
Topos Theory and Constructive Mathematics

Plan

Lecture 1: Kripke-Joyal, some examples

Lecture 2: Another example, Zariski topos

Lecture 3: Zariski topos, light condensed sets; towards higher topos
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Zariski spectrum

A support of a ring A is a pair L, d where L distributive lattice and d : A→ L
such that

d(0) = 0 d(1) = 1 d(ab) = d(a) ∧ d(b) d(a+ b) 6 d(a) ∨ d(b)

Define the Zariski lattice Z(A), D to be the universal support

We write D(b1, . . . , bn) for D(b1) ∨ · · · ∨ D(bn) they represent exactly the
compact open of the Zariski spectrum (as a topological space)
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Zariski spectrum

Solution of a given universal problem

A Z(A)

L

d

D

It can be realized as the lattice of radical of finitely generated ideals

D(a) =
√

(a)

3



Topos Theory and Constructive Mathematics

Zariski spectrum

D(a) 6 D(b1, . . . , bn) iff a power of a belongs to (b1, . . . , bn)

D(a) = 0 iff a is nilpotent

Think of D(a) as a /∈ α where α is a prime ideal

The terminology ideal comes from Kummer: analogy with chemistry, thinking
of a prime ideal factor as a ideal simple element (he even had in mind a concrete
ideal simple element, fluorine, that was later isolated!)

This example of prime ideal factor was then used by Hilbert in his program
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Zariski spectrum

A→ Aα universal solution for forcing all a /∈ α invertible

Aα is a local ring: ∀xU(x) ∨ U(1− x) holds in this ring

A→ A[1/a] universal solution for forcing a to be invertible

If D(b) 6 D(a) there is a canonical map A[1/a]→ A[1/b]

If D(b) 6 D(a) then D(b) gives more information about α than D(a)

D(b) is a smaller open set than D(a)
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Zariski spectrum

We have the local-global principles if 1 = (b1, . . . , bn)

Lemma: A linear system in A has a solution iff it has a solution in each
A[1/bi]

Lemma: If ui in A[1/bi] and ui = uj in A[1/bibj] then there is a unique u in
A such that u = ui in each A[1/bi]

(I don’t write explicitely the canonical maps A[1/bi]→ A[1/bibj])

The proofs are elementary (the second is non trivial, and not so easy to
formalize in Lean or Agda)
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Forcing over Zariski spectrum

Let k be an arbitrary commutative ring

Define R(D(a)) = k[1/a]

If D(b) 6 D(a) we have a transition map k[1/a]→ k[1/b]

Theorem: R defines a sheaf over the Zariski spectrum Z(k)

This is an application of the second local-global principle

Interpretation: D(a) finite piece of information about α and k[1/a] finite
approximation of kα
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Forcing over Zariski spectrum

D(a)  u = v if u = v in A[1/a]

D(a)  ψ0 → ψ1 if D(b) 6 D(a) and D(b)  ψ0 implies D(b)  ψ1

D(a)  ψ0 ∧ ψ1 if D(a)  ψ0 and D(a)  ψ1

D(a)  ψ0 ∨ ψ1 if we can find D(a) = D(b1, . . . , bn) and D(bi)  ψ0 or
D(bi)  ψ1

This is an instance of Beth semantics
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Forcing over Zariski spectrum

D(a)  ∀xψ if D(b) 6 D(a) and v in k[1/b] implies D(b)  ψ(v/x)

D(a)  ∃xψ if we can find D(a) = D(b1, . . . , bn) and vi in k[1/bi] with
D(bi)  ψ(vi/x)

Note that we don’t ask the vi to be compatible

D(a) ⊥ iff a is nilpotent
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Descent

∃xP (x) = 0

In general if we have only solutions locally P (xi) = 0 in A[1/bi] with
1 = (b1, . . . , bn) and these solutions are not compatible, we cannot patch them
together (we can if P is linear)

This is a descent problem

One insight of Grothendieck was to realize the similarity with Galois descent:
if we have a solution in a field extension we can “descend” this solution iff it is
invariant by automorphisms (patching condition)
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Forcing over Zariski spectrum

The symbol  was introduced by Dana Scott, who noticed, for intuitionistic
derivability

Theorem: if ψ1, . . . , ψn ` ψ then D(a)  ψ1, . . . , D(a)  ψn imply D(a)  ψ

D(a) represents a finite piece of information about an ideal object

This intuition was fundamental in Cohen’s approach to forcing: one forces the
existence of a non constructible subset S of N by using finite pieces of information
X ⊆ S, Y ∩ S = ∅ about this subset, with X and Y disjoint finite subsets of N
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Example

I claim that, if k is reduced (i.e. 0 is the only nilpotent element) then we have
k  ∀x¬U(x)→ x = 0

Indeed D(b)  ¬U(x) iff x nilpotent in k[1/b] but k[1/b] is reduced so x = 0
in k[1/b]

We interpret this as: the “generic” ring R satisfies ¬U(x)→ x = 0

“Almost” but not quite a discrete field, which is the classically equivalent
condition U(x) ∨ x = 0
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Use of sheaf models/topos theory

So far, we have seen two uses: to show underivability and to force existence
of ideal objects

Another use, suggested early on in the 70s, is to look at an intuitionistic
statement and at its interpretation in a sheaf model/topos
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Use of sheaf models/topos theory

We may get in this way an interesting statement, with an intuitionistic proof

This uses the fact that intuitionistic logic is sound in topos (and this was
a surprising fact, since intuitionism was very far from the mind of algebraic
geometers who studied sheaf models!)

In his 2017 PhD thesis, Ingo Blechschmidt has a nice example of this technique
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Use of sheaf models/topos theory

The statement may look a little artificial

Let us consider a ring R satisfying ¬U(x)→ x = 0

Proposition: If M is a finitely generated R-module then M is not not free

The proof proceeds by induction on the number n of generators on M

If n = 0 then M is free

If the proposition holds for m < n and we have generators a1, . . . , an we show
that this family is free if M is not free!
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Use of sheaf models/topos theory

Assume M not free

Indeed if we have Σiaibi = 0 then we cannot have U(b1), otherwise a1 can be
expressed in term of a2, . . . , an and M is generated by n− 1 elements and hence
is not not free by induction hypothesis, contradiction!

So we have ¬U(b1) but then, by assumption on R, we have b1 = 0

Similarly, we show b2 = · · · = bn = 0

Hence a1, . . . , an is free and M is free; contradiction!

So M is not not free
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Use of sheaf models/topos theory

What we obtain is the elegant generalization of Grothendieck’s generic freeness
Lemma (without Noetherianity hypotheses)

Theorem: If M is finitely generated module over k and M [1/a] free over
R[1/a] implies a = 0 then k = 0
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Use of sheaf models/topos theory

Classically this is equivalent to

Theorem: (classical) If k 6= 0 and M is finitely generated module over k
there exists a 6= 0 in k such that M [1/a] is free over R[1/a]

Compare with EGA IV 2, Lemma 6.9.2, where k is supposed to be integral
domain and Noetherian

Martin Brandenburg has a nice application of this result to a characterisation
of functors on finitely generated S-module, for R-algebra S, that commute with
base changes
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Big Zariski topos

Use a site instead of a topological space

Base category: finitely presented k-algebra A = k[x1, . . . , xn]/(p1, . . . , pm)

A  u = v if u = v in A

A  ψ0 → ψ1 if f : A→ B and B  ψ0f implies B  ψ1f

A  ψ0 ∧ ψ1 if A  ψ0 and A  ψ1

A  ψ0∨ψ1 if we can find 1 = (b1, . . . , bn) and A[1/bi]  ψ0 or A[1/bi]  ψ1

(We don’t write explicitely the canonical maps A→ A[1/bi])
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Big Zariski topos

A  ∀xψ if f : A→ B and v in B implies B  ψf(v/x)

A  ∃xψ if we can find 1 = (b1, . . . , bn) and vi in A[1/bi] with A[1/bi] 
ψ(vi/x)

Note that we don’t ask the vi to be compatible

A ⊥ iff 1 = 0 in A
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Use of sheaf models/topos theory

The generic ring R is the presheaf represented by k[X]

Theorem: R is a sheaf for the Zariski topology

We have now a site with covering A → A[1/b1], . . . , A → A[1/bn] for
1 = (b1, . . . , bn)

Theorem: R is a local ring

We have A  U(a)∨U(1−a) for any a in A since A→ A[1/a], A→ A[1/1−a]
covering
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Use of sheaf models/topos theory

In the Zariski topos, the generic ring R satisfies

¬(x = 0)→ U(x)

Indeed if we have A  ¬(x = 0) then A/(x) ⊥ since A/(x)  x = 0 and so
1 = 0 in A/(x) and x is a unit!
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Model of spaces

In the 70s there was a very active development of topos theory

Topos Theoretic Methods in Geometry

Collection of articles edited by A. Kock, 1979

Summary in Synthetic Reasoning and Variable Sets Gonzalo E. Reyes
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Model of spaces

“In three lectures at the University of Chicago in 1967, published in A. Kock
(Ed. 1979), F. W. Lawvere proposed to use the theory of variable sets (=
topos theory), developed by the Grothendieck school of Algebraic Geometry, as
a foundation for synthetic reasoning. This program was part of a vast research
program whose aim was to provide a direct, intrinsic axiomatization of Continuum
Mechanics as developed by Walter Noll and others.”
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Model of spaces

From the point of view of variable sets, to give a continuum R is to give
a category E of ”abstract” spaces and ”abstract” maps, containing R as an
object, together with a subcategory Z of ”concrete” spaces (and ”concrete”
maps) subject to some relations best described as follows: we view an object F
of E as a ”variable set” whose elements are maps C→E (where C ranges over
objects of Z). Given a ”concrete” map C’→C and an element of E at stage C
(i.e., a map with domain C) we obtain, by composition in E, a new element of
E at stage C’. In other words, E is identified with a (contravariant) set-valued
functor on Z. In a similar vein, we view a morphism F→G as a map of ”variable
sets”, which sends elements of F at stage C into elements of G at the same stage
(via composition in E). This association being natural, is thus identified with a
natural transformation between the functors F and G
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Model of spaces

These identifications amount to giving a functor from E into the category
of (contravariant) set-valued functors and natural transformations on Z, which
we shall assume to be full and faithful, thus identifying the ”abstract” maps of
spaces with the corresponding natural transformation
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Model of spaces

Two examples:

-Zariski topos: we work with finitely presented k-algebra, where k is an
arbitrary ring

-Model of Choice Sequences: another presentation of the model studied by
Chuangje Xu and Martin Escardo A Constructive Model of Uniform Continuity
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Big Zariski topos

k arbitrary ring

Site of finitely presented k-algebra A,B, . . .

The covering are A→ A[1/u1], . . . , A→ A[1/un] if (u1, . . . , un) = 1 in A

We have the generic ring R where R(A) is the set underlying A

R is represented by k[X] so we are in the situation described by G. Reyes
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Big Zariski topos

Theorem: R is a local ring

Indeed A is always covered by A[1/u] and A[1/1− u] for any u in A

So we have A  ∀xU(x) ∨ U(1− x) for any A
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Big Zariski topos

Furthermore, there is a completness theorem for the first-order theory of local
k-algebra

Theorem: A coherent formula is provable in this theory iff it holds in the
Zariski topos
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Big Zariski topos

A. Kock 1974 discovered that R satisfies (non coherent!) formulae that are
not intuitionistically provable

Proposition: R satisfies ¬(x = 0)→ U(x) and more generally

¬(x1 = · · · = xn = 0)→ U(x1) ∨ · · · ∨ U(xn)
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Big Zariski topos

Ingo Blechschmidt PhD thesis 2017 presents the following generalisation

Let A be any finitely presented R-algebra (internally!), define Sp(A) to be
Hom(A,R)

Theorem: (Duality Principle) The canonical map

A→ RSp(A)

is an isomorphism
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Big Zariski topos

Sp(R/(r)) is the proposition r = 0

Sp(R[1/r]) is the proposition U(r)

Sp(R[X]) is R

Any map Sp(A) → Sp(B) corresponds to a morphism Hom(B,A) of R-
algebra

In particular any map R → R is a polynomial, since Hom(R[X], R[X]) is
R[X] as a set
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Model of choice sequences

We work with the site of Boolean algebra with covering B[1/ei] for e1, . . . , en
partition of unity (Boolean version of the “gros” Zariski topos)

Internally consider the Boolean algebra B of propositional logic (free Boolean
algebra on countably many generators) then we have Sp(B) = Hom(B, 2) = 2N

Theorem: (Duality Principle) The canonical map

B → 2Sp(B)

is an isomorphism
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Model of choice sequences

We get a model of Brouwer’s fan theorem: any function 2N → 2 is uniformly
continuous

Note that this is not valid if we consider only recursive points of Cantor space

This is similar to Kreisel and Troelstra model of choice sequences
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Sheaf models

Sheaves form a model of simple type theory but the language of simple type
theory is not enough to describe mathematical structures

Martin-Löf’s original motivation 1971 for extending simple type theory with a
universe

The simple theory of finite types, although proof theoretically quite strong,
has some unnatural limitations (for example, it permits only finite iterations of
the power operation) and, above all, it is not adequate for a formalization of
mathematics that talk about arbitrary sets and not just sets of natural numbers,
sets of sets of natural numbers, and so on.
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Sheaf models

Ingo Blechschmidt in his PhD thesis uses Mike Shulman so-called “stack”
semantics to be able to quantify over arbitrary sets, but this is not enough to
form collection of structures
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Presheaf models of type theory

For presheaves there is no problem

Martin Hofmann Syntax and Semantics of Type Theory

See also What is a model of type theory, Th. C.
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Presheaf models of type theory

In this setting, we represent forcing as follows

We have a family of proposition pi

Let E(p) be {0 | p}

A type X is a sheaf iff each diagonal map X → XE(pi) is a bijection

Intuitively X believes that pi is true

It is direct that such types are closed by dependent products and sums
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Sheaf models

In the lecture I will go quickly over the next example of Newton-Puiseux series

This is from the joint work with Bassel Mannaa
A Sheaf Model of the Algebraic Closure

and his PhD thesis Sheaf Semantics in Constructive Algebra and Type Theory
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Sheaf models

What I will present now is inspired from two papers

“La logique des topos” A. Boileau and A. Joyal, JSL 1980

“Les théorèmes de Chevalley-Tarski et remarques sur l’algèbre constructive”
A. Joyal, CTGD,58, 1

But the arguments may be different from the ones of A. Joyal

Roughly speaking: Joyal proves also quantifier elimination, while I prove only
consistency
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Sheaf models

Any map R→ S gives a map B(R)→ B(S)

Theorem: The map B(ι) : B(R)→ B(R[X]) has a left adjoint

This is Chevalley’s theorem: the projection of a constructible set is
constructible

This corresponds to quantifier elimination ∃ : B(R[X]) → B(R) We have
∃(ψ(X)) 6 ϕ iff ψ(X) 6 B(ι)(ϕ)

The argument is not developped in Joyal’s papers, but there are now notes
from Luis Español González, which describes the argument: e.g. reduces the
general case of the Theorem to the case where R is a field
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Algebraic closure

Instead of “forcing” the existence of a point of a space, a mathematical
object (like a prime ideal), we are going to “force” the existence of mathematical
structure

We work on a sheaf model over a site and not over a topological space

“Gros” topos vs “petit” topos
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Algebraic closure

We want to build the algebraic closure of a given perfect field k

Problem: we cannot decide irreducibility of polynomials

How can we add a root of X2 + 1 for instance?

A = k[X]/〈X2 + 1〉 may not be a field

However it is reduced 0-dimensional, and Z(A) = B(A) is a Boolean algebra

If α prime (=maximal) ideal of A then A/α is a field extension of k
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Abel versus Galois

Splitting field of P = X3 − a1X2 + a2X − a3

Analysis of Galois’ work in “Essays in constructive mathematics”, H. Edwards

We consider A = k[X1, X2, X3]/I where I is the ideal

〈X1 +X2 +X3 − a1, X1X2 +X2X3 +X3X1 − a2, X1X2X3 − a3〉

For any k one can show (effectively) that I is proper

We know A is non trivial and anly α prime ideal of A determines a splitting
field A/α of P
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Algebraic closure

We take the site of all étale finitely presented k-algebras

Such an algebra can be presented as a triangular algebra k[a1, . . . , an]

ai+1 root of p(X, a1, . . . , ai) = 0 with p separable in k[a1, . . . , ai][X]

Covering: A is covered by A[1/e1], . . . , A[1/en] where e1, . . . , en idempotents
pairwise incompatible with 1 = e1 + · · ·+ en

A is covered by A[X]/〈p〉 where p is separable

An arbitrary covering is obtained by iterating elementary coverings (in all these
cases, we obtain only finite coverings)

We “force” x = 0 ∨ U(x) and ∃x p(x) = 0
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Algebraically closed fields

Any such algebra A represents a state of knowledge about the (ideal) algebraic
closure: we have a finite number of indeterminates X1, . . . , Xn and a finite number
of conditions P1 = · · · = Pm = 0
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Algebraic closure

Over this site, we have a presheaf K(A) set underlying A

In this sheaf model, K is the algebraic closure of k!

We build an algebraic closure, not in the category of sets, but in a sheaf model
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Refinement of the model

If we are at the node A = k[x]/〈x2−3x+2〉 and we want to force a = 0∨U(a)
for a = x− 3 with k of characteristic 0

We can directly see that a is invertible in A by computing the GCD of
x2 − 3x+ 2 and x− 3

x2 − 3x+ 2 = x(x− 3) + 2

so that the inverse of a is −x/2

Note that we do the computation both for x = 1 and x = 2 in parallel!
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Refinement of the model

Similarly for a = x− 1 we find

x2 − 3x+ 2 = (x− 1)(x− 2)

so that one branch is A → k[x]/〈x − 1〉 where a = x − 1 is 0 and the other
branch is A→ k[x]/〈x− 2〉 where a = x− 1 is invertible (and is equal to 1)

A[a−1] = k[x]/〈x− 2〉 A/〈a〉 = k[x]/〈x− 1〉
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Refinement of the model

For instance if A = k[x, y]/〈x2 − 2, y2 − 2〉 and we want to force

a = 0 ∨ U(a)

for a = y − x we get the covering

A0 = k[x, y]/〈x2 − 2, y − x〉 A1 = k[x, y]/〈x2 − 2, y + x〉
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Refinement of the model

This gives a computational model of the algebraic closure of a field, for
which we don’t use a factorisation algorithm for polynomials over k, only GCD
computations

This might be interesting even if we have a factorization algorithm for
polynomials over k

One can think of each such finitely presented k-algebra as a finite
approximation of the (ideal) algebraic closure of k
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Dynamical evaluation

We get something close to the technique of dynamical evaluation in computer
algebra (D. Duval; one application: computation of branches of an algebraic
curves)

The notion of site model gives a theoretical model of dynamical evaluation

The same technique can be used for several other first-order theories

M. Coste, H. Lombardi and M.F. Roy, Dynamical method in algebra, Ann.
Pure Appl. Logic 111 (2001), 203-256

We think this is close to what Herbrand had in mind when he mentions that
he could show the consistency of the theory of real closed fields without having
to prove quantifier eliminations
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Dynamical evaluation

We can for instance look at Abhyankar’s proof of Newton-Puiseux Theorem
in Algebraic geometry for Scientists and Engineers

Theorem: If P (x, Y ) = 0 is a separable polynomial in Y in k[x, Y ] of degree n
then there exists m > 1 and η1, . . . , ηn in K[[x]] such that P (Tm, Y ) = Π(Y −ηi)

In this statement K is the separable closure of k

This makes sense in the sheaf model we have described

We get an algorithm which given P computes a finite extension of k where
such a decomposition can be found
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Dynamical evaluation

P (x, Y ) = Y 6 + 3x2Y 4 + (3x4 − 4x2)Y 2 + x6 and k = Q

k[a, b, c, d, e] where m = 2 and

a4 − 2 = 0
b− a/5 = 0
c2 − 1/4 = 0
d3 + 2/3a2d+ 20/27a3 = 0
e2 + 3/4d2 + 2/3a2 = 0
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Dynamical evaluation

P (x, Y ) = Y 6 + 3x2Y 4 + (3x4 − 4x2)Y 2 + x6 and k = Q

P (x, Y ) = (Y − ax1/2 + 3/16a3x3/2 + . . . )(Y − cx2 + . . . )
(Y + cx2 + . . . )(Y + (−e+d/2 +a/3)x1/2 + . . . )(Y + (e+d/2 + 1/3)x1/2 + . . . )

a4 − 2 = 0
b− a/5 = 0
c2 − 1/4 = 0
d3 + 2/3a2d+ 20/27a3 = 0
e2 + 3/4d2 + 2/3a2 = 0
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Dynamical evaluation

Note that K[[x]] is KN and hence, we know a priori that a finite extension of
k will be enough to compute all coefficients of the rational power serie

This is not obvious a priori if we follow usual methods, e.g. the one presented
in Edwards Essays in constructive mathematics: it may be that we have to
introduce infinitely new algebraic numbers
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Exercise

Show that in this model, there is no function r : K → K such that

∀a:Kr(a)2 = a
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