
Variation on Cubical sets

August 31, 2014

Introduction

In the model presented in [1, 4] a type is interpreted by a nominal set A equipped with two “face”
operations: if u : A and i is a symbol we can form u(i = 0) : A(i = 0) and u(i = 1) : A(i = 1) elements
independent of i. The unit interval is represented by the nominal set I, whose elements are 0, 1 and the
symbols. The set I however does not satisfy the Kan filling condition.

In this model, if A represents a type, the path space of A is represented by the affine exponential
I→ ∗A, which is adjoint to the separated product B ∗ I with (b, x) ∈ B ∗ I if x is independent of b.

This means in particular that if we have u : I → ∗A then we cannot in general apply u to an arbitrary
symbol x.

For certain operations, e.g. the realization of function extensionality, and of the elimination rule for
the circle, it seems that we get more natural realizers if we could represent the path space as a real
exponential I→ A.

One way to achieve this is to allow for operations on cubes not only swapping but also arbitrary
substitutions.

In term of cubical sets [1], this amounts to work the category of finite sets with maps I → J + 2 (i.e.
the Kleisli category for the monad I + 2). This category appears on pages 47–48 in Pursuing Stacks [3]
as “in a sense, the smallest test category”.

The path space I → A and if t : A and i is a symbol we can form 〈i〉t in I → A which behaves now
as lambda abstraction.

In this note we will adopt the following notations. We will use the letters i, j, k, . . . for sym-
bols/colours/names and p, q, . . . for elements of I (that can be symbols or 0, 1) and b, c . . . for 0, 1.
We write simply ip for the substitution i = p so that u(ip) : A(ip) if u : A. We present a generalization of
the Kan filling operation, which provides a simple interpretation of identity type and dependent product.
We also provide a definition of the Kan filling operation for the universe and give an interpretation of
univalence. Computation rules for identity holds in a definitional way, and this is actually crucial in this
model for the interpretation of univalence.

1 Kan condition

We define a J-tube for a type A and finite set of symbols J to be a family of elements uib : A(ib) for i
inJ with the compatibility condition uib(jc) = ujc(ib).

Given a J-tube ~u we define ~u(ip) (if i is in J then p has to be a symbol).
There are 3 main cases.

1. If i is not in J we write vjb = ujb(ip(jb)) and define ~u(ip) to be ~v

2. If i is in J and p = k is a symbol not in J we define the following J−i, k-tube by taking vjb = ujb(ik)
if j 6= i and vkb = ukb(ib)

3. If i is in J and p = k is a symbol in J we define the following J − i-tube by taking vjb = ujb(ik) if
j 6= i, k and vkb = ukb(ib)

1



We say that a type A satisfies the Kan property if we have the following operation. Given a J-tube
~u a symbol i not in J and a in A(ip) compatible with ~u(ip), i.e. such that a(jb) = ujb(ip(jb)) we can
compute by a given operation

a′ = compiA,~u(p, q, a)

an element a′ in A(iq) also compatible with ~u(iq), so such that a′(jb) = ujb(iq(jb)).
In this operation, we consider i to be bound, so that we have

compiA,~u(p, q, a) = compkA(ik),~u(p, q, a)

if k is fresh, and we can assume w.l.o.g. that p, q, a are independent of i. This operation also has to
satisfy

compiA,~u(p, q, a) = a

if p = q (and if A, ~u are independent of i).
The uniformity condition is that we have

a′(kr) = compiA(kr),~u(kr)(p(kr), q(kr), a(kr))

where k is a symbol 6= i, but which can be in J if r is a symbol.
One key point is that only i is bound in this composition operation; the symbols in J are free. In

particular if j, k are in J then a′(jk) will itself be a composition for the tube ~u(jk). This seems crucial
in order to get a simple computation for the composition of a dependent product.

Intuitively the symbols that appear freely in compiA,~u(p, q, a) are the ones that appear freely in
A, ~u, p, q, a minus i. Intuitionistically if j is independent of in A, ~u, p, q, a or j = i then j is independent
of compiA,~u(p, q, a).

A first application of this operation is to define a generalization of the usual Kan filling operation. If
we have a J-tube ~u and an element a : A(ip) compatible with ~u(ip) then we can find ã : A compatible
with ~u and such that ã(ip) = a. For this, we take ã = a′(ki) for a fresh k with

a′ = compiA,~u(p, k, a)

Notice that we then have, by uniformity condition

ã(iq) = a′(ki)(iq) = a′(kq) = compiA,~u(p, q, a)

We write ã = filliA,~u(p, a)

2 Dependent product

Given a J-tube ~µ for Π A F and λ in Π A(ip) F (ip) we want to define

λ′ = compiΠ A F,~µ(p, q, λ)

We know, and this is a key point, a priori what λ′(kr) should be (defined by a composition or directly
as µkb if k is in J and r = b). So we only have to define what is

λ′ a

for a in A(iq). We first use the operation of Kan completion for A getting an element ã : A such that
ã(iq) = a. We then define vjb = µjb ã(jb) and

λ′ a = compiF ã,~v(p, q, λ ã(ip))

3 Identity type

The Kan operation for identity type is similar to the one in [1].

2



4 Function extensionality

5 Propositional truncation

6 Equivalence

The following property of equivalence σ : A→ B will be crucial.
Let v in B such that there exists a L-tube ~a in A such that vlb = σlbalb. Then there exists a filling a

of ~a (i.e. an element a in A such that a(lb) = alb) and b̃ such that b̃(i1) = b and b̃(i0) = σa.

7 Glueing

We need now to define how to transform an equivalence to an equality of types and what is the composi-
tion for the universe. Both definitions use the same computation, which can be described as a “glueing”
operation. We assume given a type A and for each l in L an equivalence σlb : Tlb → A(lb). We explain

how to define a new type A′ = (~T ,A) such that A′(lb) = Tlb. Intuitively we replace the (lb)-face of A by
Tlb using the equivalence σlb.

An element of A′ is of the form (~t, a) with a in A and tlb in Tlb such that a(lb) = σlbtlb. If all σlb are
identities we have a(lb) = tlb and we identify a with (~t, a) and A′ with A.

8 Transforming an equivalence to an equality

We assume given two types A,B and a colour i and an equivalence σ : A→ B(i0). We explain then how
to define a type E such that E(i0) = A and E(i1) = B. Intuitively we replace the (i0)-face of B by A
using the equivalence σ.

An element of E = (A,iB) is a pair (a,i v) with a : A, v : B and σa = v(i0). We define E(jq) by case
on j. We have E(i0) = A, E(i1) = B(i1) and E(ik) = (A′,k B

′) with B′ = B(ik) and A′ = A(k0) and
σ′ = σ(k0). If j 6= i then E(jq) = (A(jq(i0)),iB(jq)). Similarly we have (a,i v)(i0) = a, (a,i v)(i1) =
v(i1) and (a,i v)(ik) = (a(k0),k v(ik)). If j 6= i then (a,i v)(jq) = (a(jq(i0)),i v(jq)).

We explain now how to define compkE,~u(p, q, (a,i v)) : E(kq) in the case k 6= i and ~u is a J-tube with
i in J . We have a : A(kp(i0)) and v : B(kp) and σ(kp(i0))a = v(i0). We also have

ujb = (ajb,i vjb)

for j 6= i and
ui0 = ai0 : A ui1 = vi1 : B(i1)

We define
a′ = ai0(kq(i0)) : A(kq(i0))

and
v′ = compkB,~v(p, q, v) : B(kq)

where vi0 = σai0 : B(i0).
If i is not in J we define

ai0 = fillkA,~a(p(i0), a)

and
vi1 = fillkB(i1),~v(i1)(p(i1), v(i1))

and add the pair ui0 = ai0, ui1 = vi1 to the J-tube.

We explain how to compute compiE,~u(p, q, e) : E(iq) ~u is a J-tube for E.

We look at the computation of filliE,~u(k, e) : E with e : E(ik) and k is in J . We have e = (a,k v) with
a : A(k0) and v : B(ik) and v(k0) = σ(k0)a. We also have ujb : E(jb) so that we can write

ujb = (ajb,i vjb) ajb : A(jb) vjb : B(jb) vjb(i0) = σ(jb)ajb

3



Since e is compatible with ~u(ik) we should have e(jb) = ujb(ik(jb)) for all j in J and so if k 6= j

a(jb) = ajb(k0) v(jb) = vjb(ik)

and for k = j we have e(kb) = ukb(ib), so that a = ak0 and v(k1) = vk1(i1). We can then form

ṽ = filliB,~v(k, v)

The problem with this element is that ṽ(i0) does not need to be in the image of σ. However all elements
of the boundary

ṽ(i0)(jb) = vjb(i0) = σ(jb)ajb

are in the image of σ(jb). Since σ is an equivalence the face ṽ(i0) is homotopic modulo its boundary to
an element in the image of σ and we perform a glueing replacing the face ṽ(i0) by this image.

The last case is for the computation of of filliE,~u(k, e) : E with e : E(ik) and k is not in J . In this
case we first add k to J . We have to compute akb and vkb.

9 Universe

If we have a J-tube ~T in U and A compatible with ~T (ip), that is A(jb) = Tjb(ip(jb)) for all j in J , we
define

A′ = compi
U,~T

(p, q, A)

to be the type of elements of the form (~u, a) with a : A such that

a(jb) = compiTjb
(q(jb), p(jb), ujb)

If ~T is independent of i then we should have a(jb) = ujb. In this case, we identify a with (~u, a).
The composition operations for A′ are defined in a similar way to the previous ones for equality

(A,iB). The only difference is that for

A′ = compi
U,~T

(p, q, A)

we replace that (jb)-face of A, which is A(jb) = Tjb(ip(jb)), by the face Tjb(iq(jb)). We also have a map

σjb : Tjb(iq(jb))→ Tjb(ip(jb)) v 7−→ compiT (jb)(q(jb), p(jb), v)

and what we need is that this map is an equivalence.

Lemma 9.1 For any type A and colour i the map A(ip)→ A(iq), u 7−→ compiA(p, q, u) is an equivalence.

References

[1] M.Bezem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Preprint, 2013.

[2] M.J. Gabbay and M. Hofmann. Nominal renaming sets. Logic for Programming, Artificial Intelli-
gence, and Reasoning Lecture Notes in Computer Science Volume 5330, 2008, pp 158-173.

[3] A. Grothendieck. Pursuing stacks. Manuscript, 1983.

[4] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets.
Manuscript, 17 September 2013.

4


