
Equality and dependent type theory

Oberwolfach, March 2 (with some later corrections)



Equality and dependent type theory

The Axiom of Univalence, a type-theoretic view point

In type theory, we reduce proof-checking to type-checking

Hence we want type-checking to be decidable

This holds as soon as we have the normalization property

To add an axiom does not destroy the normalization property

1



Equality and dependent type theory

A type-theoretic view point

Normalization property is obtained by giving a computational justification of
each new construct

Another property that follows from this method is that we know that any

closed term of type N reduces to a numeral, and any term of type
∑
x:A

B reduces

to a pair

If we add an axiom, we destroy these properties

2



Equality and dependent type theory

A type-theoretic view point

Project: to give a computational justification of the univalence axiom

We try to get this as a model construction

This involves two parts

Part 1: to give a purely axiomatic presentation of equality

Part 2: to give an interpretation of these axioms

3



Equality and dependent type theory

This talk

We present various axiomatizations of the equality type (this is complete, and
has been formally checked by Nils Anders Danielsson)

We then skecth a possible computational interpretation of these axioms (this
has been checked in special cases only)

4



Equality and dependent type theory

Part 1: Equality in type theory

First edition of Principia Mathematica (1910): no axiom of extensionality, but
axiom of reducibility (propositions form a type, and we can quantify over any
type, also known as impredicativity)

Second edition (1925): under the influence of Wittgenstein, Russell introduces
the principle of extensionality

a function of propositions is always a truth function, and a function occurs
only in a proposition through its values

and sees this as a (partial) replacement of the axiom of reducibility

5



Equality and dependent type theory

Equality in type theory

A function can only appear in a matrix though its values

“This assumption is fundamental in the following theory. It has its difficulties,
but for the moment, we ignore them. It takes the place (not quite adequatly) of
the axiom of reducibility”

6



Equality and dependent type theory

Church’s formulation of type theory

Simplification of Russell’s theory of types

A type of proposition o, a type of individuals and function type A→ B

For instance o→ o is the type of the operation of negation

We have the usual connectives on propositions

p→ q : o for the implication if p q : o

quantifiers at any type ∀x : A.ϕ : o if ϕ : o [x : A]

7



Equality and dependent type theory

Church’s formulation

Uses λ-calculus to represent terms (implicit in Principia Mathematica)

If f : A→ B and a : A then f a : B the application of the function f to the
argument a

If t : B [x : A] then λx.t : A→ B

The terms of type o are the propositions

Usual connectives and (classical) logical rules

8



Equality and dependent type theory

Equality in Church’s formulation

We can define an equality (Leibnitz equality) IdA a0 a1 as

∀P : A→ o. P (a0)→ P (a1)

This definition is impredicative

One can show that this is a reflexive, symmetric and transitive relation

The axiom of extensionality has then two forms

on propositions: (p↔ q)→ Ido p q

on functions: (∀x : A. IdB (f x) (g x))→ IdA→B f g

9



Equality and dependent type theory

Equality in Church’s formulation

Axiomatic presentation

ax1 : ∀x : A. IdA x x

ax2 : IdA a0 a1 → P (a0)→ P (a1)

ax3 : (p↔ q)→ Ido p q

ax4 : (∀x : A. IdB (f x) (g x))→ IdA→B f g

10



Equality and dependent type theory

Dependent Type Theory

Curry-Howard, N. de Bruijn, D. Scott, P. Martin-Löf

Add to simple type theory the notion of dependent type B(x) type for x : A∏
x:A

B(x) type of functions/sections f with f a : B(a) if a : A

∑
x:A

B(x) type of pairs a, b with a : A and b : B(a)

Natural set theoretic interpretation

11



Equality and dependent type theory

Proposition as Types

If B(x) = B does not depend on x : A∏
x:A

B(x) is written A→ B represents both function type and implication

∑
x:A

B(x) is written A×B represents both cartesian product and conjunction

12



Equality and dependent type theory

Proposition as Types

∏
x:A

B(x) represents

-universal quantification and

-the set of sections of the family B(x)

13



Equality and dependent type theory

Proposition as Types

∑
x:A

B(x) represents

-the fiber space over A defined by the family B(x) and

-the set {x : A | B(x)} and

-existential quantification (∃x : A)B(x)

14



Equality and dependent type theory

Universe

Martin-Löf (1972) introduces the notion of universe U , type of “small” types

U can be thought of both as a type of types and as a type of propositions

Predicative system∑
X:U

X × (X → X) or
∏
X:U

(X → X) are large types and not of type U

∑
X:U

X × (X → X)

type of all structures with one constant and one unary operation

15



Equality and dependent type theory

Some Notations

A→ B → C for A→ (B → C)

λx y z.t for λxλyλz.t∏
x0 x1:A

B(x0, x1) for
∏
x0:A

∏
x1:A

B(x0, x1)

16



Equality and dependent type theory

Dependent Type Theory

To summarize: extension of Gödel’s system T with∏
x:A

B(x) and
∑
x:A

B(x)

A type of small types U (closed under products and sums)

N0, N1, N2, N : U

Terms: λ-terms extended with constants 0 : N and x+ 1 : N [x : N ] and

natrec : P (0)→ (
∏
x:N

P (x)→ P (x+ 1))→
∏
x:N

P (x)

natrec a f 0 = a and natrec a f (n+ 1) = f n (natrec a f n)

17



Equality and dependent type theory

Dependent Type Theory

Uniform foundation for logic and type theory: True = Provable = Inhabited

(In Church’s type theory, one needs to add logical rules to the type structure)

For instance∏
A B:U

(A→ B → A)

is true because it is inhabited by λA B x y. x

A : U, B : U ` λx y. x : A→ B → A

A : U, B : U, x : A, y : B ` x : A

18



Equality and dependent type theory

Inductive definitions

N, N0, N1, N2

W A B well-founded tree types

We work in the fragment of type theory with no identity type

19



Equality and dependent type theory

Equality in Dependent Type Theory

We follow an axiomatic approach: what should be the property of equality?

We should have a type of equality proofs IdA a0 a1 if A type and a0 a1 : A

We write α, β, . . . equality proofs

Some axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1) given B(x) type over x : A

We have b · α : B(a1) if b : B(a0) and α : IdA a0 a1

20



Equality and dependent type theory

Equality as Path

We think of a type A as a space

A proof α : IdA a0 a1 is thought of as a path between a0 and a1

The operation b · α : B(a1) for b : B(a0) corresponds then to the path lifting
property

(For a covering space, this lifting property provides a bijection between two
fibers of two connected points)

We expect to have IdB(a0) (b · 1a0) b

21



Equality and dependent type theory

Equality as Path

3 axioms so far

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

22



Equality and dependent type theory

Contractible Spaces

If A is a type we define a new type iscontr A to be
∑
a:A

∏
x:A

IdA a x

This means that A has exactly one element

In term of space, A is contractible

The justification of this last point is subtle: iscontr A seems at first to only
say that A is inhabited and (path) connected

23



Equality and dependent type theory

A further axiom

(J.P.Serre) when I was working on homotopy groups (around 1950), I
convinced myself that, for a space X, there should exist a fibre space E, with
base X, which is contractible; such a space would allow me (using Leray’s
methods) to do lots of computations on homotopy groups. . . But how to find
it? It took me several weeks (a very long time, at the age I was then) to realize
that the space of “paths” on X had all the necessary properties-if only I dared
call it a “fiber space”. This was the starting point of the loop space method in
algebraic topology.

(Interview in the Matematical Intelligencer, 1986)

24



Equality and dependent type theory

A further axiom

Given a point a in X, J.P. Serre was considering the space E of paths α from
a to another point x of A, with the map E → A, α 7−→ x

E is contractible, and we have a contractible fibre space E with base X

In type theory, this translates to

For a : X, the type E =
∑
x:X

IdA a x should be contractible

Any element (x, α) : E is equal to (a, 1a)

25



Equality and dependent type theory

Equality as Path

4 axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

ax4 : iscontr (
∑
x:A

IdA a x)

26



Equality and dependent type theory

Equivalent formulation

introduction rule 1a : IdA a a

elimination rule: given C(x, α) for x : A and α : IdA a x then we have

elim : C(a, 1a)→
∏
x:A

∏
α:IdA a x

C(x, α)

(C. Paulin’s formulation of equality in type theory)

“computation” rule: IdC(a,1a) (elim c a 1a) c for any c : C(a, 1a)

Dependent type version of IdA a x→ P (a)→ P (x)

27



Equality and dependent type theory

Equivalent formulation

introduction rule 1a : IdA a a

elimination rule: given C(x0, x1, α) for x0 x1 : A and α : IdA x0 x1 we have

J : (
∏
x:A

C(x, x, 1x))→
∏

x0 x1:A

∏
α:IdA x0 x1

C(x0, x1, α)

“computation” rule: IdC(x,x,1x) (J d x x 1x) (d x) for any d :
∏
x:A

C(x, x, 1x)

This is P. Martin-Löf’s formulation of equality in type theory

It expresses in type theory that IdA is the least reflexive relation on A

28



Equality and dependent type theory

Consequences of these axioms

All these different formulations are equivalent axiom systems (proved formally
in type theory)

Given these axioms any type has automatically a groupoid structure

Proofs-as-programs version of the fact that equality is symmetric and transitive

Any function f : A→ B defines a functor

Hofmann-Streicher 1992

29



Equality and dependent type theory

Equality as Path

Most topological intuitions have a direct formal expression in type theory, e.g.

for any type X and a : X the loop space Ω1(X, a) = IdX a a has a group
structure

Ω2(X, a) = Ω1(IdX a a, 1a), . . .

30



Equality and dependent type theory

Equality as Path

We have (proved formally)

Proposition: (Čech, 1932) Ωn(X, a) is commutative for n > 2

This is a corollary of the following fact.

Proposition: If X with a binary operation and an element e : X which is
both a left and right unit for this operation then the group Ω1(X, e) = IdX e e is
commutative

31



Equality and dependent type theory

Equality as Path

Warning! Our statement is actually different from the usual statement

Ω1(X, a) is defined as a space, which may have a complex equality

To get the usual statement, we would have to consider the set (as defined
later) π1(X,x) associated to it

32



Equality and dependent type theory

Axiom of extensionality

The usual formulation of this axiom is, with F =
∏
x:A

B(x)

(
∏
x:A

IdB(x) (f x) (g x)))→ IdF f g

(V. Voevodsky) This is equivalent to

A product of contractible types is contractible

(
∏
x:A

iscontr (B(x))) → iscontr (
∏
x:A

B(x))

33



Equality and dependent type theory

Equality as Path

5 axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

ax4 : iscontr (
∑
x:A

IdA a x)

ax5 : (
∏
x:A

iscontr (B(x))) → iscontr (
∏
x:A

B(x))

34



Equality and dependent type theory

Stratification of types

A is of h-level 0 iff A is contractible

A is of h-level 1 iff IdA a0 a1 is contractible for any a0 a1 : A

A is a proposition iff A is of h-level 1

A is of h-level 2 iff IdA a0 a1 is a proposition for any a0 a1 : A

A is a set iff A is of h-level 2

. . .

35



Equality and dependent type theory

Stratification of types

These definitions can be internalised in type theory

isprop A =
∏

x0 x1:A

iscontr (IdA x0 x1)

isset A =
∏

x0 x1:A

isprop (IdA x0 x1)

There is no “global” type of all propositions like in an impredicative framework
or a type of all sets

36



Equality and dependent type theory

Extensionality and impredicativity

The extensionality axiom implies

-a product of propositions is always a proposition∏
x:A

isprop (B(x)) → isprop (
∏
x:A

B(x))

-a product of sets is always a set∏
x:A

isset (B(x)) → isset (
∏
x:A

B(x))

The first implication confirms Russell’s remark that the principle of
extensionality can replace in some cases the axiom of reducibility

37



Equality and dependent type theory

Propositions

If we have isprop (B(x)) for all x : A then the canonical projection

(
∑
x:A

B(x))→ A

is a mono, and we can think of
∑
x:A

B(x) as the subset of elements in A

satisfying the property B(x)

38



Equality and dependent type theory

Unique Existence

iscontr(
∑
x:A

B(x)) a generalisation of unique existence ∃!x : A.B(x)

If B(x) is a proposition, iscontr(
∑
x:A

B(x)) reduces to unique existence on x

More refined in general than to state that only one element in A satisfies B(x)

We always have iscontr(
∑
x:A

IdA a x) but IdA a x may not be a proposition

39



Equality and dependent type theory

Hedberg’s Theorem

Define isdec A to be
∏

x0 x1:A

IdA x0 x1 + ¬ (IdA x0 x1)

¬ C denotes C → N0, where N0 is the empty type

M. Hedberg noticed (1995) that we have

isdec A→ isset A

In particular N the type of natural numbers is decidable

So N is a set but it is not a proposition (since ¬ (IdN 0 1) is inhabited)

40



Equality and dependent type theory

Other properties

isprop N0, iscontr N1, isset N2

¬ A→ isprop A

isprop (iscontr A) for all type A

isprop (isprop A) for all type A

isprop (isset A) for all type A

isprop A iff
∏

x0 x1:A

iscontr(IdA x0 x1) iff
∏

x0 x1:A

IdA x0 x1

41



Equality and dependent type theory

Axiom of extensionality

In Church’s type theory (p↔ q)→ Ido p q

What about adding as an axiom (X ↔ Y )→ IdU X Y ?

S. Berardi noticed that this is contradictory (with dependent type theory):

If X inhabited X is logically equivalent to X → X

We would have IdU X (X → X) and then X and X → X are isomorphic

X model of λ-calculus, hence any map on X has a fixed-point

and we get a contradiction if X = N or X = N2

42



Equality and dependent type theory

Axiom of extensionality

In ordinary type theory, one can notice directly that if X is inhabited then X
is logically equivalent to N1 and hence X is a singleton

43



Equality and dependent type theory

Axiom of extensionality

So we need a more subtle formulation

Define Isom X Y to be∑
f :X→Y

∑
g:Y→X

(
∏
x:X

IdX (g (f x)) x)× (
∏
y:Y

IdY (f (g y)) y)

Extensionality axiom for small types (Hofmann-Streicher 1996)

Isom X Y → IdU X Y

44



Equality and dependent type theory

Other properties

A consequence of this axiom is

¬(isset U)

Indeed, IdU N2 N2 has two distinct elements

We have

If isset A and
∏
x:A

isset (B(x)) then isset (
∑
x:A

B(x))

isset A is not connected to the size of A but with the complexity of the
equality on A

45



Equality and dependent type theory

Equality as Path

6 axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

ax4 : iscontr (
∑
x:A

IdA a x)

ax5 : (
∏
x:A

iscontr (B(x))) → iscontr (
∏
x:A

B(x))

ax6 : Isom X Y → IdU X Y

46



Equality and dependent type theory

Univalence Axiom

For f : Y → X and x0 : X, the fiber of f above x0 is

f−1(x0) =def

∑
y:Y

IdX x0 (f y)

∑
x:X

f−1(x) =
∑
x:X

∑
y:Y

IdX x (f y) is the graph of f

Any map f : Y → X is isomorphic to a fibration (
∑
x:X

f−1(x))→ X

47



Equality and dependent type theory

Univalence Axiom

We define what should be a “path” between two types X and Y

If f : X → Y we define when f is a weak equivalence

isweq f =def

∏
y:Y

iscontr (f−1(y))

Theorem: To be a weak equivalence is always a proposition, i.e.
isprop (isweq f)

We define Weq X Y to be
∑

f :X→Y

isweq f

48



Equality and dependent type theory

Univalence Axiom

Let isiso f be∑
g:Y→X

(
∏
x:X

IdX (g (f x)) x)× (
∏
y:Y

IdY (f (g y)) y)

isiso f ↔ isweq f

However isweq f is a always a proposition while

isiso f may not be a proposition in general

49



Equality and dependent type theory

Univalence Axiom

Warning! Weak equivalence is stronger than logical equivalence, e.g.∏
x:A

∑
y:B

R(x, y) and
∑

f :A→B

∏
x:A

R(x, f x)

are weakly equivalent, since they are isomorphic

This is more precise than only to state logical equivalence

50



Equality and dependent type theory

Univalence Axiom

Clearly we have Weq X X, because the identity map is a weak equivalence

Hence we have a map

IdU X Y →Weq X Y

The Univalence Axiom states that this map is a weak equivalence

V. Voevodsky has shown that this implies functional extensionality

This axiom does not hold for the set-theoretic interpretation of type theory

51



Equality and dependent type theory

Equality as Path

6 axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

ax4 : iscontr (
∑
x:A

IdA a x)

ax5 : (
∏
x:A

iscontr (B(x))) → iscontr (
∏
x:A

B(x))

ax6 : The canonical map IdU X Y → Weq X Y is a weak equivalence

52



Equality and dependent type theory

Invariance under isomorphisms

We get a formalism where two isomorphic mathematical structures are equal

For instance on the type S =
∑
X:U

X × (X → X) we have (proved formally)

IdS (X, a, f) (Y, b, g) iff the structures (X, a, f) and (Y, b, g) are isomorphic

This invariance property does not hold for set theory

Is this theory consistent?

53



Equality and dependent type theory

Model

Since the paper

D. Kan A combinatorial definition of homotopy groups, Annals of Mathematics,
1958, 67, 282-312

a way to represent spaces is to use (Kan) simplicial sets

This model satisfies (and suggested?) the univalence axiom

54



Equality and dependent type theory

Part 2: Computational interpretation

We have listed axiomatically some properties that the equality should have

All other notions in type theory are motivated/justified by computation rules

For instance

natrec : P (0)→ (
∏
x:N

P (x)→ P (x+ 1))→
∏
x:N

P (x)

is justified by natrec a f 0 = a and natrec a f (n+ 1) = f n (natrec a f n)

(This represents at the same time both induction and recursion)

Can we justify in a similar way these axioms for equality?

55



Equality and dependent type theory

Gandy’s interpretation

On the Axiom of Extensionality

R. Gandy, The Journal of Symbolic Logic, 1956

Interpret extensional type theory in intensional type theory

The intuition is precisely that in λ-calculus a function can only occur in a
proposition through its values in a term (cf. Russell’s formulation of the axiom of
extensionality)

This is only valid for closed λ-terms: if X is a functional variable f does not
appear in X f through its values

56



Equality and dependent type theory

Gandy’s interpretation

The second part of the paper shows that a similar interpretation works for set
theory

The paper is one of the first instance of the logical relation technique

We need to extend this technique to dependent types

57



Equality and dependent type theory

Gandy’s interpretation

Our current work is to adapt Gandy’s interpretation to dependent types

Intuitively: we know what the equality should be on all base types (on the
universe U it should be weak equivalence) and so we can define equality on each
type by induction on the types

This is similar to the work on observational type theory (Thorsten Altenkirch,
C. McBride) and on two-level type theory (M. Maietti, G, Sambin) but generalizes
them to the case of computationally relevant identity proofs

This was also suggested by D. Turner (1989) for functional equality

58



Equality and dependent type theory

Interpretation of equality

At type N0, N1 we define IdN1 x y = N1

At type N we define IdN 0 0 = N1 and IdN (x+ 1) 0 = IdN 0 (y + 1) = N0

and IdN (x+ 1) (y + 1) = IdN x y

For universe, we should say that IdU A0 A1 is Weq A0 A1

59



Equality and dependent type theory

Interpretation of equality

For sum types, we have A : U and F : A→ U and we can define if S = Σ A F

IdS (a0, b0) (a1, b1) =
∑

α:IdA a0 a1

IdF a1 (F (α) b0) b1

For product types, if P = Π A F

IdP f0 f1 =
∏
x:A

IdF x (f0 x) (f1 x)

So we have a recursive structure

60



Equality and dependent type theory

Interpretation of equality

For instance the fact that all singleton types
∑
x:A

IdA a x are contractible can

be checked by induction on A

The problem is to build a model of type theory, and the main problem is to
validate the rule

Γ ` t : A A = B

Γ ` t : B

61



Equality and dependent type theory

Logical relation (Gandy)

A model of type theory where an element a : A is interpreted by a0 a1 : A
and a proof that a0 and a1 are related

The relation is defined by induction on A: for A = o the relation is logical
equivalence and for function types A→ B we have IdA→B f0 f1 iff

IdA a0 a1 → IdB (f0 a0) (f1 a1)

62



Equality and dependent type theory

Logical relation with dependent types

We define EQ A0 A1 and if α : EQ A0 A1 a relation EQ α a0 a1 for a0 : A0

and a1 : A1

This relation is defined in an inductive-recursive way

We define by recursion A′ : EQ A A and IdA is the relation EQA′

The base case is that any map α : A0 → A1 which is a weak equivalence
determine a proof of EQ A0 A1 and EQα a0 a1 is then IdA1 (α a0) a1

63



Equality and dependent type theory

Logical relation with dependent types

If we have α : EQ A0 A1 and β(ω) : EQ (F0 a0) (F1 a1) we introduce
Σ α β : EQ S0 S1 where Si = Σ Ai Fi and

EQΣ α β (a0, b0) (a1, b1) = (Σ ω : EQα a0 a1) EQβ(ω) b0 b1

64



Equality and dependent type theory

Logical relation with dependent types

If we have α : EQ A0 A1 and β(ω) : EQ (F0 a0) (F1 a1) we introduce
Π α β : EQ P0 P1 where Pi = Σ Ai Fi and

EQΠ α β f0 f1 = (Π ω : EQα a0 a1) EQβ(ω) (f0 a0) (f1 a1)

65



Equality and dependent type theory

Logical relation with dependent types

In a way similar to dependent sums we define IdΓ σ0 σ1 by

IdΓ.A (σ0, a0) (σ1, a1) = (Σ α : IdΓ σ0 σ1)EQAα a0 a1

and we have if Γ ` A and α : IdΓ σ0 σ1 then Aα : EQ Aσ0 Aσ1

If Γ ` t : A we have tα : EQAα tσ0 tσ1

What is important is that we have Aα = Bα if Γ ` A = B

66



Equality and dependent type theory

Logical relation with dependent types

Using such a logical relation we solve the problem with the conversion rule

Γ ` t : A A = B

Γ ` t : B

Also, any f : A0 → A1 which is a weak equivalence (which has an homotopic
inverse) gives a proof of EQ A0 A1; this is the base case of the inductively defined
relation EQ

67



Equality and dependent type theory

Logical relation with dependent types

What is lacking at this point is the converse: to any proof α : EQ A0 A1

should correspond two maps α+ : A0 → A1 and α− : A1 → A0 such that
EQα a0 a1 is equivalent to IdA1 (α+ a0) a1 and equivalent to IdA0 a0 (α− a1)

68



Equality and dependent type theory

Logical relation with dependent types

Some special case

For instance the case where U contains N, N0, N1, N2 and is closed only by
+ and →

If A0 and A1 are in U we can define directly α+, α− for any α : EQ A0 A1

by induction on α

Using this technique, it can be shown that any term F : U → U defines a
functor

69



Equality and dependent type theory

Logical relation with dependent types

We can then try to analyze the equality on types such as
∑
X:U

X × (X → X)

and
∏
X:U

(X → X)

70



Equality and dependent type theory

Implementation

Nils Anders Danielsson has proved formally that most properties proved by
V. Voevodsky can be proved from a purely axiomatic presentation (no new
computational rules)

This fact has been used crucially in this presentation

See www.cse.chalmers.se/˜nad/listings/equality/README.html

71


