defined on [1, k] such that f(np) = ng(p)
for p = 1, . . . , k.

If p = g(i), q = g(j), we write q ≺ p (f,A) for the fact that j ≺ i
relatively to the interaction sequence (V, g).

It can be seen directly that the following algorithm checks whether or
not a function f defines an interaction on {n0, . . . , nk}.

• If k = 0, then f does define an interaction on {n0}.

• If k > 0, check recursively whether or not f defines an interaction on
the set {n0, . . . , nk−1} :

– if not, then f does not define an interaction on {n0, . . . , nk},
– if yes, we know that f(nk−1) is of the form np, with p < k − 1.

If furthermore f(nk) = nk−1, then f defines an interaction on
{n0, . . . , nk}. Otherwise, f defines an interaction on {n0, . . . , nk}
iff f(nk) ∈ {n0, . . . , np−1}.
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Lemma 2 If f defines an interaction on {n0, . . . , nr}, f(nq) = np and nq
is not in the set f({nq+1, . . . , nr}), then f defines an interaction on the set
{n0, . . . , np−1, nq+1, . . . , nr}.

Proof: By induction on r − q, using the previous algorithm.

If A is an infinite subset {n0, n1, . . .}, and f is a function defined at
least on A, we say that f defines an interaction on A iff f defines an
interaction on each {n0, . . . , nk}.

Let us define depth(f, 0) = 0, depth(f, n) = depth(f, f(n)) + 1 for n > 0.
The integer depth(f, n) is called the depth of n for f. We say that (V, f) is
of bounded depth iff there exists N such that depth(f, n) < N for all n.

The following definitions will not be needed in the next two sections,
but are needed for the definition of classical provability. We say that an
interaction sequence f is cut-free iff f(2p) = 2p − 1 whenever 2p is in the
domain of f. More generally, if f defines an interaction on {n0, . . . , nk}, we
say that f is cut-free iff f(n2p) = n2p−1 whenever 2p ≤ k.

Lemma 3 If (V, f) is an interaction sequence and 0 < n, then f defines an
interaction on V (n) ∪ f(V (n)). If n is odd, f defines a cut-free interaction
on V (n) ∪ f(V (n)).

Proof: Let C(n) be the set V (n) ∪ f(V (n)). If k ∈ V (n), then n ≺ f(k) and
hence, by lemma 1, V (f(k)) ⊂ V (n), so that f2(k) ∈ V (n). This shows that
f(C(n)) ⊂ C(n).

The set C(n) can be described as the set {n1, f(n1), n2, f(n2), . . .} with n1 =
n− 1 and nk+1 = f(nk)− 1. By induction on n, applying the algorithm described
above, we show that f defines an interaction on C(n). Indeed, by what is just
shown, we have f2(n1) = nk ∈ V (n), and so nk = n2 or nk < f(n2). This shows
by induction that f defines an interaction on {f(n1), n2, f(n2), . . .} = {f(n1)} ∪
C(f(n1)). It is then direct that f defines an interaction on C(n) = {n1, f(n1)} ∪
C(f(n1)).

Let C(n) be {m0,m1, . . . ,ml}. We have by construction f(ml−2k) = ml−2k−1

whenever 2k < l. Hence f defines a cut-free interaction on C(n) if l is even, which

holds iff n is odd.

Finally, we define inductively index(f, n) for n in the domain of f by

• index(f, n) = n if f(n) = 0,

• otherwise, index(f, n) = index(f, f(n)).
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2.2 Main Properties

In this section, we suppose given an infinite interaction sequence (V, f).

Lemma 4 if f(x) > 0, then x ≺ f(f(x)).

Proof: We have f(x) ∈ V (x), hence f(f(x)) ∈ f(V (x)).

If A ⊆ N, SA(x) denotes A ∩ V (x).

An infinite subset A = {nk} is called good iff f(A) ⊆ A and SA(nk+1) =
{nk} ∪ SA(f(nk)).

Notice that A = N is good. Also, if A is good, then f defines an
interaction on A.

Lemma 5 If A = {nk} is good, either for all q there exists r > q such that
nq = f(nr), or there exists a good subset {ml} and p such that ni = mi for
i < p and mp ≺ np.

Proof: If A is good, nq not in f(A), and np = f(nq), let (ml) be defined by
mi = ni for i < p, and mp+i = nq+1+i. It is clear that (ml) is strictly increasing.
Let B = {ml}. Lemma 2 shows that f(B) ⊆ B. Furthermore

SA(nq+1) = {nq} ∪ SA(np) = {nq, np−1} ∪ SA(f(np−1))

and hence
SB(mp) = {mp−1} ∪ SB(f(mp−1)).

It is direct also that SB(mi+1) = {mi} ∪ SB(f(mi)) if i+ 1 < p or p < i+ 1.
It follows that B is good.

Notice also that mp ≺ np because nq ∈ V (nq+1).

Proposition 1 Given an infinite interaction sequence (V, f), there exists
an infinite sequence u1 < u2 < u3 . . . such that f(up+1 − 1) = up for all p.

Proof: This can be reformulated by saying that ≺ is not well-founded. Were ≺
well-founded, we could find a good subset {nk} such that nk+1 is ≺-minimal for

good subsets starting with n0, ..., nk. By lemma 5, we have that for all p, there

exists q > p such that np = f(nq), and we get a contradiction by lemma 4.

In the important special case of bounded depth sequences, we can build
effectively a sequence (up) such that up+1 ≺ up. The algorithm is built by
induction on a bound N of the depth. If depth(f, n) is always < N, we apply
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the induction hypothesis. Otherwise, lemma 2 shows that two segments of
the form [f(n), n] with depth(f, n) = N are such that they are disjoint or
one is strictly included into another. We progressively remove all these
segments that are maximal. In this way, either we are left with an infinite
subset, which is a good subset {nk} where all depth(f, nk) are < N, and we
apply the induction hypothesis, or we are left with a finite subset, and the
left extremity of the segments form a sequence (up) such that up+1 ≺ up for
all p.

2.3 Cut-elimination for interaction sequences

An infinite interaction sequence (V, f) is said to be winning iff ≺ is well-
founded over odd integers. If A ⊆ N is infinite, we define in a corresponding
way when f defines a winning interaction on A.

Lemma 6 If (V, f) is an interaction sequence on [1, nk] and {n0, . . . , nk}
is a set X such that f(nj) ∈ X for j = 1, . . . , k and f(n) ∈ {n1, . . . , nk}
implies n ∈ X, then f defines an interaction sequence on X.

Proof: By induction on k.

If k = 1, then we have f(n1) = n0 and hence f defines an interaction on
{n0, n1}.

If 1 < k, and the lemma holds for all p < k, let (V, f) and X satisfying the
hypothesis of the lemma. By induction hypothesis, f defines an interaction on
{n0, . . . , nk−1}.

If f(nk) = nk−1 then f defines an interaction on {n0, . . . , nk}.
Otherwise, we have f(i) 6= nk−1 for i ∈]nk−1, nk], and hence, by lemma 2, if

we let np be f(nk−1) we have f(nk) < np. The hypothesis of lemma 6 apply then

to the set {n0, . . . , np−1, nk} and hence f defines an interaction on this set. This

implies that f defines an interaction on {n0, . . . , nk}.

Lemma 6 extends directly to the case of an infinite set X = {n0, n1, . . .}
such that f(nj) ∈ X for j = 1, . . . and f(n) ∈ {n1, . . .} implies n ∈ X.

We suppose given an interaction sequence (V, f).
Let I ⊂ N be the set of integers i such that f(i) = 0. If i ∈ I, let Ai be

the set of integers n such that index(f, n) = i. The set Ai satisfies the two
conditions of lemma 6, and so f defines an interaction sequence on Ai.

Lemma 7 If i ∈ I, and n is even, then n ∈ Ai iff i is the least element of
V (n). If n is odd and n ∈ Ai, then n+ 1 ∈ Ai.
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Proof: First, it is clear that i is odd, and that i + 1 ∈ Ai. Let n > 0 be even.
The least integer k such that fk(n) = 0 is even. Let i = fk−1(n) = index(f, n).
By lemma 1 and lemma 4, V (fk−2(n)) is an initial segment of V (n). Hence we
are reduced to prove that if f(n) = i and f(i) = 0, then i is the least element of
V (n). This is clear if n = i + 1. If we are in the case i ∈ V (f(n − 1)) and hence
i < f(n − 1), then, using lemma 2, we can remove the segment [f(n − 1), n − 1]
until we get to the case n = i+ 1.

This proves that if n is even, then n ∈ Ai iff i is the least element of V (n).

If n > i is odd, and n ∈ Ai, then f(n) ∈ Ai and f(n) is even, i is the least

element of V (f(n)). Hence i is the least element of V (n+ 1) and n+ 1 ∈ Ai.

Corollary 1 If i ∈ I, and n is even, m ≺ n, and n ∈ Ai, then m ∈ Ai, and
m ≺ n (f,Ai).

If J ⊆ I and XJ denotes the complement of the union of all sets Ai for
i ∈ J, then XJ satisfies the two conditions of lemma 6, and so f defines an
interaction sequence on XJ .

Proposition 2 (cut-elimination) Let J ⊆ I be such that f defines a win-
ning interaction sequence on each infinite Ai for i ∈ J. If (V, f) is a winning
interaction sequence, then f defines a winning interaction on XJ .

Proof: Proposition 1 and the corollary of lemma 7 show that XJ is infinite, because
otherwise, ≺ will be well-founded both on odd and even integers.

If f does not define a winning interaction on XJ , then there exists two infinite
increasing sequences (xk) and (yk) in XJ such that f(yk) = xk, and xk+1 is the
next element coming after yk in XJ , and all xk are odds.

For each k, we show by induction on l ≤ k that f defines an interaction on
Yl = [0, xk+1[\∪i<l[xk−i, yk−i]. Indeed, we have f(p) 6= yk−l for p ∈ Yl and yk−l < p.
Hence, by lemma 2, if f defines an interaction on Yl, for l < k, then it defines an
interaction on Yl+1.

It follows that f defines an interaction on Y = [0, x1[∪
⋃

]yk, xk+1[. This set

Y is infinite, because f is winning. Since f(yk) = xk for all k, we have that

n ≺ m (f, Y ) implies n ≺ m. It follows that ≺ (f, Y ) is well-founded on odd

integers. Since XJ ∩ Y ⊆ [0, x1[ is finite, the corollary of lemma 7 shows that

≺ (f, Y ) is also well-founded on even integers. We get then a contradiction from

proposition 1.
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3 Games

We use capital letters A,B, S, . . . for denoting finite sequences (or words).
We denote by Sx the concatenation of S and x, and <> denotes the empty
sequence. If S = x1 . . . xn, then n is the length of S. We say that a sequence
T extends the sequence S iff T is of the form Sx1 . . . xp.

All the objects we consider here, games and strategies, are considered
given intuitionistically. In particular, they are computable objects.

3.1 Games and Strategies

A game G is a set of sequences which is such that <>∈ G and S ∈ G
whenever Sx ∈ G. The elements of G are called game history. If S ∈ G,
the set MG(S) = {x | Sx ∈ G} is called the set of possible moves from
S.

A strategy is a function φ defined on some elements of G of even length,
and such that φ(S) ∈ MG(S) whenever φ(S) is defined. The strategy is
exactly defined on elements of G of even length that follow the strategy
φ, where s1 . . . sn follows the strategy φ iff φ(s1 . . . s2k) is defined and is
s2k+1 for all k such that 2k < n.

Given a strategy φ, we say that an infinite sequence s1s2 . . . follows the
strategy φ iff s1 . . . sn follow the strategy φ for all n.

3.2 Debate associated to a game

Let f be an interaction on [1, n] and S a sequence x1 . . . xn of length n, we
define for each k ≤ n a sequence I(f, S, k) of length depth(f, k) by

• I(f, S, 0) =<>,

• I(f, S, k) is the concatenation I(f, S, f(k))xk if m > 0.

Given a game G we let G∗ be the set of sequences (f(1), s1) . . . (f(n), sn)
such that

• f is an interaction on [1, n] and

• for all k ≤ n we have I(f, s1 . . . sn, k) ∈ G.
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It is direct that this defines a game, called the debate associated to
the game G.

We say that a strategy for G∗ is winning iff for any infinite sequence
(f(1), s1)(f(2), s2) . . . , that follows this strategy, the infinite interaction se-
quence f is winning.

It may help the intuition of the reader to think about what happens
during a real debate on a given topic between two persons. Both defend
arguments, can change for a while their position, but also, at any point, can
resume the debate at a point it was left before. This is what the game G∗

represents, where G can be said to represent the “topic” of the debate.

3.3 Cut-Free Strategy

If G is a game, an element (f(1), s1) . . . (f(n), sn) ∈ G∗ is cut-free iff f is
cut-free.

A cut-free strategy for a game G∗ is a function φ defined on some
elements of G∗ of even length that are cut-free. Such a strategy φ is
defined exactly on sequences that follow the strategy φ and the se-
quence (f(1), s1) . . . (f(n), sn) follows the strategy φ iff f is cut-free and
(f(p+ 1), sp+1) is equal to φ((f(1), s1) . . . (f(p), sp)) for all even p < n.

It is clear that any strategy for G∗ defines a cut-free strategy by restric-
tion.

Intuitively, a cut-free strategy tells how to behave in a debate against
an opponent that never changes in mind.

We recall that, if f is an interaction sequence on [1, n], we have written
V (n+ 1) the set inductively defined {n} ∪ V (f(n)).

If S = (f(1), s1) . . . (f(n), sn) ∈ G∗ is of even length, we know by lemma
3 that f defines a cut-free interaction on the set V (n+ 1) ∪ f(V (n+ 1)) =
{m0, . . . ,ml}, so that there exists an interaction g defined on [1, l] such
that f(mi) = mg(i) for i ≤ l. We let then C(S) be the cut-free element
(g(1), sm1) . . . (g(l), sml

) ∈ G∗, and F (S)(i) = mi for i ≤ l.

Let φ be a cut-free strategy. We define a strategy E(φ) for G∗ by com-
puting (q, s) = φ(C(S)) and letting E(φ)(S) be (F (S)(q), s) for S of even
length. The strategy E(φ) is called the extension of the cut-free strategy
φ.
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A cut-free strategy is said to be winning iff the relation of extension is
well-founded on sequences that follow this strategy.

Lemma 8 A winning strategy for G∗ defines a winning cut-free strategy by
restriction. Conversely, the extension of a winning cut-free strategy is a
winning strategy.

Proof: Direct from the definition.

4 Classical provability

4.1 Classical Formulae

The formulae are defined inductively by the unique rule:

• if Ai, i ∈ I is a family of formulae, then A = |(Ai, i ∈ I) is a formula.

Intuitively, | is a generalised Scheffer connective, and A says that the
formulae Ai are incompatible, i.e. A holds iff at least one Ai does not hold.

In particular, the formula 0 = |(Ai, i ∈ ∅), is false under this interpre-
tation. We write |A for |(A) where (A) is a family with one formula A. It
represents the negation of A. Thus the formula 1 = |0 is true under this
interpretation.

If A = |(Ai, i ∈ I) is a formula, and K is a subset of I, we let A(K) be
the formula |(Ai, i ∈ K).

This language is directly seen to be equivalent to infinitary propositional
calculus as described in [6]. As shown in Tait’s paper [6], this calculus
contains naturally Peano arithmetic.

4.2 Classical Games

Each formula can be seen as a tree. To each formula A, we associate the
game GA where, intuitively, each player chooses alternatively a subtree of
the tree already chosen by the opposite player. Formally, if A = |(Ai, i ∈ I),
then GA is the set with the empty sequence and the sequences of the form
iS, with i ∈ I and S ∈ GAi .

We define a proof of A to be a winning strategy for the game G∗A. We
say that A is provable iff it has a proof.
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Notice that the formula 0 is not provable with this definition. There
is only one strategy for G∗A if A = 1, and it is a winning strategy, so that
1 = |0 is provable.

A winning cut-free strategy of G∗A can directly be seen as a normal proof
of A in the sense of Tait in [6] where we cannot have two consecutive rules
of or-introduction.

4.3 Principal Properties

Let A = |(Ai, i ∈ I) and K be a subset of I. If S ∈ G∗A is the sequence
(f(1), s1) . . . (f(n), sn), we say that a move (f(p), sp) plays in A(K) iff
index(f, p) = k is such that sk ∈ K. Let (f(p1), sp1) . . . (f(pl), spl) be the
subsequence of S of elements (f(p), sp) that play in K. By lemma 6, there
exists an interaction sequence g on [1, l] such that f(pi) = pg(l) for i =
1, . . . , l. We let pK(S) ∈ G∗A(K) be the sequence (g(1), sp1) . . . (g(l), spl).

If S is the sequence (f(1), s1) . . . (f(n), sn), and k ≤ n is such that
f(k) = 0, let (0, sk)(f(p1), sp1) . . . (f(pl), spl) be the subsequence of S of
elements (f(p), sp) such that index(f, p) = k. By lemma 6, there exists an
interaction sequence g on [1, l] such that f(pi) = pg(l) for i = 1, . . . , l. We let
pk(S) ∈ G∗Ask

be the sequence (g(1), sp1) . . . (g(l), spl).

Proposition 3 (modus ponens) If

• A = |(Ai, i ∈ I) is provable,

• I = J ∪K is a partition of I,

• Aj is provable for j ∈ J,

then the formula A(K) = |(Ai, i ∈ K) is provable.

Proof: Let φ be a winning strategy for A, and φj be a winning strategy for Aj ,
for j ∈ J. We say that a sequence S ∈ G∗A following φ is correct w.r.t. (φj) iff it
is such that pk(S) follows φsk whenever f(k) = 0 and sk ∈ J.

Proposition 2 shows that the following extension G(S) of S, for S sequence
of even length (f(1), s1) . . . (f(n), sn) following φ and correct w.r.t. (φj), is well
defined:

• if φ(S) = (f(n + 1), sn+1) and index(f, f(n + 1)) = k is such that sk ∈ K,
then G(S) = S(f(n+ 1), sn+1),
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• otherwise, index(f, f(n + 1)) = k is such that sk ∈ J. We consider then the
subsequence (0, sk)(f(p1), sp1

) . . . (f(pl), spl
) of S(f(n+ 1), sn+1), built from

elements (f(p), sp) such that index(f, p) = k, and g such that f(pi) = pg(i)
for i = 1, . . . , l. Since pk(S) follows φk, the element

φk(pk(S(f(n+ 1), sn+1))) = φk((g(1), sp1
) . . . (g(l), spl

)) = (m, s)

is well defined. We let G(S) be G(S(f(n+ 1), sn+1)(pm, s)).

Notice that G(S) is of odd length, extends S and its last move plays in K.

We can now define simultaneously by induction a strategy ψ for A(K), and for
any sequence S following ψ, a sequence F (S) such that F (S) follows φ, is correct
w.r.t. (φj) and pK(F (S)) = S. If S is of even length, let (p, s) be the last element of
G(F (S)). There exists then a unique q such that pK(G(F (S)) = S(q, s) and we let
ψ(S) be (q, s) and F (Sψ(S)) be G(F (S)). If S is of odd length, and S(p, s) ∈ GA(K),

we take F (S(p, s)) to be F (S)(p, s).

The idea behind this proof is simply this: whenever φ is playing in the
part indexed by K, we let the corresponding φj answering until we go outside
the “K part”. Proposition 2 shows that this will happen eventually.

Proposition 4 (consistency) For any formula A, at least one formula A or
|A is not provable.

Proof: Because 0 is not provable. This follows also directly from proposition 1.

It is clear that if A = |(Ai, i ∈ I) and K ⊆ I is such that A(K) is
provable, then A is provable, because a winning strategy for A(K) is also a
winning strategy for A.

Proposition 5 If A = |(Ai, i ∈ I) is provable, K ⊆ I and there is an onto
map ρ: I → K such that Aρ(i) = Ai for all i ∈ I and ρ(i) = i for i ∈ K, then
A(K) is provable.

Proof: If S ∈ G∗A is the sequence (f(1), s1) . . . (f(n), sn), let G(S) be the sequence
(f(1), s′1) . . . (f(n), s′n), where s′i = ρ(si) if f(i) = 0, and s′i = si if f(i) 6= 0. It is
clear that G(S) ∈ G∗A(K).

Let φ be a winning strategy of A. We define by simultaneous induction a strat-
egy ψ for A(K) and for any sequence S following ψ, a sequence F (S) such that
F (S) follows φ and G(F (S)) = S.
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If S is of even length, we compute φ(F (S)) = (p, s). If p = 0, we let ψ(S) be
(p, ρ(s)) and F (S(p, s)) be F (S)(p, s). If p 6= 0, we let ψ(S) be (p, s) and F (S(p, s))
be F (S)(p, s).

If S if of odd length, and S(p, s) ∈ GA(K), we let F (S(p, s)) be F (S)(p, s).

From proposition 3 and proposition 5 follows easily the equivalence of our
notion of provable formulae with the usual definition of classical provability
(as defined in [6]).

4.4 Example

A winning strategy can be seen as an interactive program, and proposition 3
interprets modus ponens as internal communication [3]. Here is an example
of such a situation.

Given a function f on integer as a parameter, both formulae

A(f) = ∀x.∃y ≥ x.∀z ≥ x. [f(y) ≤ f(z)]

and

B(f) = A(f)⇒ ∃u1, u2, u3. [u1 < u2 < u3] ∧ [f(u1) ≤ f(u2) ≤ f(u3)]

are provable. The second formula is even provable intuitionistically, but
A(f) holds only classically, if f is a parameter.

We will now define a winning cut-free strategy P for A(f) and a winning
cut-free strategy Q for B(f). By lemma 8, this defines a winning strategy
for A(f) and B(f) and proposition 3 leads then to a winning strategy for

∃u1, u2, u3. [u1 < u2 < u3] ∧ [f(u1) ≤ f(u2) ≤ f(u3)].

Such a winning strategy can be seen as a program computing u1, u2, u3
such that u1 < u2 < u3 and f(u1) ≤ f(u2) ≤ f(u3).

Rather than giving formally these winning cut-free strategy, we will ex-
plain them heuristically.

The winning cut-free strategy P for A(f) can be described as follows:

• the opponent gives a value for x = a,

• P answers y = a,

• the opponent gives a value for z = a1. If f(a) ≤ f(a1), P has won.
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• If f(a) > f(a1), P changes its mind and plays y = a1 instead,

• the opponent gives a value for z = a2. If f(a1) ≤ f(a2), P has won.

• If f(a1) > f(a2), P changes its mind and plays y = a2 . . .

Since N is well-founded, P is going to win eventually.

Here is a description of Q seen as a cut-free strategy for the formula

∃x.∀y ≥ x.∃z ≥ x.[f(y) > f(z)]∨(∃u1, u2, u3)[u1 < u2 < u3∧f(u1) ≤ f(u2) ≤ f(u3)].

This is described informally:

• Q chooses x = 0,

• the opponent chooses a value y = a1,

• Q changes its mind and plays x = a1 + 1,

• the opponent chooses a value y = a2, such that a2 ≥ a1 + 1,

• if f(a1) > f(a2), Q resumes the game with its initial value 0 for x,
and wins by playing z = a2. If f(a1) ≤ f(a2), Q changes its mind and
plays x = a2 + 1,

• the opponent chooses a value y = a3, such that a3 ≥ a2 + 1,

• if f(a3) > f(a2), Q resumes the game with the value a1 + 1 for x, and
wins by playing z = a3. Otherwise, f(a1) ≤ f(a2) ≤ f(a3), and Q wins
by playing u1 = a1, u2 = a2, u3 = a3.

We are going now to show an example of an interaction between these
two proofs (identified with cut-free strategies), in the case where the values
of f are given by

f(0) = 10, f(1) = 5, f(2) = 3, f(3) = 7, f(4) = 4, f(5) = 11, f(6) = 29, . . .

Here are the moves, as they are given by proposition 3:

1. Q plays x = 0,

2. P plays y = 0,

3. Q changes its mind, plays x = 1,
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4. P plays y = 1,

5. f(0) > f(1), hence Q plays z = 1,

6. P plays y = 1,

7. Q plays x = 2,

8. P plays y = 2,

9. f(1) > f(2), hence Q plays z = 2,

10. P plays y = 2,

11. Q plays x = 3,

12. P plays y = 3,

13. f(3) ≥ f(2), hence Q plays x = 4,

14. P plays y = 4,

15. f(4) < f(3), hence Q plays z = 4,

16. P plays y = 4,

17. f(4) ≥ f(2), hence Q plays x = 5,

18. P plays y = 5,

19. f(5) ≥ f(4), hence Q plays u1 = 2, u2 = 4, u3 = 5.

The interaction sequence g associated to this interaction is given by:

g(1) = 0, g(2) = 1, g(3) = 0, g(4) = 3, g(5) = 2, g(6) = 1,

g(7) = 0, g(8) = 7, g(9) = 6, g(10) = 1, g(11) = 0, g(12) = 11,

g(13) = 0, g(14) = 13, g(15) = 12, g(16) = 11, g(17) = 0, g(18) = 17.

The computation of (u1, u2, u3) consists in an exchange of values between
P and Q, until a value (u1, u2, u3) = (2, 4, 5) is found by Q.
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Conclusion

Our treatment seems to extend directly to the case of non necessarily well-
founded formulae. We can even consider partial strategy, and prove for
instance proposition 5 by a bissimulation argument.

The approach followed in this paper leads to a (may be new) proof of
cut-elimination in a strictly deterministic framework. We think that it can
be extended by allowing each player to play simultaneously a finite set of
moves.
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