
Constructive Mathematics and Functional
Programming

Thierry Coquand

Budapest, April 1, 2008

Constructive Mathematics and Functional Programming

Constructive Mathematics

Connections between reasoning and computations in mathematics

1800 direct connection, algebra/analysis as describing algorithms (elimination,
differentiation, integration); maybe not feasible but possible in theory

1820 Gauss, Abel, Galois, irreducible polynomials, rational functions (field)

1860 Dedekind, Kronecker, Hilbert, non constructive existence proof (Hilbert’s
basis theorem)

1905 Discussion on the Axiom of Choice, well-ordering of the reals

1908 Brouwer: the source of non constructivity is in the non restricted use of
excluded-middle

1

Constructive Mathematics and Functional Programming

Constructive Mathematics

1930 Heyting, Kolmogorov, explanation of intuitionistic logic

1958/1967 Curry, W. Howard, W. Tait, P. Martin-Löf propositions as types

1967 Bishop Foundations of constructive analysis

1979 P. Martin-Löf Constructive mathematics and computer programming

2001 B. Gregoire, X. Leroy A Compiled Implementation of Strong Reduction

2004 G. Gonthier, B. Werner Checking of the Four Color Theorem

2

Constructive Mathematics and Functional Programming

Reasoning and computations

Excluded-Middle as the source of non effectivity (not the axiom of choice)

For functions: we have ∀n.f(n) = 0 or ∃n.f(n) 6= 0

But there is no algorithm, program of type (nat → bool) → bool, which can
decide if f if always 0 or not

∃n.∀m.f(n) 6 f(m) (Hilbert’s basis theorem), there is no program of type
(nat → nat) → nat which can find this minimum value

If f : [0, 1] → R continuous function and f(0) = −1, f(1) = 1 then f has a
zero. But there is no algorithm which can find this zero in general

3

Constructive Mathematics and Functional Programming

Constructive Mathematics

Constructive mathematics best characterization (Richman, Bridges)

constructive mathematics is mathematics developed in intuitionistic logic

Notice that this characterization does not mention explicitly the notion of
algorithms/recursive functions

4

Constructive Mathematics and Functional Programming

Constructive Mathematics

Kolmogorov’s suggestive explanation of intuitionistic logic: propositions as
problems

To solve A ∧B: solve A and solve B, A×B

To solve A ∨B: solve A or solve B, A + B

To solve A → B: reduce the problem B to the problem A, A → B

To solve ¬A: show that the problem A has no solution, A → N0

Why A∨¬A may not be valid: we should have a general method which given
a problem A, either find a solution to A or show that A has no solution

5

Constructive Mathematics and Functional Programming

Reunifying reasoning and computations

A (constructive) proof that a property P on a set A is decidable

∀x : A. P (x) ∨ ¬P (x)

can be seen as an algorithm deciding P

It is only possible to specify the algorithm in this way if we use intuitionistic
logic

6

Constructive Mathematics and Functional Programming

Reunifying reasoning and computations

Example: modal logic LTL, Büchi automata, we have properties of infinite
paths that may not be, a priori, decidable

To represent the theory of Büchi automata in a constructive way is a(n
interesting) challenge. Maybe one can develop the theory S1S in a purely
syntactical way, following D. Siefkes book Decidable Theories, LNM 120

Example: domain theory. The elements of a domain are in general infinite
objects, the ordering is not decidable in general. But the finite elements are
expected to be finitary objects with a decidable ordering.

7

Constructive Mathematics and Functional Programming

Reunifying reasoning and computations

The computations should be possible in theory

Possible to refine this with various notion of feasible computations

But a basic principle is that there is a fundamental difference between the
situation where a computation is possible in theory and when where a computation
is not possible at all

8

Constructive Mathematics and Functional Programming

Reunifying reasoning and computations

Type theory (P. Martin-Löf, R. Constable, 1970s)

A formalism in which to formulate constructive mathematics

close to functional programming: total functional programming

programs (and proofs) are terminating functional programs

like a set theory where everything is computable

implementations: Coq (INRIA, B. Barras, H. Herbelin, J.C. Filliatre), Epigram
(Nottingham, C. McBride), Agda (Chalmers, U. Norell)

9

Constructive Mathematics and Functional Programming

Total functional programming

“The driving force of functional programming is to make programming more
closely related to mathematics. A program in a functional language . . . consists
of equations which are both computation rules and a basis for simple algebraic
reasoning. The existing model of functional programming, although elegant and
powerful, is compromised to a greater extent than is commonly recognized by the
presence of partial functions. We consider a simple discipline of total functional
programming designed to exclude the possibility of non termination.”

D.A.Turner, 2004, J.U.C.S

10

Constructive Mathematics and Functional Programming

Total functional programming

Functional programming allows elegant solutions for some class of problems

For most examples in this class, total functional programming is even nicer

There is a strong analogy with constructive logic: for the problems that do
have a constructive solution it is in general not elegant to use excluded middle

11

Constructive Mathematics and Functional Programming

Reunifying reasoning and computations

“relating constructive mathematics to computer programming seems to me to
have a beneficial influence on both parties.

By choosing to program in a formal language for constructive mathematics,
like the theory of types, one gets access to the whole conceptual apparatus of
pure mathematics, neglecting those parts that depend critically on the law of
excluded middle”

P. Martin-Löf, 1979

12

Constructive Mathematics and Functional Programming

Real numbers and analysis

“Having formalized the construction of the real numbers (for example, as
Cauchy sequences of rationals) in the theory of types, we can prove as a corollary
to the normalization theorem that every individual real number which we can
construct in the formal theory can be computed by a machine with any preassigned
degree of precision.”

Also Bishop 1967

13

Constructive Mathematics and Functional Programming

Real numbers and analysis

Turing On computable numbers with an application to the
Entscheidungsproblem, 1936

Computable real numbers x: if we can compute the decimals by a finite
machine

Problem: if x is very close to 1, maybe 0.99999999 or 1.000000001

A correction (pointed out by Bernays): Brouwer’s definition (shrinking
sequence of overlapping intervals), 1937, should allow negative decimals
0, 1, 1 = −1 so that 0.999999999 can be represented as 1.000000001

Church A note on the Entscheidungsproblem, 1936

14

Constructive Mathematics and Functional Programming

Real numbers and analysis

Work of Russell O’Connor (Nijmegen): real numbers as functions

Work of Yves Bertot (INRIA, Sophia-Antipolis): real numbers as streams

15

Constructive Mathematics and Functional Programming

Real numbers and analysis

Metric Completion as a monad

X → C(X)

C(C(X)) → C(X)

(X → Y) → (C(X) → C(Y))

Functions are uniformly continuous functions, R = C(Q)

Works for any metric space; if we start with X metric space of finite set of
rational points with Haussdorf metric, we get the set of compact subsets (e.g.
fractals)

16

Constructive Mathematics and Functional Programming

Real numbers and analysis

Evaluate within 10−20 (with correctness proofs)√
e/π 1 sec

sin((e + 1)3) 25 sec

eee1/2

146 sec

All these computations are proved correct w.r.t. an existing library of
constructive mathematics, developed by the Foundations Group, Radboud
University Nijmegen

17

Constructive Mathematics and Functional Programming

Real numbers as streams

Go back to Brouwer’s original definition

Simplest case, streams of −1, 0, 1, as used in functional programming

Y. Bertot, N. Julien, computations of series and basic properties (for instance,
computation of 1000 decimals of π in 4 sec.)

Used by R. Zuemkeller (INRIA) to check some parts of T. Hales proof of the
Kepler conjecture

18

Constructive Mathematics and Functional Programming

Planar graphs

Real numbers are complicated objects constructively. For instance x < y not
decidable, x < y∨y 6 x does not hold (and is replaced by x < z → x < y∨y < z)

By contrast, the notion of finite graph is combinatorial

More difficult: what is a planar graph (a graph drawn on the plane)?

Should we use topology, analysis, Jordan curve theorem?

19

Constructive Mathematics and Functional Programming

Planar graphs

Search for a “computable” formalization (G. Gonthier, Microsoft-INRIA)

Should be easily formalisable in type theory

A structure where graph traversal is easy to program

G. Gonthier rediscovered in this way the structure of hypermaps: a finite set
d with two maps α, σ : d → d where α is a involution without fixed points and σ
is a permutation

The elements of d are darts (oriented edges)

The edges are the cycles of α and the nodes are the cycles of σ

20

Constructive Mathematics and Functional Programming

•

•

•

6

5
3

4

1

2

α1 = (1, 2)(3, 4)(5, 6), σ1 = (1, 3, 5, 6)(2)(4)

The faces are the cycles of

φ1 = σ−1
1 α−1

1 = (1, 2, 6, 3, 4)(5)

1

21

Constructive Mathematics and Functional Programming

•• •

6

5
3

4 1
2

α2 = (1, 2)(3, 4)(5, 6), σ2 = (1, 5, 3, 6)(2)(4)

The faces are the cycles of

φ2 = σ−1
2 α−1

2 = (1, 2, 6)(3, 4, 5)

1

22

Constructive Mathematics and Functional Programming

• •

••

•

1
2

3

4

5

6
7
8

9

10

11

12

13
14

α = (1, 4)(2, 8)(3, 12)(5, 9)(6, 11)(7, 13)(10, 14)

σ = (1, 2, 3)(4, 5)(6, 7, 8, 9)(10, 11)(12, 13, 14)

φ = (1, 12, 10, 6, 5)(2, 4, 9)(3, 8, 13)(7, 11, 14)

1

23

Constructive Mathematics and Functional Programming

Planar maps

Further simplification (replacing reasoning by computation)

Structure d finite set with α, σ, φ : d → d such that σαφ = Id

Cauchy: any substitution is a product of disjoint cycles

Symmetrical representation with respect to edges, nodes and faces.

Now used in the proof of Kepler conjecture

This represents a graph drawn on a surface (oriented). One needs an extra
(combinatorial) condition to state that this can is drawn on the plane.

Graph theory is “reduced” to finite group theory

24

Constructive Mathematics and Functional Programming

Hypermaps in type theory

J.F. Dufourd (U. Strasbourg) uses a similar notion of hypermap to formalize
and synthetise programs in computational geometry

Formalized Euler’s theorem for polyhedra in type theory V − E + F = 2

Cf. discussion in Lakatos Proofs and Refutations

25

Constructive Mathematics and Functional Programming

Image segmentation algorithm

How to specify and build a correct image segmentation algorithm

Need the mathematical theory for the specification and the proof of correctness

Direct to rewrite the algorithm in C (if desired)

26

Constructive Mathematics and Functional Programming

1

27

Constructive Mathematics and Functional Programming

Planar graphs

Results intuitive but not trivial to represent formally

Finite structures: the properties are computable

Excluded-middle holds for these structures and properties

28

Constructive Mathematics and Functional Programming

Four Color Theorem

First proof by Kempe, published in 1879

Error in the proof that took ten years to spot (and 100 years to fix)

1976: Appel and Haken, required computer calculations too large to be
checked by hand

1997: Simplification by Robertson, Sanders, Seymour, Thomas, reduce the
number of cases, but still too large to be checked by hand

29

Constructive Mathematics and Functional Programming

Four Color Theorem

“Though proof assistants have been around for some 30 years, we are the first
to use them to prove a major result that absolutely requires the use of computers.
The main technique we used to accomplish this, known as computation reflection,
basically amounts to replacing mathematical proof with software debugging;
this raises the perspective that proof assistant technology could be effectively
transferred to the engineering of reliable software.”

Started as a programming project for students in a basic computer science
course

30

Constructive Mathematics and Functional Programming

Four Color Theorem

(1) A purely combinatorial part:

find a set of configurations (633 configurations) such that two properties hold

Reducibility: 1.000.000.000 cases

Unavoidability: 10.000 cases

Use only intuitionistic logic, all properties are computable

(2) Verify that the combinatorial part fits the topology (analysis, use classical
logic)

31

Constructive Mathematics and Functional Programming

Four Color Theorem

Define a set config

Define cfreducible : config → prop

Define checkreducible : config → bool and prove

∀x : config. checkreducible x → cfreducible x

Apply this for each configuration (the actual computation for one configuration
may involve up to 20.000.000 cases)

32

Constructive Mathematics and Functional Programming

Functional Programming

Robertson, Sanders, Seymour, Thomas (1997) 35 pages + a C program

Example of a proof (Result 3.3) This is a “folklore” theorem, and we omit its
proof, which is straightforward

35 pages formalized in type theory

no extra C program: purely functional, using more sophisticated algorithms,
multiway decision diagrams, zipper (G. Huet), Davis-Putnam, abstract
interpretation

Even with the added sophistication, the program verification part was the
easiest, most straightforward part of this project

33

Constructive Mathematics and Functional Programming

New mathematics

Gonthier found a new combinatorial statement of Jordan’s curve Theorem

This gives a new combinatorial definition of planarity

34

Constructive Mathematics and Functional Programming

Four Color Theorem

Some conclusions of this work:

Sophisticated decision procedures can be cast as functional programs

correctness proofs are typically easy

formally proving programs is easier than formally proving theorems

machine formalization can lead to new mathematical insights

35

Constructive Mathematics and Functional Programming

Four Color Theorem

Although this work is purportedly about using computer programming to
help doing mathematics, we expect that most of its fallout will be in the reverse
direction - using mathematics to help programming computers. The approach that
proved successful for this proof was to turn almost every mathematical concept
into a data structure or a program, thereby converting the entire enterprise into
one of program verification

In many respects, these proof scripts are closer to debugger or testing scripts
than to to mathematical texts.

We believe it is quite significant that such a simple-minded strategy succeeded
on a “higher mathematics” problem. Clearly, this is the most important conclusion
one should draw from this work

36

Constructive Mathematics and Functional Programming

Functional programming

The complete checking of the proof of the four color theorem was made
possible by an efficient implementation of type checking (= proof checking) by
Benjamin Gregoire and Xavier Leroy (2001)

This implementation reduces strong evaluation of functional terms (evaluation
under abstraction, partial evaluation) to weak evaluation, which is used in
functional programming

37

Constructive Mathematics and Functional Programming

Functional programming

Terms/programs
M ::= x | M M | λx.M

Computation rule (λx.N) M = N [x/M] (β-reduction)

Values/results of computation

u ::= λx.M

Ordinary functional programming only computes the weak head-normal form

38

Constructive Mathematics and Functional Programming

Functional programming

An weak evaluator computes the value U(M) of a closed term

U(λx.M) = λx.M

U(M1) = λx.N U(M2) = u2 U(N [x/u2]) = v

U(M1 M2) = v

39

Constructive Mathematics and Functional Programming

Functional programming

Uniform implementation: Landin SECD machine (call-by-value),
Shmidt/Krivine’s machine (call-by-name), CAM (call-by-value)

Efficient implementation: Leroy ZAM machine (call-by-value) virtual machine
of caml

For dependent type theory we need to compute open terms

40

Constructive Mathematics and Functional Programming

How to get Strong Reduction?

Solution: introduce new symbolic terms X0, X1, . . .

First do weak normalization; second read back the resulting value as a
normalized term, recursing over the bodies of the function if needed

41

Constructive Mathematics and Functional Programming

How to get Strong Reduction?

u ::= λx.M | k, k ::= Xi | k u

The full normal form of a closed term M is computed as R0(U(M)) where Ri

is the readback procedure

Ri(λx.M) = λXi.Ri+1(U(M [x/Xi]))

Ri(Xl) = Xl, Ri(k u) = Ri(k) Ri(u)

42

Constructive Mathematics and Functional Programming

How to get Strong Reduction?

Example: M is (λx.x)(λy.(λz.z) y (λt.t))

U(M) is u0 = λy.(λz.z) y (λt.t)

R0(u0) is λX0.R1(U((λz.z) X0 (λt.t)))

U((λz.z) X0 (λt.t)) is u1 = X0 (λt.t)

R1(u1) is X0 (λX1.R2(U(X1))) = X0 (λX1.X1)

Thus the (strong) normal form of M is λX0.X0 (λX1.X1)

43

Constructive Mathematics and Functional Programming

How to get Strong Reduction?

In this way we can use the ordinary evaluation machine of functional programs
(in this case the virtual machine of CAML) to evaluate terms of type theory

This has been crucial for the actual checking of the four color theorem

In general R0(U(M)) will compute the Böhm tree of M

44

Constructive Mathematics and Functional Programming

Functional programming

For type theory/functional programming we need to add constructor values
and functions defined by cases

M ::= x | M M | λx.M | c ~M | f(M1, . . . ,Ml)

New computation rules of the form f(x1, . . . , xl)(c ~x) = M

45

Constructive Mathematics and Functional Programming

Functional programming

For instance

f(a, b)(0) = a, f(a, b)(S x) = b x (f(a, b)(x))

higher-order primitive recursion, Hilbert 1925, Gödel 1941

The values are now

u ::= λx.M | c ~u | f(u1, . . . , ul)

46

Constructive Mathematics and Functional Programming

Functional programming

R.M. Burstall Proving properties of programs by structural induction,
Computer Journal 12 (1): 41-48 (1969)

The main aim of this paper is to suggest some syntactic devices for writing
programs in a way which makes it easier to derive proofs by structural induction

47

Constructive Mathematics and Functional Programming

Functional programming

U(λx.M) = λx.M

U(M1) = λx.N U(M2) = u2 U(N [x/u2]) = v

U(M1 M2) = v

48

Constructive Mathematics and Functional Programming

Functional programming

U(M1) = u1 . . . U(Mn) = un

U(c M1 . . . Mn) = c u1 . . . un

U(M1) = u1 . . . U(Mn) = un

U(f(M1, . . . ,Mn)) = f(u1, . . . , un)

U(M1) = f(~u) U(M2) = c ~v U(N [~u,~v]) = v

U(M1 M2) = v

where we have the computation f(x1, . . . , xl)(c ~x) = N

49

Constructive Mathematics and Functional Programming

Strong reduction

u ::= λx.M | c ~u | f(u1, . . . , ul) | k

k ::= Xi | k u | f(u1, . . . , ul)(k)

50

Constructive Mathematics and Functional Programming

Strong reduction

Ri(λx.M) = λXi.Ri+1(U(M [x/Xi]))

Ri(f(u1, . . . , ul)) = λXi.Ri+1(f(u1, . . . , ul)(Xi))

Ri(c u1 . . . un) = c (Ri u1) . . . (Ri un)

Ri(Xl) = Xl, Ri(k u) = Ri(k) Ri(u)

Ri(f(u1, . . . , ul)(k)) = f(Ri(u1), . . . ,Ri(ul))(Ri(k))

51

Constructive Mathematics and Functional Programming

Normalization and domain theory

Denotational semantics

V = (V →s V)⊕ Σc V⊗ar(c)

We consider the strict semantics [[M]]s ∈ V

Theorem: (U. Berger, 2005) If [[M]]s 6=⊥ then M is strongly normalisable

52

Constructive Mathematics and Functional Programming

How to improve existing systems based on type theory

Type theory as total functional programming (cf. D. Turner, 2004) with
dependent types

Denotational semantics

Better module systems (first step is denotational semantics)

More functional programming notations

For one step in this direction, see Agda (agda wiki), Epigram

53

Constructive Mathematics and Functional Programming

How to improve existing systems based on type theory

filter : {A : Set} -> (A -> Bool) -> List A -> List A
filter p [] = []
filter p (x :: xs) with p x
... | true = x : filter p xs
... | false = filter p xs

subset : {A : Set} -> (p : A -> Bool) ->
(xs : List A) -> subseteq (filter p xs) xs

subset p [] = stop
subset p (x :: xs) with p x
... | true = keep (subset p xs)
... | false = drop (subset p xs)

54

Constructive Mathematics and Functional Programming

Classical Logic

computer programming
functional programming

≡ classical mathematics
constructive mathematics

EM : ¬¬A → A, C[EM u] = u (λxA.C[x]) if u : ¬¬A

Not possible with dependent types: λxA.C[x] may not be well-typed for
instance if C[x] is h x p with

p : P (EM u) h : Πx : A.P (x) →⊥

h (EM u) p is well-typed but not h x p (x : A)

55

Constructive Mathematics and Functional Programming

Classical Logic

Open problem 1: to extend type theory with computation rules for EM

Open problem 2: to extend type theory with computation rules for extensional
choice (which implies EM)

The fact that this should be possible is suggested by the proof of the
elimination of the ε symbol (Hilbert, Bernays)

56

Constructive Mathematics and Functional Programming

Computer Programming

Use of type theory to check imperative programs; X. Leroy (INRIA) Compcert:
a compiler that generates PowerPC assembly code from a (large) subset of C. Its
correctness is proved in type theory.

D. Pichardie: constructive abstract interpretation

Concurrent C Minor, joint Princeton INRIA project

Ynot project: extending type theory with imperative and concurrent features

Hoare Type Theory

57

