Severi-Brauer variety

Introduction

We assume to know that $\mathbb{P}^n = \mathbb{P}^n$ is $PGL_{n+1}(R)$ in SAG. Using this, we prove the following statement, for X scheme

$$X \to \|X = \mathbb{P}^n\|_{et} \to \|X = \mathbb{P}^n\|$$

Here $||T||_{et}$ represents the propositional truncation w.r.t. the étale topology.

A scheme X such that $||X = \mathbb{P}^n||_{et}$ for some n is called a *Severi-Brauer* variety. The statement says that if a Severi-Brauer variety has a rational point, it is locally for Zariski topology the projective space. In the case where the base ring is a field, this was the content of the thesis of F. Châtelet.

This uses the fact that $PGL_{n+1}(R)$ is also $M_{n+1}(R) = M_{n+1}(R)$ as equality of *R*-algebra. Furthermore the proof follows closely the original reasoning of Châtelet.

1 Delooping

Let G be a group and B_0 and B_1 be two delooping of G, i.e. B_i is a connected groupoid with a point a_i such that G is $a_i = a_i$.

Let T_G the type of G-torsors and $*_G$ the trivial G-torsor.

If x is in B_i then $x = a_i$ is a G-torsor.

So we have a map (which is an equivalence) $\alpha_i : B_i \to T_G, x \mapsto (x = a_i)$. Note that $\alpha_i(a_i)$ is the trivial *G*-torsor $*_G$.

We define then a correspondence R between B_0 and B_1 by taking R x y to be $\alpha_0(x) =_{T_G} \alpha_1(y)$.

For x in B_0 let P(x) be the type $\sum_{y:B_1} R x y$. The type $P(a_0)$ is equivalent to the singleton type $\sum_{y:B_1} y = a_1$ and hence is contractible. Since B_0 is connected we have that P(x) is contractible for all x. Similarly the type $\sum_{x:B_0} R x y$ is contractible for all y in B_1 .

Hence the relation R defines an equivalence between B_0 and B_1 .

2 The étale modality

A type X is modal for the étale modality (we shall simply write that X is étale) iff for any unramifiable monic polynomial P the diagonal map $X \to X^E$ is an equivalence, where E = ||Sp(R[X]/(P))|| is the proposition expressing that P has a root.

Let M be a R-module which is quasi-coherent, i.e. $M \otimes_R A \to M^{Sp(A)}$ is an equivalence for any f.p. R-algebra A.

Lemma 2.1. The proposition that M is flat is étale.

The proof follows the usual external argument.

Proof. Let LC = 0 be a linear relation with L line vector in R and C column vector in M. We assume $\|\Sigma_P \Sigma_{C_1} C = PC_1 \wedge LP = 0\|^{Sp(A)}$ for some A = R[X]/(P), P unramifiable, and we prove

$$\|\Sigma_P \Sigma_{C_1} C = PC_1 \wedge LP = 0\|$$

Using Zariski local choice, we get $(u_1, \ldots, u_m) = 1$ in A and using the fact that M is quasi-coherent, we get P_1, C_1 in $A[1/u_1], \ldots, P_m, C_m$ in $A[1/u_m]$ such that $C = P_1C_1 = \cdots = P_mC_m$ and $LP_1 = \cdots = P_mC_m$

 $LP_m = 0$. We then get P_0, C_0 in A such that $C = P_0C_0$ and $LP_0 = 0$. If P is of degree m, we can write any element of A as a polynomial of degree < m. Looking at the constant term, we can assume P_0 and C_0 have coefficients in R, and this shows that $\|\sum_{P_0}\sum_{C_0}C = P_0C_0 \wedge LP_0 = 0\|$ as required. \Box

We can prove similarly.

Lemma 2.2. The proposition that M is f.p. is étale.

Since to be finite projective is equivalent to be flat and f.p., we get the following result.

Corollary 2.1. The proposition that M is finite projective is étale.

3 The argument

We work now in SAG. We let G be the group $PGL_{n+1}(R)$.

If A is a R-algebra free of dimension $(n + 1)^2$ with an explicit basis, we can consider the scheme SB(A) of all left ideals of A of dimension n + 1. We can check that we have $SB(M_{n+1}(R)) = \mathbb{P}^n$.

We know (Hugo) that any scheme is étale. So in particular \mathbb{P}^n is étale.

We consider in the étale topos the connected component of \mathbb{P}^n in the universe. This is a delooping of $PGL_{n+1}(R)$.

Another delooping is the type of algebras A that are modal and quasi-coherent and such that $||A = M_{n+1}(R)||_{et}$. This is the type of Azumaya algebra of degree n + 1.

If we look at A as a R-module this is a free R-module of dimension $(n+1)^2$ in the étale topos.

It should follow that it is finite projective as a *R*-module and hence free of dimension $(n + 1)^2$ since *R* is local and the notion of being finite projective is étale.

If X is a Severi-Brauer variety, we write $\alpha_0(X)$ the G-torsor $X = \mathbb{P}^n$.

If A is a Azumaya algebra of degree n, we write $\alpha_1(A)$ the G-torsor $A = M_{n+1}(R)$.

Using Section 1, we see that we have an equivalence between the type of Severi-Brauer variety X of dimension n and the type of Azumaya algebra A of degree n + 1. This is given by the relation

$$\alpha_0(X) = \alpha_1(A)$$

where the equality is equality in the type of G-torsors.

Given X Severi-Brauer variety of dimension n, we thus find explicitly an Azumaya algebra A of degree n + 1 such that

$$\alpha_0(X) = \alpha_1(A)$$

Since we want to prove $||X = \mathbb{P}^n||$ which is a proposition, we can assume that A is explicitly free of dimension $(n+1)^2$ as a R-module.

We can check that, in this case, SB(A) is a scheme together with an equality of G-torsor

$$\alpha_1(A) = \alpha_0(SB(A))$$

It follows from that that $\alpha_0(SB(A)) = \alpha_0(X)$ and hence SB(A) = X.

If X has a point, so has SB(A) and we get a left ideal V of A of dimension n+1. Then $A = End_R(V)$ and we have $\alpha_1(A)$ is the trivial G-torsor.

So $\alpha_0(X)$ is the trivial *G*-torsor as well and we have an element of $X = \mathbb{P}^n$.