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Introduction

The goal of this note is to give an elementary definition of the divisor class group of an algebraic
curve. We also explicitate in some special case Serre’s duality Theorem. (This summarises
discussions with Henri Lombardi, Claude Quitté and Peter Schuster.)

1 Space of valuations

If L is a field and R a subring of L, we define the lattice Val(L,R) as the lattice generated by
symbols VR(s) for s in L with the relations

1. 1 = VR(r) if r is in R

2. VR(s) ∧ VR(t) 6 VR(s + t)

3. VR(s) ∧ VR(t) 6 VR(st)

4. 1 = VR(s) ∨ VR(s−1) if s 6= 0

Contrary to the Zariski lattice, we cannot in general simplify an expression VR(s1) ∧ . . . ∧
V (sn) to a single basic open VR(s). Two exceptions can be noticed. We always have VR(r−1

1 )∧
VR(r−1

2 ) = VR((r1r2)−1) if r1, r2 non zero elements in R. For any non zero s in L we have

VR(s) ∧ VR(s−1) = VR(s + s−1)

Another useful general relation is

VR((s1 + s2)−1) 6 VR(s−1
1 ) ∨ VR(s−1

2 )

The following Nullstellensatz result is proved by algebraic elimination.

Theorem 1.1 We have 1 = VR(s/t1) ∨ . . . ∨ VR(s/tn) iff s is integral over the ideal generated
by t1, . . . , tn.

That s is integral over the ideal I generated by t1, . . . , tn means that we can find a relation
sm + a1s

m−1 + . . . + am = 0 with a1 in I, . . ., am in Im.
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2 Zariski lattice

If R is an arbitrary ring, we define, following Joyal [11] the lattice Zar(R) as the lattice generated
by symbols D(a) for a in R with the relations

1. 1 = D(1) and 0 = D(0)

2. D(ab) = D(a) ∧D(b)

3. D(a + b) 6 D(a) ∨D(b)

Any element of Zar(R) can be written on the form 0, 1 or D(a1, . . . , an) = D(a1)∨ . . . D(an).
In general we cannot simplify an union. However we can notice the general identity D(a, b) =
D(a + b, ab), from which follows the fact that D(a, b) = D(a + b) if D(ab) = 0.

Theorem 2.1 We have D(a) 6 D(b1, . . . , bm) iff a belongs to the radical of the ideal generated
by b1, . . . , bm.

If now R is an integral domain and L its field of fractions, we have two lattices associated
to R. By using the universal property of Val(L,R) one can define the center map

φ : Zar(R) → Val(L,R), D(r) 7−→ VR(1/r)

One can show that the center map is always injective and has the going-down property,
using Theorem 1.1 in an essential way.

Remark: Skolem found a way to prove the disjunction property for intuitionistic logic
without using cut-elimination. (This is called “sconing”.) Can one use similar techniques to
prove injectivity of the center map without going via cut-elimination?

3 Prüfer domain

A domain R is Prüfer iff it is locally at each prime a valuation domain. This can be captured
by a simple first-order (coherent) condition [4]

∀a b. ∃u v w. au = bv ∧ b(1− u) = aw

If we write s = a/b and we have au = bv and b(1 − u) = aw then we can check that we have
VR(s) = VR(1/u) ∨ VR(1/w) in Val(L,R).

Proposition 3.1 If R is a Prüfer domain, the center map is bijective. If s = a/b is in L the
inverse image of VR(s) is D(u, w) such that we have au = bv and b(1− u) = aw.

Since we know that the center map is injective, it is enough to show that it is surjective and
this follows from the equality VR(s) = VR(1/u) ∨ VR(1/w).

The fact that the center map is bijective can be proved without cut-elimination. For instance,
notice that this inverse map is well-defined, for if we have also au1 = bv1 and b(1− u1) = aw1

then we have D(u, w) = D(u1, w1) in Zar(R). Indeed we have u1(1 − u) = wv1 and hence
D(u1) 6 D(u,w) and (1− u1)w = (1− u)w1 and hence D(w1) 6 D(u, w).

Conversely, it can be shown that if R is integrally closed and the center map is bijective
then R is a Prüfer domain.

It is clear from the definition that if S is any domain containing R and inside L then S is
also a Prüfer domain.

The following proposition can be proved by reasoning locally at each prime (and a pointfree
version of this argument is possible).
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Proposition 3.2 If R is a Prüfer domain, L its field of fractions and we consider s, t1, . . . , tn
in L then s is integral over the ideal generated by t1, . . . , tn iff s belongs to this ideal.

This means that, if t1, . . . , tn are non zero, then s belongs to the ideal generated by t1, . . . , tn
iff we have 1 = VR(s/t1) ∨ . . . VR(s/tn) in Val(L,R).

Here is a simple application.

Corollary 3.3 Let I1, I2 be two finitely generated fractional ideals over R and s any non zero
element of S. Then I1 = I2 iff I1R[s] = I2R[s] and I1R[1/s] = I2R[1/s].

Proof. We show that x belongs to I if it belongs to IR[s] and IR[1/s]. Let t1, . . . , tn be
generators of I. By Proposition 3.2 we have

1 = VR[s](x/t1) ∨ . . . ∨ VR[s](x/tn), 1 = VR[1/s](x/t1) ∨ . . . ∨ VR[1/s](x/tn)

and hence

VR(s) 6 VR(x/t1) ∨ . . . ∨ VR(x/tn), VR(1/s) 6 VR(x/t1) ∨ . . . ∨ VR(x/tn)

and hence, since 1 = VR(s) ∨ VR(1/s) we get VR(x/t1) ∨ . . . ∨ VR(x/tn)

To any Prüfer domain R we can associate a lattice group Div(R). The elements of Div(R) are
non zero finitely generated fractional ideals. The group operation is the product of ideals. The
order is the reverse of the inclusion order. The neutral element is the unit ideal R. The meet
operation is the sum of ideals. The fact that it is a lattice group is proved in [4]. A consequence
of this is that finitely generated ideals form a lattice, which is furthermore distributive.

If s is non zero we have two lattice maps Div(R) → Div(R[s]) and Div(R) → Div(R[1/s]).
Corollary 3.3 is complemented by the following glueing property.

Corollary 3.4 If I in Div(R[s]) and J in Div(R[1/s]) are such that IR[s, 1/s] = JR[s, 1/s] then
there exists K (unique) in Div(R) such that KR[s] = I and KR[1/s] = J .

The following result has a simple constructive proof. We recall that a primitive polynomial
in R[X] is a polynomial a0 + . . . + anXn such that 1 = D(a0, . . . , an).

Proposition 3.5 If R is integrally closed R is a Prüfer domain iff any s in L is the root of a
primitive polynomial in R[X].

Corollary 3.6 If L is a field containing a Bezout domain S and R the integral closure of S in
L then R is a Prüfer domain.

4 Algebraic curves

An algebraic curve over Q is an algebraic extension L of the field of rational functions Q(x). For
instance we can take y2 = 1−x4 but also z2 +x2 +z2x2 = 1 or y3 +x3 = xy or y3 +x3y+x = 0.

If p is an element of L we have an polynomial relation f(p, x) = 0. We can then decide from
this relation if p is algebraic over Q (in which case p is called a constant of L) or x is algebraic
over Q(p) (in which case p is called a parameter of L).

To this algebraic extension we associate the lattice X = Val(L, Q). We write V (s) instead
of VQ(s).

We associate various sheaves over the space X.
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The structure sheaf O is defined by taking O(v) to be the ring of elements s such that v 6
V (s) in Val(L, Q). In particularO(V (p)) is the integral closure of Q[p]. If u1, . . . , un are elements
of L we write E(u1, . . . , up) the integral closure of Q[u1, . . . , un] so that O(V (u1) ∧ . . . V (un))
is E(u1, . . . , un).

Another sheaf is the sheaf of holomorphic differentials. If p is a parameter of L then E(p)
is a Q algebra and we define Ω(V (p)) to be the E(p) module ΩE(p),Q.

In good cases this should be a projective module of rank 1. For instance, for y2 = 1−x4 we
get the module with generators dx, dy and relation

ydy − 2x3dx = 0

which is a projective module of rank 1 since we have the relation yy + (−2x3)x/2 = 1.
In general if L is defined by the equation χ(x, y) = 0 then we get the module with generators

dx, dy and the equation is χ′
xdx + χ′

ydy = 0. The condition is thus that we have <χ′
x, χ′

y> = 1
in E(x).

If we assume that we have a trace operation tr : L → Q(x) then an equivalent definition of
Ω(V (x)) is to take the ideal of elements f in L such that tr(fa) ∈ Q[x] for all a in E(x). A
global holomorphic differential is then given by an element f in L such that tr(fa) ∈ Q[x] for
all a in E(x) and tr(−fx−2b) ∈ Q[1/x] for all b in E(1/x). The coefficient x−2 comes from the
equality fdx = −fx−2d(1/x).

Remark: We have to find the right hypotheses so that the sheaf of holomorphic differentials
is indeed a global projective module of rank 1 and so that we can show that the two definitions
coincide.

The second definition of Ω(V (x)) is convenient for computation once we know a basis of
E(x) over Q[x]. For instance, in the example y2 = 1− x4, we have that 1, y is a basis of E(x)
over Q[x]. It follows that fdx is in Ω(V (x)) iff tr(f) and tr(fy) are in Q[x]. Since we can write
f = α + yβ with α and β in Q(x), we get that α is in Q[x] and y2β is in Q[x]. In this way we
get that Ω(V (x)) is the E(x) module generated by 1 and 1/y. Similarly, if we take u = 1/x and
v = y/x2 we have v2 = u4 − 1 and Ω(V (u)) is the E(u) module generated by 1 and 1/v.

Notice that since yy + (−2x3)x/2 = 1 we have dx/y = dy/(−2x3) = ydx + x/2dy which
shows that dx/y is holomorphic over the open V (x).

Hence a global holomorphic differential is of the form r1dx/y = −r1du/v for some rational
r1.

We can check Serre’s duality in the examples. For L defined by the equation y2 = 1 − x4

the pairing map consists in taking an element of H1(X,O) which is an element g of E(x +
x−1)/E(x) ⊕ E(x−1), thus of the form r0yx−1 with an element fdx of H0(X, Ω) hence of the
form r1y

−1dx. One can guess that the pairing map should be in this case < r0y/x, r1/y >= r0r1.

5 Divisor class group

A global divisor on X can be defined as a pair of elements I in Div(E(x)) and J in Div(E(1/x))
such that IE(x + 1/x) = JE(x + 1/x).

The following seems to provide a good concrete description of global divisors. A local divisor
is given by a finite sequence of non zero elements of L. If A,B are such sequences we introduce
the notation A = B : E(u1, . . . , un) to mean that we have AE(u1, . . . , un) = BE(u1, . . . , un).
A global divisor consists in giving a collection Av of finite sequences for each non trivial basic
open v of X in such a way that Av = Av′ : O(v ∧ v′) for each v, v′. It is equivalent to give Ax

and A1/x in such a way that Ax = A1/x : E(x, 1/x) for one parameter x.
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Remark: Is this valid? This would mean that if we have a Prüfer domain R and two finite
sequences A,B such that AR[s, 1/s] = BR[s, 1/s] then we can find C such that CR[s] = AR[s]
and CR[1/s] = BR[1/s]. I will see if one can find this in [4].
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