
Topos Theory and Constructive Mathematics

Plan

Lecture 1: Kripke-Joyal, some examples

Lecture 2: one more example, small Zariski topos

Lecture 3: big Zariski topos, light condensed sets; towards higher topos
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Big Zariski topos

We have a completness theorem for coherent first-order formulae

A formula is true for R iff it is provable from axioms of local rings

Anders Kock noticed that there are non coherent formulae true for R but not
consequence of the theory, e.g. ¬(x = 0)→ U(x)

Can we axiomatise the (higher) Zariski topos?
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Some notations

Fix a commutative ring R

If A R-algebra write Sp(A) = HomRAlg(A,R)

Note that Sp(A[1/u]) can be seen a subset of Sp(A)

Indeed if x : Sp(A[1/u]) to give x : Hom(A[1/u], R) is the same as to give
x : Hom(A,R) such that x(u) is invertible

A A[1/u]

R
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Big Zariski topos

We use A,B, . . . for f.p. R-algebras

Axiom 1 R local ring

Axiom 2 (duality) If A f.p. R-algebra then the canonical map A → RSp(A)

is an isomorphism

Axiom 3 (local choice) If A f.p. R-algebra and p : X � Sp(A) surjective then
there exists b1, . . . , bn comaximal in A and partial sections si : Sp(A[1/bi])→ X
of p.

See the page web of Felix Wellen
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Synthetic Algebraic Geometry

One can develop basic results and concepts of algebraic geometry from these
axioms using the language of dependent type theory

E.g. definition of schemes, type of schemes and proof that schemes are closed
by sigma types!
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Synthetic Algebraic Geometry

Consequences of the Duality principle

¬(r1 = · · · = rn = 0)→ U(r1) ∨ · · · ∨ U(rn)

Define A = R/(r1, . . . , rn)

By duality, Sp(A) = ∅ iff 1 = 0 in A iff 1 = (r1, . . . , rn) iff one ri is invertible
(since R is local)

Since Rn = Sp(R[X1, . . . , Xn]) any map Rn → Rm is polynomial
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Synthetic Algebraic Geometry

Consequence of local choice

Z(A) = Z(R)Sp(A) Zariski spectrum of A

Z(R) is the type of “compact” open proposition

An element of Z(R) is a proposition of the form U(r1) ∨ · · · ∨ U(rn) for a
sequence r1, . . . , rn of elements of R

An open subset of any type X is a family X → Z(R)
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Synthetic Algebraic Geometry

A type is affine iff it is Sp(A) for some f.p. R-algebra A

An affine type is a (h)set

A scheme is a type which is a finite union of open affine subsets!

X such that we have V1 : X → Z(R), . . . , Vn : X → Z(R) with Vi affine and
X = V1 ∪ · · · ∪ Vn

So a scheme is defined as a type satisfying some property

A map of schemes is simply an usual map!
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Synthetic Algebraic Geometry

If one looks at this externally, this corresponds to a definition of quasi-compact
quasi-separated schemes of finite presentation as functor of points

This approach of defining schemes as functor of points was emphasized by
Grothendieck early on

Cf. Max Zeuner Univalent Foundations of Constructive Algebraic Geometry
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Synthetic Algebraic Geometry

Anders Kock noticed 1974 that we can define Pn as the set quotient of
Rn+1 − 0 = {(r0, . . . , rn) | U(r0) ∨ · · · ∨ U(rn)} by the equivalence relation of
proportionality

Σr:R×(y0, . . . , yn) = r(x0, . . . , xn)

Type of lines in Rn+1 a line is written (x0 : · · · : xn)

(This is somewhat surprising: externally Pn is the following functor

Pn(A) is the set of sub A-modules of An+1 of rank 1 that are direct factor)
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Synthetic Algebraic Geometry

One can show that Pn is a scheme

Indeed, we have open covering Vi(x0 : · · · : xn) = U(xi) and Vi = Rn and
Rn = Sp(R[X1, . . . , Xn]) is affine
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Synthetic Algebraic Geometry

One can show that the group of automorphisms of Pn is PGLn+1(R)

This is the group of bijections of Pn

A map Pn → Pm is given by homogeneous polynomials of the same degree
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Synthetic Algebraic Geometry

If we are in setting with dependent type and univalence

We can form the type of all schemes Schemes = SchemesU

SchemesU is a subtype of U

Theorem: Schemes are closed by dependent sums; affine schemes are closed
by dependent sums

If X : Schemes and Y : X → Schemes then ΣXY : Schemes

Note that the type Schemes does not depend on the universe
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Synthetic Algebraic Geometry

We can define the type of lines Lines = ΣM :RMod

∥∥M = R1
∥∥

This is a pointed type and delooping of R×, so it is K(R×, 1)

Indeed, R1 =RMod R
1 is R×

A line bundle on a type X is a function X → Lines
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Synthetic Algebraic Geometry

Usual Picard group of X is defined to be the group of line bundles on X

Pic(X) = π0(LinesX)

The result Pic(Pn) = Z can be refined as LinesP
n

= Z× Lines

(This was noticed by Matthias Hutzler)

Curiously, we also have LinesLines = Z× Lines
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Brouwer continuity and fan theorem

Site: Boolean algebras isomorphic to the one of propositional logic

Covering: B covered by B[1/e1], . . . , B[1/en] if e1, . . . , en non trivial FSOI

In this model, we look at the Boolean algebra C generated freely by countably
many element; we have Sp(C) = Hom(C, 2) = 2N

Theorem: (Duality principle) C → 2Sp(C) is an isomorphism

All functions from 2N to itself are uniformely continuous!

Indeed Sp(C)→ Sp(C) is in bijection with Hom(C,C)
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Brouwer continuity and fan theorem

Stone spaces: dual of Stone spaces

Example: Cantor space, N∞ corresponds to Boolean algebra of finite/cofinite
subsets of N

N∞ + N∞ → N∞ surjective but no continuous section

Corresponds to an injection between Boolean algebras with no retraction
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Light Condensed Sets

The previous topos is similar to the Zariski topos

We now take for the base category all countably presented Boolean algebras

Covering: B covered by B[1/e1], . . . , B[1/en] if e1, . . . , en FSOI

and we add for covering any injective map B → B′

This is the topos of light condensed sets, introduced by Clausen and Scholze

We present a possible axiomatisation of this topos
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Light Condensed Sets

Axiom 1 (duality): B → 2Sp(B) is an isomorphism

Axiom 2 (formal surjection): if B → B′ is injective, the corresponding map
Sp(B′)→ Sp(B) is surjective

Axiom 3 (local choice): if p : X � Sp(B) is surjective there exists q :
Sp(B′)→ Sp(B) surjective and s : Sp(B′)→ X such that p ◦ s = q

Axiom 4 (dependent choice): given a sequence Xn+1 → Xn of surjective
maps then all maps lim←−Xn → Xp are surjective
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Light Condensed Sets

Some examples of internal/synthetic reasoning

Define a set S to be Stone iff there exists a countably presented Boolean
algebra B such that S and Sp(B) are in bijection

Any map S′ → S is dual of a map Hom(B,B′) so it is uniformely continuous!

As a special case, 2N and N∞ are Stone
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Light Condensed Sets

N∞ + N∞ → N∞, inl(k) 7→ 2k, inr(k) 7→ 2k + 1 is surjective

Hence we have LLPO!

On the other hand we have ¬WLPO since all maps N∞ → N∞ are continuous
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Logical Principle

WLPO is ¬(∀nbn = 0) ∨ ∀nbn = 0

LPO is (∃nbn = 1) ∨ ∀nbn = 0

LLPO can be formulated as: (∀nbn = 0) ∨ (∀mcm = 0) is equivalent to
∀n,m(bn = 0 ∨ cm = 0)
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Light Condensed Sets

Axiom 2 can be formulated as Sp(B) inhabited if ¬(1 = 0) in B

This can be seen as completness of (countable) propositional logic

A countably presented Boolean algebra is like a countable propositional theory
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Light Condensed Sets

We have Markov’s Principle by duality

Let bn be a binary sequence

Take the Boolean algebra B quotient of 2 with the presentation bn = 0

B → 2Sp(B) is a bijection

Hence 1 = 0 in B (i.e. 1 = bn for some n) iff Sp(B) empty iff ¬∀nbn = 0
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Light Condensed Sets

Define a proposition to be closed iff it is of the form ∀nan with an decidable

Define a proposition to be open iff it is of the form ∃nbn with bn decidable

Theorem: a countable intersection of decidable subsets of a Stone set S is
exactly a family of closed propositions

Using Markov’s Principle, the negation of a closed proposition is open
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Light Condensed Sets

Define a set to be Compact Hausdorff iff it is a quotient of a Stone set by a
closed equivalence relation

E.g. the unit interval [0, 1] is described as a closed quotient of Cantor space

Any such quotient comes with a “topology”: family of open propositions
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Universes

We define the type Stone of all Stone spaces and the type CHaus of all
compact Hausdorff spaces (they are groupoids)

We can show that X : CHaus is Stone iff any connected component of a point
is a singleton

Theorem: CHaus is closed by dependent sums; Stone is closed by dependent
sums

If X : CHaus and Y : X → CHaus then ΣXY : Schemes

Note that the type Schemes does not depend on the universe
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Towards Higher Topos

The axioms for the Zariski and light condensed sets made sense in dependent
type theory, reading the axiom of local choice (and dependent choice) with
arbitrary types

In this context, we can use “higher types”, i.e. types that are not (h)sets

For instance, we can use Eilenberg-McLane spaces K(Z, n) and propositional
truncation to define cohomology, and prove results such as

One defines Hn(X,Z) to be π0(K(Z, n)X)

Theorem: We have Hn([0, 1],Z) = 0 if n > 0 and H1(S1,Z) = Z and
Hn(S1,Z) = 0 if n > 1
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Towards Higher Topos

Each compact Hausdorff space X has a “resolution” by Stone spaces

X ← S ⇔ S ×X S . . .

We can associate to this a cochain complex C(X,S)

ZS → ZS×XS → ZS×XS×XS . . .

Theorem: Hn(X,Z) is the nth cohomology group of the chain complex
C(X,S)

This is a result of Roy Dyckhoff 1976, but we get a purely internal proof
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Some analogy

One discovers an analogy

Stone corresponds to the type of affine spaces

CHaus corresponds to the type of separated schemes

E.g. the argument showing closure by sigma types
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Topos as generalised set theory

His confidence in the project was strengthened by Dana Scott’s work on
Boolean valued models, which he heard about at a meeting that same spring at
Oberwolfach. Even here it was not the set theoretic aspect of the work that
caught Lawvere’s attention but the logical aspect. He has said the independence
proofs in ZF were less important to him than a paper in which Scott proved
the continuum hypothesis independent of a kind of third order theory of the real
numbers, because, Scott says: ’once one accepts the idea of Boolean values there
is really no need to make the effort of constructing a model for full transfinite set
theory’ (Scott [1967], p. 109).

To Lawvere this seemed not only simpler than the version for ZF but more to
the point.
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Type theory and set theory

It is a pity that a system such as Zermelo-Fraenkel set theory is usually
presented in a purely formal way, because the conception behind it is quite
straightforwardly based on type theory. One has the concept of an arbitrary
subset of a given domain and that the collection of all subsets of the given
domain can form a new domain (of the next type!). Starting with a domain of
individuals (possibly empty), this process of forming subsets is then iterated into
the transfinite. Thus, each set has a type (or rank), given by the ordinal number
of the stage at which it is first to be found in the iteration.

Dana Scott, A type-theoretical alternative to ISWIM, CUCH, OWHY, 1969
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Sheaf models and Universes

Martin-Löf’s original motivation for extending simple type theory with a
universe

The simple theory of finite types, although proof theoretically quite strong,
has some unnatural limitations (for example, it permits only finite iterations of
the power operation) and, above all, it is not adequate for a formalization of
mathematics that talk about arbitrary sets and not just sets of natural numbers,
sets of sets of natural numbers, and so on.
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Sheaf models and Universes

it is natural to look at the interpretation of universes in sheaf models

The same question holds for forcing models

Something quite interesting happens then
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Generalization of forcing for universes?

How to interpret universes?

Type theory/set theory

Gödel/Tarski formulation of simple type theory: only types 0, 1, 2, . . . , with
n+ 1 type of subsets of type n and 0 type of individuals

Set theory: start with 0 empty set and iterate power set transfinitely

See A Formal Proof of the Independence of the Continuum Hypothesis, J. M.
Han, F. van Doorn, 2021
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Generalization of forcing for universes?

This question appeared in algebraic geometry in the 60s, and was a direct
motivation of the notion of stacks

Cf. Éléments de Géométrie Algébrique, 1, 3.3.1, A. Grothendieck and J.
Dieudonné

Similar questions appear when one wants to patch together structures, as
opposed to elements (e.g. value of a function), e.g. in Weil’s definition of
manifold
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Univalence and Sheaf Models

Let Ai be a family of (h)propositions in a type theory with univalence

A type X is a sheaf iff each diagonal map X → XAi is an equivalence

In presence of univalence the universe of sheaves is itself a sheaf!

Indeed we have π : UA → U , B → ΠAB

We also have δ : U → UA diagonal map and (π ◦ δ)X is equal to X if
X → XA is an equivalence because of univalence
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