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Introdution

This note presents some remarks onneted to Gentzen's �rst proof of onsisteny of arithmeti,

that was atually never published by Gentzen himself, but instead appeared �rst in a paper of

Bernays [1℄ (but see also [3℄). As emphasized by Bernays, this argument is easier to follow than

the �rst published proof. It an be read diretly as a game-theoreti analysis of the notion of

lassial truth: a formula is lassially true i� there is a winning strategy for a game de�ned by

this formula. This provides a semantis of evidene for lassial �rst-order arithmeti (the term

\semantis of evidene" seems due to B. Constable, see [2℄). Furthermore, Gentzen's proof leads

diretly to the result that an existential statement provable in lassial arithmeti is provable

intuitionistially.

More importantly, when expressed game-theoretially, the dynami aspet of ut-elimination

beomes learer. We believe indeed that the main objet of study here is the analysis of the

possible sequene of moves in the strategies orresponding to lassial proofs.

Suh an analysis suggests strongly that it should be possible to �nd a ut-elimination proof

of a di�erent nature than Gentzen's whih reets and is inspired by this dynami aspet. We

try to motivate this point by presenting suh a proof for uts of a low level of logial omplexity,

and by a onjeture expressing the termination of an internal ommuniation, result that would

re�ne Gentzen's ut-elimination.

We disuss next a onrete example, due to Gabriel Stolzenberg, whih suggests that it

an be omputationally ineÆient to break a multiple ut in its omponent. In the simplest

possible ase that departs from usual ut-elimination, we sketh a way to do this \multiple

ut-elimination." Here also, it is diretly heked that this \protool for multiple uts" works

for uts of low logial omplexity.

At the end of the paper we present an indutive formulation of !-logi, very lose to Tait's

formulation [9℄, whih is readily seen to provide a omputational ontent of lassial arithmetial

truth.

The ontributions of this (preliminary) paper are:

� an \historial" ontribution: we think it will be fair to attribute the result that an exis-

tential statement proved in Peano arithmeti has an intuitionsiti proof at least partially

to Gentzen, sine this is a diret orollary of his �rst proof of normalisation
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we onjeture that it is beause Gentzen's interpretation of a proof was in general a non deterministi

algorithm that his �rst proof was for a while forgotten
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� a formulation of a onjeture that re�nes Gentzen's ut-elimination, with a proof in a

restrited ase (that hopefully will be ompleted for the less preliminary version of this

paper),

� the analysis of a onrete example where it is lear that the \mutiple-onlusion" logi we

manipulate annot be simulated in a funtional way, and so, the disovery of features of

multiple-onlusion logi that are typial of parallel algorithms. We sketh then how to

extend this to a truly parallel ut-elimination for lassial arithmeti.

I would like to thank Gabriel Stolzenberg, Lars Halln�as, Jan Smith, Peter Dybjer, Hugo

Herbelin and Chet Murthy for enjoyable disussions on this topi. Karlis Cerans provided

ruial ritis.

1 A semantis of evidene

We start with a �xed language for arithmeti that ontains (omputable) funtions like addition,

multipliation and (deidable) basi relations, like equality, �; . . .We suppose that whenever an

atomi relation R is in this language we have another one R

�

whih represents its omplement,

in suh a way that (R

�

)

�

is R.

The formulae are built indutively form atomi formulae by onjuntion &, disjuntion _;

universal and existential quanti�ation. The negation '

�

is de�ned indutively from ' as usual.

To simplify things, we will suppose that all formulae are prenex formulae in whih universal

and existential quanti�ations alternate, that is of the form 8x9y8z : : : ; in whih ase we say

that the formula is universal, or of the form 9x8y9z : : : ; in whih ase we say that the formula

is existential. All quanti�er free formulae are deidable.

1.1 The intuitionisti ase

We reall �rst what is a possible game-theoreti semantis of evidene for intuitionisti logi, as

presented for instane in A. Ranta's thesis [8℄. We onsider the following game between Nature

and Myself, whih onsists in makingmoves, that are existential or universal instantiations, in

a given formula '; whih is alled the on�guration of the game. Myself is trying to establish

the truth of formula '; and Nature tries to produe a ounter-example. If the formula is atomi,

then it is deidable: if it is false, Nature wins, otherwise, Myself wins. If the formula is of the

form 9n A[n℄; Myself should produe an integer n

0

and the game goes on with A[n

0

℄. If the

formula is of the form 8n A[n℄; Nature produes an integer n

0

and the game goes on with the

formula A[n

0

℄:

For this game, a formula A an be de�ned to be intuitionistially true i� there is a winning

strategy for Myself.

1.2 Extension to \multigames"

We an ompliate this by allowing the on�guration of the game to be a �nite multiset of

formulae. We write + the addition on multisets. The game stops when at least one formula

is atomi and true, in whih ase Myself wins. In the other ases, Myself should make an

instantiation whenever all formulae are existential, and Nature should make a move whenever
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at least one formula is universal, by instantiating the universal formulae. If all formulae are

atomi and false, then Nature wins.

In this version, there is a winning strategy for Myself for the on�guration of \exluded

middle" A + A

�

; for any formula A : Myself simply waits for Nature to move, and mimis her

move in the dual formula.

For this notion of game however, it is not the ase that there is a winning strategy for

9n8m [A[n℄ _ A

�

[m℄℄ even in the ase where A is deidable. Indeed, suppose that Myself has

suh a winning strategy. Myself has to give a value n

0

for n; beause the formula is existential.

We know that if A[n

0

℄ does not hold, then we have 8m A

�

[m℄: Otherwise, Nature an win by

playing m

0

suh that A[m

0

℄ holds. By heking whether A[n

0

℄ holds or not, we would thus

extrat a deision algorithm for 9n A[n℄ _ 8m A

�

[m℄:

Notie however that, as pointed out already, there is a winning strategy for the \equivalent"

multiset formula 9n A[n℄ + 8m A

�

[m℄ : Myself waits for an instantiation m = m

0

from Nature,

and if A

�

[m

0

℄ does not hold, win by playing n = m

0

(if A

�

[m

0

℄ holds, then Myself wins already

after Nature's move).

1.3 Games with \baktraking"

For getting a notion of game suh that (intuitionisti) winning strategy ontains lassial prov-

ability, we allow baktraking for moves of Myself. This means that Myself an hoose to

ompliate a on�guration M +9n A[n℄ where all the formulae are existential by both instanti-

ating the formula 9n A[n℄ and keeping it, whih produes the on�gurationM+9n A[n℄+A[n

0

℄

where n

0

is the integer hosen by Myself. The moves of Nature are the same as before.

For this notion of game, there is a winning strategy for Myself for the on�guration ' i� '

is lassially true.

Instead of showing formally this equivalene, we will limit ourselves to show that if there is

a winning strategy for the on�guration M + A + A; then there is a winning strategy for the

on�gurationM+A; and if there is a winning strategy for the on�gurationM+A and a winning

strategy for the on�guration N + A

�

; then there is a winning strategy for the on�guration

M +N:

This is enough to show that the notion of truth de�ned by the existene of a winning strategy

has good properties. For instane, if we have a winning strategy for N + A[0℄ and, for all n; a

winning strategy for M + A[n℄

�

+ A[n + 1℄; then we dedue from these two losure properties

that there is a winning strategy for all n for M +N +A[n℄:

The �rst laim is seen by simulating diretly the moves of a strategy for M + A + A by

moves for the on�guration M +A:

The seond laim is more diÆult, and we will present it as the proof of termination of some

internal ommuniations between two players following winnning strategies.

1.4 Two examples

There is now for instane a winning strategy for 9n8m [A[n℄ _ A

�

[m℄℄: Myself hooses any

instantiation for n; for instane n = 0; and keeps the formula, waiting for a m = m

0

given by

Nature. If A

�

[m

0

℄; then Myself wins, and if A[m

0

℄ then Myself hooses n = m

0

for its next

move.
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Another example, whih shows that we annot bound a priori the number of baktraking

in Myself's guess, is the following strategy for the statement

9n8m [f(n) � f(m)℄;

seeing f as an orale. Myself starts by guessing an arbitrary value for n; for instane n = 0;

and allows himself to baktrak. Nature plays then m = u

1

: If f(0) � f(u

1

); Myself wins. If

f(u

1

) < f(0); Myself baktraks and plays n = u

1

; and allows himself to baktrak. Nature

plays then m = u

2

: If f(u

1

) � f(u

2

); Myself wins. Otherwise, Myself baktraks and plays

n = u

2

; and allows himself to baktrak, and so on.

This will stop eventually, beause < is well-founded, but it is not possible to bound a priori

(without knowing anything about f) the number of times that Myself will have to baktrak.

This explanation of lassial truth is inspired by the �rst onsisteny proof for arithmeti

by Gentzen, see [3, 1℄. Note that Bernays, in [1℄, presents this proof using hoie sequenes,

for representing the sequene of moves of Nature. We an use indutive de�nitions instead to

represent the notion of hoie sequene, as done for instane in [6℄.

1.5 The ase of existene statement

Let us look at the speial ase of a winning strategy for a on�guration 9n A[n℄; where A[n℄ is

a (deidable) atomi formula. We see the deision proedure for A[n℄ as an orale. To have a

winning strategy in this ase means that Myself will do a �nite number of wrong guesses for n;

until he eventually �nds a n

0

suh that A[n

0

℄: We an atually suppose that Myself always is

doing some \auto-ensure" by himself, so that he heks internally whether or not his guess is

orret for an existential formula 9n A[n℄; where A is atomi. With this assumption, a winning

strategy for an existene statement is exatly a witness.

We thus get that the result \if an existene statement is provable in lassial �rst-order

arithmeti, then it is provable intuitionistially" follows from the identi�ation of lassial truth

with the existene of a winning strategy.

1.6 Simple baktraking

In all the examples we have presented so far, the baktraking that Myself uses is of a partiular

nature. Myself never hanges his mind about a value he has onsidered as wrong (we will preise

this notion later). We all this behaviour of Myself simple baktraking.

This notion of simple baktraking is interesting beause it does involve baktraking, but

it is however a simple enough behaviour so that we an give a omplete analysis of what is

happening in the ase where all players follow simple baktraking. In partiular, we will be

able to analyse later the ase of multi-uts for simple baktraking, that involves already real

onurreny.

In order to analyse a little more this notion of simple baktraking, we introdue the fol-

lowing notations. In the history of on�gurations of a game whih has M + A as an initial

on�guration, where A is existential, we follow the moves in A by writing A

1

; A

2

; . . . the in-

stantiations of A (due to Myself), and then A

11

; A

21

, . . . the respetive instantiations of these

instantiations (due to Nature), and so on. If a formula B is of the form A

n

1

:::n

p

; or A

�

n

1

:::n

p

; we

say that n

1

: : : n

p

is the index of the formula B; and we write n

1

: : : n

p

= ind(B): We say that
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a sequene n

1

: : : n

p

is a diret extension of a sequene m

1

: : : m

q

i� p = q + 1; and n

i

= n

i

for i < p:

To say that the baktraking is simple for the formula A is to say that one we have

observed the sequene of moves

A; A+A

1

; A+A

11

; A+A

11

+A

2

; : : : ; A+ : : :+A

n

1

:::n

p

; : : :

with p even, then the next move of Myself will be A+ : : :+A

m

1

:::m

q

; where m

1

: : : m

q

is stritly

bigger than n

1

: : : n

p

for the alphabetial ordering on sequene of integers.

This is the ase if the formula A is of the form 9x8y B[x; y℄; where B is atomi, simply

beause in this ase, Myself annot play A

111

: Simple baktraking holds thus when we onsider

formulae of low logial omplexity.

If Myself follows a strategy that uses only simple baktraking for an existential formula A;

then we an represent Myself's moves in A (for a given game against nature) as a sequene of

the form

A; A

1

; A

11

; A

111

; A

1111

; A

112

; A

1121

; A

113

; : : :

Suh a sequene an be read as follows (if the sequene of quanti�ers of A is 9x8y9z8t : : :):

Myself makes a �rst guess x = x

1

about the value of x: Nature then answers y = y

11

: Myself

persists in his hoie by guessing z = z

111

; this hoie being refuted by Nature, who plays

t = t

1111

: At this point, Myself hanges his mind about the hoie of z (he onsiders that

Nature has really refutated it and does not persist in his hoie, leaving the last refutation of

Nature t

1111

without answers). He tries then z = z

112

: This is refuted by Nature who plays

t = t

1121

:

One an well imagine a strategy where Myself hanges his mind also about the fat that he

was wrong. This is a more subtle kind of behaviour.

The analogy with learning theory, that Myself makes suessive guesses aording to the

moves of Nature, seems lear here and should be preised. We will limit ourselves here to point

out this analogy.

It would be nie if we an insure that for all lassially true multiset M; it is possible to

�nd a winning strategy using only simple baktraking. Though we don't have any onrete

ounter-example, we suspet that this is not the ase, sine we don't see how to get a strategy

for the on�guration M + A from a strategy for the on�guration M + A + A if we impose

strategies to use only simple baktraking. Any strategy for M +A+A an be simulated by a

strategy for M +A: Even if for both A; a strategy for M +A+A uses only simple baktraking,

this may not be the ase for the simulated strategy for M +A:

Here is an example of a sequene of move that uses more than simple baktraking:

A; A+A

1

; A+A

11

; A+A

11

+A

2

;

A+A

11

+A

21

; A+A

11

+A

21

+A

111

;

A+A

11

+A

21

+A

1111

; A+A

11

+A

21

+A

1111

+A

211

; : : :

The intuition is that Myself, when he plays A

111

, hanges his mind about his �rst baktraking,

and does not answer to the refutation A

21

of his last play. But when Nature refutes this last

play A

111

by playing A

1111

; Myself hanges his mind again and omes bak to the hoie of

his seond instantiation of A: Myself tries by playing A

211

to refute the previous refutation of

Nature A

21

he had left without answers.
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2 A dynami view of ut-elimination

Let us imagine that we are playing against Nature for a given on�guration. We an see a

strategy for this on�guration as a player we have at our disposition. Eah time Nature plays,

we transmit her move to this player. When all formulae are existential, we wait to see what is

the move of this player on this on�guration. We follow the strategy by opying his move.

With this piture in mind, we an oneive that it takes more or less time for the player

to answer our question. We an onsider a strategy to be total if we are sure that, eventually,

after a �nite amount of time, the player will answer. It is then natural to onsider also partial

strategies, that are like players who stay mute, thinking for a too long time about their next

move.

Given two strategies for M + A and N + A

�

; we show how to build a \partial" strategy

for M +N: The situation is exatly the same as in onurreny theory where partial proesses

appear when we use internal ommuniation: a deadlok due to \in�nite internal hatter" an

happen when we ombine these two strategies. But, and this is what the ut-elimination result

expresses, if both strategies are winning strategies, then we do get a total strategy whih is a

winning strategy.

It seems possible to give a de�nition of this ompound strategy by following Gentzen's

argument. This orresponds to a diret study of the following property of a multiset of formulae

M \there exists a winning strategy for M". One gives a diret indutive de�nition of this

property, and one shows that if both M + A and N + A

�

have this property, then so does

M + N: The argument is a double indution, �rst on the omplexity of the ut-formula, and

then on the proof that the strategies are winning. Suh a proof is presented in the last setion.

If we follow this approah however, it is not so lear what is the \struture" of the algorithm

we get.

It seems muh more interesting to see if a diret termination argument an be given, based

on an analysis of what are the possible interations between two players I and II.

2.1 De�nition of the ompound strategy

Here is an informal desription of how this ompound stategy is built. We assume that Myself

has at his disposition two oplayers I and II: The player I represents a strategy for the game of

on�guration M +A and the player II a strategy for the game of on�guration N +A

�

: Myself

follows then the following protool for the game against Nature of on�guration M +N:

As long as one formula in M or N is universal, Myself waits for an instantiation oming

from Nature. It transmits then this instantiation to the player I or II that is onerned with

it.

After a �nite number of suh moves, both M and N have only existential formulae, so that

Nature is waiting for an existential instantiation by Myself. Myself notied that at least A or

A

�

is existential. Let us say that A is existential. In this ase, Myself asks to the player I what

is his move. Myself knows that I will answer, beause all the formulae in the on�guration of

the player I are existential. There are two ases:

� I instantiates a formula in M; then Myself does the same move and the game goes on,

� I instantiates the formula A: This is the diÆult ase.
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In the seond diÆult ase, Myself has not yet available any play against Nature. Indeed,

Nature does not \see" the formula A and so, annot transmit I's move as in the �rst ase.

There is a simple subase however for whih it is lear what Myself should do: if the player

I instantiates the formula A without keeping it. In this ase, the formula A beomes A

1

; and

Myself transmits this move to the player II: The on�guration of I is then M + A

1

; and the

on�guration of II is N + A

�

1

: The situation is the same as before, exept that Myself is now

waiting for II's move. This \ping-pong" kind of play between I and II (via Myself) goes on

for a �nite amount of time, beause the formula A is �nite.

If during this internal ommuniation, the formula A (resp. A

�

) beomes true, then the

dual formula beomes false, and the game goes on with only the player II (resp. I), sine this

player follows then a winning strategy for N (resp. M), the other player beoming inative. If

both players follow a winning strategy, it is then lear that Myself follows a winning strategy

by opying one of these two players.

The only remaining subase is when Myself gets to a position where, let say, I has a move

in A, but this move is suh that I keeps the formula A (allowing baktraking). In suh a ase,

it is not so lear what Myself an do. Here is a possibility, that we shall analyse (and whih

orresponds to Gentzen's solution).

Myself transmits the move to the player II, the formula A

�

beoming A

�

1

, but also Myself

keeps a opy of the player II in its initial on�guration. The motivation is that Myself does not

know whether or not the hoie of the player I is de�nitive, and so, it makes sure that he an

ontinue in ase of a hange of mind of the player I:

One this is done, the on�guration is almost like the previous subase, exept that Myself

allows I to baktrak in his hoie.

How is the game going on?? Myself asks to the latest opy of the player II; who plays now

with a on�guration N +A

�

1

; what is his move. If this move is in N; it is transmitted to Nature.

If this move is in A

�

1

; Myself proeeds as before, i.e.:

� if this move is without baktraking (II is sure of his guess), then the on�guration of II

beomes N + A

�

11

; and Myself transmits this move to the player I; whose on�guration

beomes M +A+A

11

;

� if this move is with possible baktraking, then Myself does as before. The on�guration

of II beomes N + A

�

1

+ A

�

11

; and Myself transmits this move to the player I; whose

on�guration beomes M + A + A

11

; but Myself also keeps a opy of the player I in his

on�guration M +A+A

1

; in ase of a possible baktraking of II; and so on.

This �nishes the desription of the ut-elimination proess.

A onrete instane of suh a situation is the problem where we have a proof of a �

1

0

statement C by proving C;A

�

and C;A (for instane, C is Littlewood's theorem, and A is

Riemann's hypothesis). This ut-elimination proess, if it terminates, gives a way of omputing

a witness for C from the two given proofs of C;A

�

and C;A:
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2.2 Analysis of the problem of termination

The partial orretness of the ompound strategy desribed in the previous subsetion is lear.

That is, if the players I and II follow a winning strategy for their respetive on�guration, it

is lear that, if a game between Nature and Myself terminates, then Myself wins. However,

it is not lear that the internal moves between the two players I and II terminate. In this

subsetion, we want to analyse the nature of the problem of termination.

First, it is not restritive to assume that both players I and II; when they make a move

in A; are doing an instantiation with possible baktraking. Seond, we an suppose that there

is no moves by I in M and no moves by II in N; so that we an restrit our attention to the

moves in the formula A only. That is, we suppose that we have a (partial) strategy for A and a

(partial) strategy for A

�

; and we analyse what happens if we let the strategy for A play against

the strategy for A

�

. We an then analyse the possible \interation paths": we are sure that we

will observe the moves

A+A

1

; A

�

1

+A

�

11

;

and for the next move, there is a hoie: A+A

11

an beome A+A

11

+A

111

or A+A

11

+A

2

;

and so on.

What we have to show is that if these moves ome from winning strategies, then this

interation path is �nite.

The problem appears then to be the following. We know that a winning strategy (for the

player I) will win against any player that does not baktrak (and hene, in any suh game,

the player I will baktrak only a �nite number of time). We want to generalise this to a play

against a winning strategy (of II), whih may baktrak. It is possible to show that if the

strategy for II batraks only a �nite number of time, then the game will stop (beause we

have then a �nitely branhing tree, whih has �nite branhes). The problem is that, a priori,

the only way to be sure that this will happen is to show that I will baktrak a �nite number

of time. So there is a irularity here.

We an however formulate this problem as a pure problem of termination. The interation

an be represented as a sequene of formulae

B

0

= A

�

; B

1

= A+A

1

; B

2

= A

�

1

+A

�

11

; B

3

= A+A

11

+A

2

; : : :

suh that eah B

k

is a sum of formulae C

1

+ : : :+ C

n

where

1. all C

i

are existential for i < n; and C

n

is universal, we all C

n

the end formula of B

k

;

and we write h(B

k

) = C

n

; t(B

k

) = C

1

+ : : :+ C

n�1

;

2. there is exatly one i < n suh that ind(C

n

) is a diret extension of ind(C

i

): Furthermore,

ind(C

n

) is the least diret extension of � for the lexiographial ordering that does not

our already in B

0

; : : : B

k�1

; we say then that i is answered in B

k

;

3. for eah i < n; the dual C

�

i

appears as the end formula of exatly one B

j

; for one j < k;

4. if i is answered in B

k

; then t(B

k+1

) = t(B

i

) + h(B

k

):
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The formulae B

0

; : : : ; B

k

orresponds to the opies of the players I and II. We all suh a

sequene B

0

; : : : ; B

k

an interation sequene.

The re�nement of Gentzen's ut-elimination is that suh an interation sequene is �nite, if

the players follow a winning strategy. Gentzen's argument (see the last setion) provides only

the existene of a winning strategy, without desribing it. It does seem possible however to use

a similar argument to show that the interation sequene is �nite, as will be shown in the next

version of this paper.

2.3 Total orretness in some restrited ases

A termination argument is readily given if A is of low logial omplexity, for instane of the

form 9x B[x℄; or 9x8y B[x; y℄: This beomes more ompliated in the ase 9x8y9z B[x; y; z℄;

and we leave to the reader an analysis of all possible behaviours of ut-elimination in this ase.

We onjeture the termination of the algorithm in the general ase. We will prove here only

the ase of simple baktraking.

With this added assumption, we use that A is �nite, of depth n; and we remark that

the number of formulae extension of A

n

1

:::n

p

ouring in the interation sequene is �nite, by

indution on n� p:

2.4 No-ounter example interpretation

Another method (maybe inspired by Gentzen's proof) of giving a omputational meaning of

arithmetial truth is the no-ounter example interpretation due to Kreisel. This is desribed

for instane in the introdution of [6℄. One an see the present \interation approah" as an

attempt towards the analysis of a omputation at higher-type, in the spirit of Kleene 78 [5℄.

3 Towards a \symmetri" ut-elimination

We will analyse now a \multiple ut". We will limit ourselves to the ase of a ut of the following

form: we suppose to have a strategy for the games of on�gurations M +A; N +A

�

+B

�

and

L + B; and we try to build from these strategies a strategy for the game of on�guration

M +N + L:

It appears that there is only one hoie if A or B is universal. If both A and B are existential

however, there are several hoies. The main point of this paper is to show that the usual two

hoies: �rst eliminate the ut between M + A and N + A

�

+ B

�

, then between M +N + B

�

and L+ B; or the opposite solution, �rst eliminate the ut between L + B and N + A

�

+ B

�

,

then between L+N +A

�

and M +A; not only lead to distint results in general, but also are

not natural w.r.t. the present game-theoretial analysis of ut-elimination.

3.1 A onrete example

This phenomena is partiularly lear for the following onrete exemple, whih is due to Gabriel

Stolzenberg. It involves a typially lassial lemma: the \in�nite box priniple".

The example is the following. We suppose given as an \orale" a stream of 0 and 1.

Classially, there are in�nitely many 0, or in�nitely many 1. The question is about a possible

omputational meaning of this assertion.

9



Let us represent the stream of 0 and 1 by a parameter f whih is a unary funtion symbol.

We represent a omputational meaning of the in�nite box priniple as a winning strategy for

the game of on�guration

8x

0

9y

0

[x

0

� y

0

& f(y

0

) = 0℄ + 8x

1

9y

1

[x

1

� y

1

& f(y

1

) = 1℄;

that we will write A(0) +A(1): Here is suh a winning strategy: Myself waits for two instantia-

tions x

0

= u

0

and x

1

= u

1

from Nature. When Myself gets these values, he omputes the value

of u =max(u

0

; u

1

) and asks to the orale the value of f(u). If f(u) = 0 Myself wins by playing

y

0

= u and if f(u) = 1; Myself wins by playing y

1

= u:

This interpretation seems very natural.

The question now is to see how to use this \omputational" interpretation to do some

e�etive omputation. Let us analyse a trivial use of this lemma: from the in�nite box priniple,

we dedue that there are at least two 0s or at least two 1s. Indeed, if there are in�nitely many

0, there are two 0s (by piking the �rst two 0s), and similarly in the other ase.

We have so a winning strategy for the on�guration

9a

0

9b

0

[a

0

< b

0

& f(a

0

) = f(b

0

) = 0℄ + 9x

0

8y

0

[y

0

< x

0

_ f(y

0

) = 1℄;

i.e. if there are in�nitely many 0s, then there are two 0s. We will write M(0) + A(0)

�

this

on�guration. and a winning strategy for the on�guration

9a

1

9b

1

[a

1

< b

1

& f(a

1

) = f(b

1

) = 1℄ + 9x

1

8y

1

[y

1

< x

1

_ f(y

1

) = 0℄:

i.e. if there are in�nitely many 1s, then there are two 1s. We will write M(1) + A(1)

�

this

on�guration.

Let us preise this winning strategy for the on�guration M(0) + A(0)

�

: Myself starts by

instantiating x

0

= 0; keeping the formula A(0)

�

: Nature answers then by giving y

0

= u: If we

have u < 0 _ f(u) = 1; then Myself wins. If we have f(u) = 0; then Myself baktraks in

his hoie of x

0

; and hoses now x

0

= u + 1: Nature answers by giving y

0

= v: If we have

v < u+ 1 _ f(v) = 1; then Myself wins. If we have u+ 1 � v and f(v) = 0; then Myself wins

by playing a

0

= u and b

0

= v:

We have now three winning strategies for the respetive on�gurationsM(0)+A(0); A(0)

�

+

A(1)

�

and A(1) +M(1); and we want a winning strategy for the on�guration M(0) +M(1):

Notie indeed that suh a winning strategy will provide us with two 0s or two 1s.

One way to solve this problem is to \put parenthesis". We analyse this way �rst.

3.2 \Usual" ut-elimination is not symmetri

It onsists in reduing the problem of multiple uts to the problem of simple ut. Symbolially,

we want to do

CUT(M(0) +A(0); A(0)

�

+A(1)

�

; A(1) +M(1))

and we do this by doing either

(�) CUT(CUT(M(0) +A(0); A(0)

�

+A(1)

�

); A(1) +M(1))

10



or by doing

(��) CUT(M(0) +A(0);CUT(A(0)

�

+A(1)

�

; A(1) +M(1)));

using the algorithm desribed above.

We will not do it expliitely here, leaving this as an exerise for the reader. The important

points are that

� we do not get the same algorithm doing (*) and doing (**),

� both algorithms (*) and (**) are not symmetri w.r.t. 0/1, that is, they do not provide

the same answer if we interhange 0 and 1 in the values of the orale f:

3.3 A symmetri ut-elimination

It is remarkable that, on this simple example, a way of doing ut-elimination suggested by

\ommon sense", whih is neither (*) nor (**), furnishes an algorithm that is symmetri w.r.t.

0/1.

More generally, in the ase of a ut between A; A

�

+B

�

and B where A and B are existential,

there seems to be a anonial way of doing the ut-elimination in the ase of simple baktraking.

This way di�ers from the one where we put parenthesis in general.

We will analyse this on one possible interation sequene (whih orresponds to one possible

interation sequene for the example desribed above).

Sine A and B are existential, the orresponding strategies guess �rst values for them, with

possible baktraking: A

1

and B

1

: Then, Myself asks what is the move for A

�

1

+B

�

1

: Let say it

is A

�

11

: In this ase, we onsider that the hoie A

1

has been refuted, and Myself transmits this

refutation to the orresponding player. This player an either persist in his hoie playing A

111

;

or hanges his mind, playing A

2

: In this last hoie, sine only simple baktraking is allowed,

Myself an naturally onsider that the hoie A

1

has been de�nitively refuted and will never

ome bak to this hoie again. So, Myself asks what is the move for A

�

2

+ B

�

1

: If the answer

is B

11

; and the move for B

1

+ B

11

is B

2

; it is natural that Myself asks what is the move for

A

�

2

+B

�

2

; and so on.

But this is not what will happen if Myself tries to evaluate

CUT(CUT(A;A

�

+B

�

); B):

For this \protool", Myself asks instead what is the move for A

�

1

+ B

�

2

; forgetting ompletely

what happened about A.

One an generally expet ineÆieny (at least in the ase of simple baktraking) if Myself

follows the protool

CUT(CUT(A;A

�

+B

�

); B):

In this ase indeed, whenever the player assoiated with the formula B tries a new instantiation

B

i

for B; Myself omes bak to the �rst instantiation for A; and asks what is the move for

A

�

1

+B

�

i

:
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Symmetrially, if Myself follow the protool

CUT(A;CUT(A

�

+B

�

; B)):

In this ase, whenever the player assoiated with the formula A tries a new instantiation A

i

for

A; Myself omes bak to the �rst instantiation for B; and asks what is the move for A

�

i

+B

�

1

:

The symmetri protool, whih seems natural, is instead that Myself asks systematially

the move for A

�

i

+B

�

j

where A

i

(resp. B

j

) is the last instantiation of A (resp. B) that has been

played. Furthermore, if Myself follows this protool, then a given game an be analysed as two

sequenes of interation for A and B that are interleaved, hene a diret termination argument.

Notie that this is a new \ternary" way of doing ut-elimination, whih is not reduible to

a ombination of two \binary" uts.

In the ase where A or B is universal, then the \ternary" ut-elimination is equivalent to a

ombination of \two" uts (exept of doing less opies.) This is what happened, in a iterated

way, with the ut-elimination proedure presented above ompared to Gentzen's ut-elimination.

This analysis an be extended to the ase of a \multi-ut" A; A

�

+ B

�

; B; with A; B of

arbitrary omplexity, but the players follow a strategy of simple baktraking.

4 An indutive presentation of !-logi

For sake of omparison, we reformulate usual de�nitions of !-logi in the framework of gener-

alised indutive de�nitions.

We de�ne indutively when a multiset M of formulae is (lassially) true. There are the

following lauses:

� if M ontains a true atomi formulae, then M is true,

� if there exists n

0

suh that M +A[n

0

℄ is true, then M + 9n A[n℄ is true,

� if there exists n

0

suh that M + 9n A[n℄ +A[n

0

℄ is true, then M + 9n A[n℄ is true,

� if M +A+B is true, then M +A _ B is true,

� if M +A and M +B are true, then M +A & B is true,

� if M +A[n

0

℄ is true for all integers n

0

; then M + 8n A[n℄ is true.

Only the last lause is not �nitary.

If we forget the point that in the game-theoreti presentation we onsider only prenex

formulae, the main di�erene is that in the game-theoreti presentation, we have to use the last

rule whenever one formula is universal in the multiset of sequents. It follows that if there is a

winning strategy for a on�guration M; then M is true with the present de�nition.

Lemma 1 The following properties hold

� if A is a false atomi formula, and M +A is true, then M is true,

12



� if M +A _ B is true, then M +A+B is true,

� if M +A & B is true, then M +A and M +B are true,

� if M + 8n A[n℄ is true, then M +A[n

0

℄ is true for all integer n

0

:

Proof: All these properties are of the form: if M is true, then M

0

is true, and they are proved diretly

by indution on the proof that M is true.

Lemma 2 If M +A+A is true, then so is M +A:

Proof: By double indution: �rst on the formula A; and then by indution on the proof that M +A is

true, using the previous lemma 1.

Proposition 1 If M +A and N +A

�

are true, then so is M +N:

Proof: By double indution, �rst on the formula A; and then by indution on the proofs that M + A

and N +A

�

are true. Let us look at one ase: A is 9n B[n℄ and M +A is true beause M +B[n

0

℄ +A is

true. Then, by lemma 1, we know that N +B[n

0

℄

�

is true. By indution hypothesis, by a ut between

N + A

�

and M + B[n

0

℄ +A; we get that N +M + B[n

0

℄ is true. By indution hypothesis, sine B[n

0

℄

is less omplex than A; we get that N +N +M is true. By lemma 2, N +M is true.

The important remark is that, with this de�nition, ut-elimination is not an assoiative

operation.

Conlusion

We have presented a onjeture of termination of an internal ommuniation, that would re�ne

Gentzen's ut-elimination. This onjeture is valid in the ase of uts of low logial omplexity,

and in a restrited ase of \simple baktraking." The same idea in the ase of multiple uts

leads to a protoole of ut-elimination distint in general from the one where we deompose the

multiple ut in binary uts.

One important point to preise is the onnetion between the symmetri protool we pre-

sented and the fat, notied by Hugo Herbelin, that there does exist a Gentzen like ut-

elimination proedure that lead to a symmetri answer. It is not lear at all yet what is

the game-theoretial meaning of this proedure.
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