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Introduction
Topological ideas play an important rôle in algebra, bringing geometrical intuitions and powerful methods
from algebraic topology, such as the use sheaf theoretical notions [62]. The goal of this paper is to survey
some recent constructive interpretations of these methods.

One constructive issue in using these topological ideas in algebra is that the various spaces one
considers, such as Zariski spectrum, space of valuations, . . . , may fail to have enough points1. For
instance Tierney [69] describes an example, due to Joyal, of a non trivial ring without any point in its
Zariski spectrum. Often however, these spaces are used by introducing a generic point, which is shown
to exist using classical methods, such as Zorn’s Lemma, and one needs a way to interpret such arguments
constructively2.

One general method to “force” a space to have a (generic) point in a constructive setting is the
following [38, 18]. While a space may fail to have a point constructively, it always gets a generic
point when working in the sheaf model over this space. In several cases, it is possible to analyse proof
theoretically the presentation of the space and show that we can “eliminate” the use of this generic
point. This is actually similar to the technique of elimination of choice sequences used in intuitionistic
mathematics [70]. This method works as well for the generalized notion of space, as a topos given by a
site, introduced by Grothendieck. For instance, the algebraic closure of a field can be represented as a
point of a suitable sheaf topos. As stressed by Joyal [39], this is also reminiscent of Hilbert’s notion of
introduction and elimination of ideal elements3.

This approach comes from two complementary lines of research: on one side, the idea of using point-
free topology [38, 60, 26] for representing topological spaces in constructive mathematics4, and on the
other side, the dynamical method in algebra [30, 43, 44]. The dynamical method originated first in
computer algebra [31], where it was used to explain how to do computations in an algebraic closure of
an arbitrary computable field. As stressed in [43], this is quite paradoxical, since it is well known that
such object cannot exist in general in constructive mathematics [52, 9].

This paper is organized as follows. We first study some examples corresponding to this analysis of
topological spaces, such as Zariski spectrum or the space of minimal or maximal primes, and in a second
part, we present an example corresponding to the analysis of more general Grothendieck sites. We end
by listing some open questions and research directions.

1To some extent, there are similarities with the worries that there might not be, in a constructive setting, “enough” points
in Cantor space or the real lines, worries that motivated Brouwer’s “second act of intuitionism” [10], and the introduction
of the notion of choice sequences. The methods we present in this survey also have some analogy with this development.

2Typical examples of such arguments are provided by several proofs in Nothcott’s book [55], which simplifies the
treatment of Buchsbaum and Eisenbud [11]. Using the method we describe in the present paper, we can eliminate completely
these non constructive arguments, and obtain an effective and elementary presentation of the theory of finite free resolutions
[24].

3Yet another connection is with the notion of “descent” in algebraic geometry [63, 13].
4In several ways, this line of research was already suggested in the work of Lorenzen [46, 47, 20]. In particular, the

paper [48] suggests a point-free analysis of Cantor-Bendixson. Also, one important tool in analysing the presentation of a
space is the notion of entailment relation [12, 44], which already appears in Lorenzen’s paper on cut elimination [46]. (The
concept of entailment relation is now being used for an abstract development of proof theory [58, 57, 61].) One can also
mention some remarks of Troelstra [70], suggesting the use of elimination of choice sequences for a constructive reading of
some classical proofs, which is strongly reminiscent of the present method based on point-free topology.
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1 Zariski spectrum

1.1 Point-free representation
The Zariski spectrum of a commutative ring R is, in classical mathematics, the following topological
space Sp(R). The points of this space are prime ideals. The basic open are the subsets D(a) = {I ∈
Sp(R) | a /∈ I}. We have by definition

D(1) = Sp(R) D(0) = ∅ D(ab) = D(a) ∩D(b) D(a + b) ⊆ D(a) ∪D(b)

Let us write D(b1, . . . , bm) for D(b1) ∪ · · · ∪D(bm). It is also a classical theorem (Krull’s theorem) that
a is nilpotent5 if, and only if, D(a) is empty. A corollary of this result is that D(a) ⊆ D(b1, . . . , bm) if,
and only if, a belongs to the radical of the ideal 〈b1, . . . , bm〉.

Krull’s Theorem relies on Zorn’s Lemma6. In constructive mathematics, a non trivial ring may fail
to have prime ideals [69], and it thus seems impossible to use Zariski spectrum in a constructive setting.

As we wrote in the introduction, the solution of this problem has some similarity to Brouwer’s analysis
of the notion of choice sequences [10, 14]. We consider Sp(R) as a point-free space, defined simply by
the lattice of its compact open subsets. We see then D(a) as a pure symbol, generating a distributive
lattice given by the relations, first formulated by Joyal [39]

D(1) = 1 D(0) = 0 D(ab) = D(a) ∧D(b) D(a + b) 6 D(a) ∨D(b)

This lattice is thus presented by generators and relations. A direct argument shows that one can realize
this lattice as the lattice of the radicals of finitely generated ideals 7.

We get then that D(a) = 0 if, and only if, a is nilpotent, and this argument was obtained by pure
universal algebra, without ever having to build any prime ideals!

It is then possible to develop notions connected classically to Zariski spectrum in a constructive
setting. A typical example is provided by the notion of Krull dimension of a ring.

1.2 An example: Krull dimension
Classically, the Krull dimension n of a ring is the maximal length of strict chains of prime ideal I0 $
I1 $ · · · $ In. So a ring is of dimension 0 if we cannot have I $ J for two prime ideals I and J , i.e. any
prime ideal is a maximal ideal.

A field, or a Boolean algebra, is a ring of dimension 0.
This notion can be analysed in a point-free way. It is actually simpler to define first the Krull

dimension of a distributive lattice L. Such a definition goes back to works of Joyal and Espanol [8, 35],
but it was realized later [23] that it can be seen as a simple case of Menger’s dimension of topological
space. Define the boundary B(a) of an element a. It is the ideal generated by a and the ideal of elements
x such that x ∧ a = 0. We say then8 that L is of dimension < 0 if 1 = 0 in L, and L is of dimension
< n + 1 if each L/B(a) is of dimension < n.

The Krull dimension of a ring R is then defined to be < n if, and only if, Sp(R) is of dimension < n.
Since we have D(ab) = D(a) ∧ D(b) any element of Sp(R) is of the form D(a1, . . . , an). A natural

question is if we can make n as small as possible. It can be checked that D(a, b) = D(a + b, ab). In
particular, if ab = 0 we have D(a, b) = D(a+ b). Using this remark, one can show that if R is a Boolean
algebra, any element of Sp(R) can be written on the form D(a). This can be generalized in the following
version of Kronecker’s Theorem [15].

Theorem 1.1. If R is of dimension < n any element of Sp(R) can be written D(a1, . . . , am) with m 6 n.

The point here is that this has a simple effective proof, following the fact that all notions involved
are defined in an elementary and effective way.

5This means that we have an = 0 for some n.
6Stricly speaking, it relies on a weaker form of the axiom of choice, the Boolean prime ideal theorem, but it is usually

proved using Zorn’s Lemma.
7In general, finitely generated ideals are not closed by intersection, while if D(a1, . . . , an) is the radical of the ideal

〈a1, . . . , an〉 we always have D(a1, . . . , an) ∩D(b1, . . . , bm) = D(a1b1, . . . , anbm).
8In a constructive setting, the dimension is not given as a natural number, but as a downward set of natural number.
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Reformulating basic notions of algebra in this point-free setting may reveal connections that were
hidden in a classical setting. For instance the following result, which also has an elementary proof [22, 44],
contains both Forster-Swan and Serre splitting off Theorem, while the classical version of these results
look quite different. If F is a matrix over R we write ∆n(F ) the ideal generated by the n× n minors of
F and we say that a vector is unimodular if the ideal generated by its elements contains 1.

Theorem 1.2. If R is of dimension < n and F a rectangular matrix such that ∆n(F ) = 1 then some
linear combination of the column of F is unimodular.

Serre’s splitting off Theorem is the special case when the matrix is a square idempotent matrix.

2 Minimal and Maximal Primes
This “phenomenological” approach to prime ideals extends to the notion of maximal and minimal prime
ideals. We restrict ourselves to explaining the case of minimal prime ideals, and only mention a spectac-
ular application of the analysis of maximal ideals: the computational interpretation in [72] of a Lemma
of Suslin used in his proof of Serre’s problem (any idempotent matrix over a polynomial ring is similar
to a canonical projection matrix). The existence of a maximal ideal is the only non effective element in
Suslin’a proof9.

The lattice Sp(R) can be seen as a point-free presentation of the Zariski spectrum. This presentation
is finitary and this corresponds to the fact that this space is coherent [66, 38]. For the space of minimal
prime ideals, we need a presentation of a general point-free space [60, 26] with finite conjunctions and
infinitary disjunctions. To find the presentation of this space, we give a classical characterisation of
minimal prime ideals. We define a multiplicative monoid of a ring to be a subset closed by multiplication
and containing 1. This monoid is proper if it does not contain 0.

Lemma 2.1. A subset of a ring is a minimal prime ideal if, and only if, its complement is a maximal
proper multiplicative monoid. Furthermore, such a maximal proper multiplicative monoid D is exactly a
mutiplicative monoid such that if a /∈ D then there exists b in D such that ab is nilpotent.

We refer to [55] for the proof.
We can then use as a presentation of the space of the minimal prime ideals the following theory.

D(0) = 0 D(1) = 1 D(a) ∧D(b) 6 D(ab) 1 = D(a) ∨
∨

b∈N(a)

D(b)

where N(a) is the ideal of elements b such that ab is nilpotent.
One can then show [19], in an elementary way, the following result.

Theorem 2.2. We have D(a) 6 D(b1)∨ · · · ∨D(bm) if, and only if, for all x, xa is nilpotent as soon as
all xb1, . . . , xbm are nilpotent.

Corollary 2.3. We have D(a) = 0 if, and only if, a is nilpotent.

This corresponds to the classical fact that the intersection of all minimal prime ideals is the set of
nilpotent elements.

An example where minimal prime ideals are used is Swan-Traverso’s characterisation of seminormal
rings [17, 44]. Here again, it is actually possible to implement the constructive proof and run it on small
examples [2].

We explain here in details a simpler example: a Theorem of Vasconcellos, the proof of which [55] uses
a generic minimal prime ideal. For this example, this analysis produces an elementary argument, which
does not mention minimal prime ideals.

If E is a module over R we define AnnR(E) to be the ideal of elements a in R such that aE = 0. We
say that an ideal I of R is regular if AnnR(I) = 0.

9It is even possible to realize this constructive version as a functional program and run it on small examples [42].
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Theorem 2.4. Let E be a module over R which admits a finite free resolution

0→ Fm → Fm−1 → · · · → F0 → E → 0

Each Fi is of the form Rpi and we define10 CharR(E) to be p0 − p1 + p2 − . . . . Then

• If CharR(E) = 0 then AnnR(E) is regular

• If CharR(E) > 0 then AnnR(E) = 0

• If CharR(E) < 0 then the ring R is trivial

This corresponds to Theorem 12 of Chapter 4 [55], which is proved using minimal prime ideals.
We will analyse a special case of this Theorem, which then suggests a direct proof of the general case

[24].
We assume that we have an exact sequence 0 → R → R2 → E → 0 and we analyse a non effective

proof that AnnR(E) = 0.
The fact that we have an exact sequence 0 → R → R2 → E → 0 can be unfolded as follows: E is

generated by two elements e1, e2 and we have a1, a2 regular such that b1e1 + b2e2 = 0 if, and only if,
(b1, b2) is a multiple of (a1, a2).

We will make use of the following Lemma, which has a direct proof.

Lemma 2.5. Let a1, . . . , an be a regular sequence. Then al1, . . . , a
l
n is also regular for all l.

Let x be an element of AnnR(E). We need to show that we have x = 0. The classical reasoning
proceeds as follows [55]. We assume x 6= 0 and we consider a minimal prime ideal M over (0 : x) = {a ∈
R | ax = 0}. Using Lemma 2.1, we know that, if b is in M , then there exists a not in M and n such that
abn is in (0 : x).

If a1 is not in M , then a1 is invertible in RM , the localization of R at the prime ideal M . Since
xe2 = 0 we have (0, x) = r(a1, a2) for some r, and so ra1 = 0 and x = ra2. This implies r = 0 since a1
invertible and so x = 1x = 0 in RM . We thus have 1 in (0 : x)M and so 1 in M , contradiction. So a1 is
in M , and similarly a2 is in M .

Using Lemma 2.1, this implies an1 and an2 in (0 : x)M for some n. Since an1 , a
n
2 is regular by Lemma

2.5, this implies 1x = 0 in RM , and we have 1 in (0 : x)M and so 1 in M and a contradiction.
This reasoning was using a minimal prime ideal over (0 : x) in a generic way and Lemma 2.1. We

can follow it and give the following derivation of ⊥ in the theory TM of minimal prime ideal over (0 : x),
where we add the axiom ¬D(a) for ax = 0. This reasoning is now constructive and we can furthermore
later eliminate the use of the theory TM .

We first prove ¬D(a1). We have xe2 = 0 and hence (0, x) = r(a1, a2) for some r. This means that
we have 0 = ra1 and x = ra2. We get then xa1 = 0 which implies ¬D(a1). Similarly we have ¬D(a2).
Using the axioms

1 = D(a1) ∨
∨

b ∈ N(a1)D(b) 1 = D(a2) ∨
∨

b ∈ N(a2)D(b)

of TM , this means that we can find b1, b2 such that D(b1), D(b2) and a1b1, a2b2 are nilpotent mod.
(0 : x). If b = b1b2 we have D(b) and a1b, a2b nilpotent mod. (0 : x). Using Lemma 2.5, we get b
nilpotent mod. (0 : x), which contradicts D(b) in the theory TM .

It is then direct to eliminate the reference to this theory TM . The fact that we can prove ¬D(a1) in
TM means that we can show an1x = 0 for some n. Indeed, since we have xe2 = 0 we get 0 = ra1 and
x = ra2 for some r, which implies that we have x = 0 in R[1/a1], that is an1x = 0 for some n. Similarly,
xan2 = 0 for some n, and then x = 0 by Lemma 2.5.

So the core of the argument is the following global-local principle for regular ideals [24], which does
not mention any minimal prime ideal.

Lemma 2.6. Let a1, . . . , an be a regular sequence. If x = 0 in R[1/a1], . . . , R[1/an] then x = 0 in R. If
I is an ideal of R which becomes regular in R[1/a1], . . . , R[1/an] then I is regular.

10It can be shown [55] that this number CharR(E) is the same for any given finite free resolution of E.
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Proof. The first statement follows from Lemma 2.5, since x = 0 inR[1/ai] if, and only if, we can find l such
that xali = 0. For the second statement, assumes xI = 0. We then have x = 0 in R[1/a1], . . . , R[1/an]
and hence x = 0 by the first statement.

The proof of the general case of Theorem 2.4 is direct from this Lemma: we look at the first column
of the matrix corresponding to the map Fm → Fm−1. This column is regular, and we prove 2.4 by
induction by localising over each element of this column and applying Lemma 2.6.

Here is one simple application.

Corollary 2.7. If each principal ideal of R has a finite free resolution then R is an integral domain.

Proof. Indeed, by Theorem 2.4, each element is either 0 or is regular.

The paper [24] presents an effective proof that if each finitely generated ideal of R has a finite free
resolution, then R is a g.c.d. domain. For further development, see [29], and the PhD thesis of Claire
Tête [68].

3 Forcing over a site
In all previous examples, we can interpret what is going on as follows. We have a space X described in a
point-free way, and we “force” the existence of a point by working inside Sh(X), the collection of sheaves
over X. So we move from the usual framework of usual sets to the frame of sheaves over the space X.
We can then “descend” what is going on in Sh(X) back to the frame of sets11.

Grothendieck has generalized the notion of topological space to the notion of topos over a site. It
turns out that we can use this notion as well in a constructive setting. A point for this notion of topos
becomes now an algebraic structure. A prime example of this situation is to “force” the existence of a
separable algebraic closure of a given field, by using that such an algebraic closure can be seen as a
point of a suitable topos. As before, by moving from the framework of sets to the framework of sheaves
over the given site, we can do “as if” we had access to this algebraic structure. As before also, the main
problem is if we can “descend” from this framework of sheaves to the framework of sets. For the case of
separable algebraic closure of a field, this is similar to Galois descent (see e.g. [63], Chapter X) going
back to the work of Châtelet [13].

For constructive mathematics, this method was first suggested by A. Joyal in two short papers [39, 8].
The method in [39] can be described as an elegant purely algebraic presentation of quantifier elimination.
What we present is a variation of this basic idea, which does not proceed via quantifier elimination. This
variation can be directly connected with the one of dynamical algebra [30], first introduced in computer
algebra [31] for computing inside the algebraic closure of an arbitrary computable field.

3.1 Algebraic closure in constructive mathematics
First, we recall what is the problem in constructive mathematics for building the algebraic closure of a
given field. The first step in building such a closure is to to add a root of a given monic polynomial P
over a field F . This is simple if P is irreducible: F [X]/〈P 〉 is the desired extension of F containing a
root of P . But if P is not irreducible, we need to consider an irreducible factor Q of P , and we add a
root by working with F [X]/〈Q〉.

The problem is that in general, for a computable field, we cannot decide if a given polynomial is
irreducible or not and cannot compute in general an irreducible factor of a given polynomial. This
observation goes back at least to van der Waerden’s paper [71] (which was using a Brouwerian counter-
example, since this was done before the formal definition of recursive functions). One possible formulation
of this result is the following.

Theorem 3.1. In the intuitionistic theory of field, we cannot show ∃x (x2 + 1 = 0) ∨ ∀x (x2 + 1 6= 0).

Proof. The theory of fields is the theory of rings, together with the axioms 1 6= 0 and x = 0∨∃y (xy = 1).
Consider the following Kripke counter-model. At time 0, we have F0 = Q and at time 1, we have F1 = Q[i]
with i2 + 1 = 0. Then we don’t have ∃x (x2 + 1 = 0) at time 0, and we don’t have ∀x (x2 + 1 6= 0) at
time 0 neither, since x2 + 1 has a root at time 1.

11See [3] for a suggestive analogy with the notion of change of frames in physics.
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This means that we have problem in constructive mathematics in adding a root of a given polynomial
P (even a simple polynomial such as X2 + 1) since we cannot decide if this polynomial is irreducible or
not.

In [9, 52], a solution of this problem is given in the case the field F is countable. But, in the general
case, there are actually results [52], Chapter VI, 3 Exercise 1, that we cannot show in intuitionistic
mathematics that a field has an algebraic closure.

3.2 Dynamical method
Given this impossibility result, it is quite surprising that a technique has been developped, originally in
computer algebra, showing how to compute in an algebraic closure of an arbitrary computable field!

This technique was introduced in [31], following a suggestion of Daniel Lazard. It replaces the “com-
putation”, which is impossible in general, as explained above, of an irreducible factor, by computations
of g.c.d. of two polynomials, which is always possible. This method might be interesting even in the
case where we can decide irreducibility (e.g. over algebraic extensions of Q), since deciding irreducibility
might be computationally difficult compared to computations of g.c.d. of two polynomials.

The main idea is best explained on examples. Assume we want to add a root of X2−3X + 2 without
deciding irreducibility. We work in the formal extension F [a], a2 − 3a + 2 = 0, proceeding “lazily”. If
we are required to compute an inverse, e.g. the inverse of a + 1, we compute the g.c.d. of X + 1 and
X2 − 3X + 2, producing the equality X2 − 3X + 2 = (X + 1)(X − 4) + 6 and this gives that the inverse
of a + 1 is (4 − a)/6. If we want to compute the inverse of a − 1, we compute the g.c.d. of X − 1 and
X2 − 3X + 2, which produces the equality X2 − 3X + 2 = (X − 1)(X − 2). We discover in this way
the factorisation X2 − 3X + 2 = (X − 1)(X − 2), without the need of a factorisation algorithm. This
was simply produced by asking to compute the inverse of a− 1. We then open two branches: one with
a− 1 = 0 and one with a− 2 = 0, and continue the computations.

In this way, we can proceed as if we were working in a field, computing only g.c.d, but we may have
to open some branches: the computation is “dynamic”. This method is presented in depth in [30, 44, 53].
In [43], it is shown how this method also provides a constructive explanation of the real algebraic closure
and in [41] how to do computation in the algebraic closure of a valued field.

3.3 Topos theoretic formulation of the dynamical method
In [39, 8], A. Joyal suggested the following approach to solve the problem of algebraic closure in an
effective way: the algebraic closure may not exist in the framework of sets, but it always exist in a
suitable sheaf extension. The argument suggested in [39] is an algebraic version of quantifier elimination,
but this can also be explained in a way which stresses the analogy with the dynamical method described
above.

For the Zariski spectrum, the point-free description of the space was a propositional theory. For the
algebraic closure, it will be a geometric theory: the geometric theory of the algebraic closure of a given
field F . The language is the language of the theory of ring, with a constant for each element of F . The
axioms are the axioms of rings with the diagram of F and the following axioms:

1. x = 0 ∨ ∃y (xy = 1)

2. ∃x (xn + a1x
n−1 + · · ·+ a0 = 0)

3.
∨

P P (x) = 0 where P varies over monic polynomials

Note that the last axiom is infinitary.
There is always a sheaf extension in which these axioms are satisfied. This is the classifying topos

of this theory [8]. This topos might be degenerate however. What happens in the present case is that
we have a direct description of a site which defines this classifying topos. From this direct description
follows in particular the consistency of the theory12.

12This is similar to the case of the Zariski spectrum of a ring, where we have a direct description of the Zariski lattice
in term of radical of finitely generated ideals. As in this previous analysis, this also can be presented as a cut-elimination
result [12, 18, 44].
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To simplify the discussion, we will limit ourselves to the case where the base field F is of characteristic
0.

A triangular algebra over F is a F -algebra obtained by a sequence of monic separable extensions. We
can then prove [49, 50].

Lemma 3.2. If R is a triangular F -algebra then for any element a of R both R/〈a〉 and R[1/a] are
product of triangular F -algebras. We also have R = R/〈a〉 ×R[1/a] for all a in R.

We then consider the following site SF . The base category is the category of triangular F -algebras. A
basic covering of R is given by decomposing R as a product by R = R1× · · · ×Rn or by adding a formal
root of a a monic separable polynomial R → R[X]/〈P 〉. We obtain, in an elementary and constructive
way the following result [50].

Theorem 3.3. The topos defines by this site SF is the classifying topos of the theory of algebraic closure
of F . The presheaf L(R) = Hom(F [X], R) is a sheaf and is separably closed in the internal logic of this
topos.

One can think of a triangular algebra as an approximation of the algebraic closure of F . Intuitively,
we don’t consider the algebraic closure given “actually”, but we proceed by adding roots of polynomials
as needed, and, at any point, we only have added finitely many roots. This is strongly reminiscent of
Edwards’ description of Kronecker’s compared to Dedekind’s approach of the theory of algebraic curves
[33]. The necessity of using an algebraically closed ground field introduced -and has perpetuated for 110
years- a fundamentally transcendental construction at the foundation of the theory of algebraic curves.
Kronecker’s approach, which calls for adjoining new constants algebraically as they are needed, is much
more consonant with the nature of the subject

It is possible to interpret computationally in this way any argument which makes use of an algebraic
closure of a field F , by working in the sheaf topos over SF . An example is a variation of Abhyankar
proof of Newton-Puiseux Theorem [1]. We first prove constructively [50] the following result.

Theorem 3.4. If L is separably closed, then ∪nL((x1/n)) is separably closed.

By reading such a proof in the topos over the site SQ, we get an effective way to compute Puiseux
series. The interpretation of L[[X]] is given by the exponential LN in the sheaf model. Since we have
LN(R) = RN, this also gives a purely logical a priori explanation of the fact that we don’t need to keep
adding new algebraic numbers when computing a Puiseux expansion: the existence of an element of
L[[X]] provides a finite triangular extension of S which contains all the coefficients of this series.

For instance, we can solve in this way a polynomial equation over Q such as y4 − 3y2 + xy + x2 = 0
finding y as a formal series in some x1/n. Since this interpretation is effective, we can “run” the proof
[49, 50] and actually find a triangular algebra Q[a, b] with a2 = 13/36 and b2 = 3 over which we can
write y as a power series in x. This illustrates the following point: in this approach, the algebraic closure
L is only given potentially, but finite approximations of L become actual for solving specific questions.

Yet another remark about this constructive analysis of sheaf models is that it represents a combination
of the “computational” aspect of constructive mathematics and the “epistemological” aspect present in
sheaf models, where a basic open represents a “stage” of knowledge. For instance, a computational
problem, such as the problem of finding an inverse of a − 2 in Q[a], a2 − 3a + 2 = 0, provides the
knowledge of a factorization X2 − 3X + 2 = (X − 2)(X − 1), knowledge which itself may simplify
further computations. There is thus a feedback between “computational” and “epistemological” aspects
of constructive mathematics. This is reminiscent of some remarks of Goodman [37] about the combination
of forcing and realizability.

This method of introducing and eliminating the algebraic closure of a field can also been used for
a constructive reading of the theory of simple central algebras over a field. See [21], where we give a
dynamical reading of Wedderburn’s Theorem representing central simple algebras as matrix algebras
over a division algebra13. We can prove constructively that any central simple algebra is split over an
algebraically closed field. We deduce from this [21] that the dimension of a central simple algebra over
any field F is a square, by “descending” the fact that its dimension is the one of a matrix algebra in the
sheaf topos over SF .

13This result can also be represented using negative translation, as has been done in formalisation of algebra in type
theory, see the works [36, 4].
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4 Conclusion and some open questions
This paper presents some applications of point-free topology and sheaf models for the constructive
analysis of several concepts and proofs in algebra. Note that this is different, but complementary, to the
use of sheaf models suggested in [54, 8]: if we prove intuitionistically a theorem, this theorem will hold
in any sheaf models, and by looking externally at this proof, we may get a new result, or a new proof of
a classical result14. Here, instead, we use point-free methods to give a computational interpretation of
classical proofs relying on ideal objects, such as prime, maximal or minimal prime ideals, or separable
algebraic closures.

This technique can also be used in abstract functional analysis, where spaces are now compact sepa-
rated. For instance [28] presents an analysis of a representation theorem, and [27] a constructive proof
of Peter-Weyl’s Theorem. These works rely on the paper [16] which presents an analysis of some general
representation results of Stone [64, 65], reading constructively some results presented in [38] and applying
a fundamental result from Krivine [40] for obtaining a suitable cut-elimination result. The paper [12]
presents a constructive reading of Hahn-Banach extension theorem.

A general remark about this approach is that it avoids the use of a non canonical enumeration, which
is necessary in the algebraic closure of a countable field [9], or in representation theorems for separable
spaces15 in [5, 6]. The computations associated to our arguments thus feel more natural, not relying on
an arbitrary enumeration. As we have seen, in most cases, it is actually possible to carry the out by
hand or with the help of a computer algebra system, for small examples [2, 42, 50, 29]. The notion of
dynamical computations, connected to the idea of lazy evaluation, is also very interesting algorithmically
[31], and the book [73] presents several algorithms inspired by the technique of dynamical algebra.

We end by presenting some specific open problems, and a possible future research direction.
The first problem is about the theory algebraic curves, and in particular the proof of Riemann-Roch

Theorem. This is covered in [34, 32], but relying on an irreducibility algorithm. Is it possible to instead
follow a dynamical approach, without such irreducibility algorithm? If so, can we have a constructive
treatment which avoids, as in the classical approach, an actual computation of an integral basis?

The second problem is about valuation domains. A remarkable consequence of the work of Raynaud-
Gruson [56] is that if V is a valuation domain, then V [X1, . . . , Xn] is coherent. While this result has a
constructive proof [45], this proof was found directly without relying on the work [56]. The problem is
to understand the computational content of this highly non effective argument and its connection with
the algorithm presented in [45].

The third problem is similar. Merkurjev’s Theorem [51] provides a complete description by generators
and relations of the 2-torsion part of the Brauer group of a field. While the argument in [51] is effective,
the first version of this proof was non constructive and relied on a paper of Suslin [67], itself based
on arguments of Quillen using the highly non effective homotopy theory of simplical sets. What is the
computational content of this non effective proof?

Finally, one can hope that the constructive approach to sheaf models we have presented here can be
generalised to higher toposes, providing in particular an effective treatment of cohomology groups which
avoids the use of injective resolutions; for preliminary results in this direction, see [25].
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