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Introduction

In the model presented in [1, 4] a type is interpreted by a nominal set A equipped with two “face”
operations: if u : A and x is a symbol we can form u(x = 0) : A(x = 0) and u(x = 1) : A(x = 1) elements
independent of x. The unit interval is represented by the nominal set I, whose elements are 0, 1 and the
symbols. The set I however does not satisfy the Kan filling condition.

In this model, if A represents a type, the path space of A is represented by the affine exponential
I→ ∗A, which is adjoint to the separated product B ∗ I with (b, x) ∈ B ∗ I if x is independent of b.

This means in particular that if we have u : I → ∗A then we cannot in general apply u to an arbitrary
symbol x.

For certain operations, e.g. the realization of function extensionality, and of the elimination rule for
the circle, it seems that we get more natural realizers if we could represent the path space as a real
exponential I→ A.

One way to achieve this is to allow for operations on cubes not only swapping but also arbitrary
substitutions.

In term of cubical sets [1], this amounts to work the category of finite sets with maps I → J + 2 (i.e.
the Kleisli category for the monad I + 2). This category appears on pages 47–48 in Pursuing Stacks [3]
as “in a sense, the smallest test category”.

The path space I→ A and if t : A and x is a symbol we can form 〈x〉t in I→ A which behaves now
as lambda abstraction.

In this note, we describe a way to define what should be the naturality condition for the Kan filling
operation. We also present a generalization of this Kan filling operation, which provides a simple inter-
pretation of identity type and dependent product. We give also a tentative definition of the Kan filling
operation for the universe. We conjecture that it is possible to extend this interpretation to the fact that
this operation builds types having the Kan property and to an interpretation of the axiom of univalence.

1 Kan condition

A symbol is an elemeny of I distinct from 0, 1.
Like in [1] we define a tube for a type A and symbols x1, . . . , xn to be a family of elements uxib :

A(xi = b) for b = 0, 1 such that the following compatibility condition holds uxib(xj = c) = uxjc(xi = b).
We experiment with the following notation: we write u(xib) for uxib and the compatibility condition

in the form u(xib, xjc) = u(xjc, xib). In general we write w(xb) for w(x = b).
With these notations, a x1, . . . , xn-tube is a family uxib such that uxib : A(xib) and uxib(xjc) =

uxjc(xib) : A(xib, xjc).
Given a x1, . . . , xn-tube ~u we define ~u(xr) where x is a symbol and r an element of I.
There are 3 main cases.
If x is not x1, . . . , xn we write vxib = uxib(xr(xib)) and define ~u(xr) = ~v.
If x = x1 and r = y is a symbol not x1, . . . , xn then we define the following y, x2, . . . , xn-tube. We take

vx1b = ux1b(yb) and vxib = uxib(x1y) if i 6= 1. If r = 0 or r = 1 then ~u(xr) is the x2, . . . , xn tube defined
by taking vxib = uxib(x1r). We then have vxib(xjc) = uxib(x1r)(xjc) = uxjc(x1r)(xib) = vxjc(xib) as
required.

If x = x1 and y = x2 we define the following x2, . . . , xn-tube. We take vx2b = ux1b(x2b) and
vxib = uxib(x1x2) if i 6= 2.
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We then say that A satisfies the Kan property if given another symbol z and given two distinct
elements p and q in I (these elements may be 0, 1 or symbols) and given ωp : A(zp) satisfying ωp(xib) =
u(xib, zpib) where pib = p(xib) we can find an element ωq : A(zq) satisfying ωq(xib) = u(xib, zqib) where
qib = q(xi = b). Furthermore this is obtained by an operation

ωq = compA(p, q, z, ωp, ~u)

In this operation, we consider z to be bound.
In the case where q is a fresh symbol y we can form

fillA(p, z, ωp, ~u) = 〈y〉compA(p, y, z, ωp, ~u)

which behaves like a Kan filling operation.
If n = 0 we write simply compA(p, q, z, ωp) instead of compA(p, q, z, ωp, ~u) where ~u is the empty vector.
We should then explain how to compute ωq(xr) where x is a symbol and r an element of I.
If p(xr) = q(xr) then we should have ωq(xr) = ωp(xr).
Otherwise, let us write p′ = p(xr) and q′ = q(xr) and A′ = A(xr).
We have already defined the tube ~u(xr).
If x = xi and r = 0 or r = 1 then we should have

ωq(xr) = uir(zqir)

If x = xi and r is a symbol or if x is not among x1, . . . , xn we define

ωq(xr) = compA′(p′, q′, z, ωp(xr), ~u(xr))

This covers all cases.

2 Dependent product

The first advantage of this presentation is that the Kan operation for dependent product seems completely
canonical.

We define compΠ A B(p, q, z, λp, ~w) ω by computing

θ = fillA(q, z, ω)

and ωp = θ p and then

compΠ A B(p, q, z, λp, ~w) ω = compB θ(p, q, z, λp ωp, ~v)

where v(xib) = w(xib) (θ z)(xib).

3 Identity type

The Kan operation for identity type is similar to the one in [1].

4 Function extensionality

5 Propositional truncation

6 Universe

We define Aq = compU (p, q, z, Ap, ~B) by defining it to be the type of elements of the form (~v, u) where

u is an element of Ap and vxib is an element of ~B(zq) such that

u(xib) = compBxib
(qib, pib, vxib)
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We define then
(~v, u)(xib) = v(xib)

and if y is a symbol
(~v, u)(xiy) = (~v(xiy), u(xiy))

since this should be an element in compU (p(xiy), q(xiy), z, Ap(xiy), ~C) Finally if y is a symbol distinct
from x1, . . . , xn we define

(~v, u)(yr) = (~v(yr), u(yr))
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