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§1 INTRODUCTION

In this paper we propose an answer to the question: "If the
objects of an elementary topos are to be thought of as sets, then what
are the classes?” For example, can the topos 1tself be seen as 1ts own
class of all sets? A satisfying answer to this question is one that
would allow us to extend the topos' internal logic to these classes, and
In particular quantify over them: our aim is to present a form of
higher-order logic that will do this. We will describe this logic by
giving a set of category-theoretical azioms, a now well-accepted
approach to logic. There is a natural formal language that is entailed
by these axioms (a form of dependent type theory), which we will
describe only informally here; the full formal treatment will await
another paper. The immediate payoff of all this is that we will give a
sound foundation for the theory of categories over a base topos [P-S)
[Be2] , a subject that has been around for a few years, but which 1s
<till lacking a formal backbone. In particular we will be able to
express a weak form of the axiom of choice that will allow us to
internalize all the classical constructions of category theory to a topos.
This peints the way towards the elirination of Grothendieck universes
from the foundations of mathematics. Another, unexpected drvndend
of our methods is that they broaden and generalize our knowledge of
the relation between formal systems and categorical properties; for
example they allow us o give the category theoretical counterpart of
less standard logics, like existential fixed point logic.

The logic that we want to describe departs from traditional type
theory in two essential points. The first one is that we make the
concept of growpeid (le. a category all whose morphisms are is0s),
instead of that of set, the notion whose essence we want to capture
axiomatically. In particular, we will give an abstract categorical
framemork which has the same role towards the 2-category of
groupoids as the notion of an elementary topos has for the category of
sets. The second pont (a consequence of the first one) 1s that the
‘nmatural” logic that we will be able to interpret 1n our categories uses



{and 1n fact cannot do without) dependent type theory. This

formalism, originally due to P. Martin-Lof, has been getting attention
lately because of its applications in theoretical computer science. Let
s explain why these two departures are necessary. But first we will
g1ve a quick review on how to interpret logic in an elementary topos.

We will fix once and for all a category .Sez which we will call the
small sets. For simplicity we will assume Set 15 a model of Zermelo-
Frankel with the axiom of choice; we do use choice rather often, and
30 “our owh universe” 1s quite classical and Platornc. S¢f may contan
a Grothendieck universe itself; 1n other words there may exist very
small sets. We will use the terms "small” and "locally small” for
categories in the obvious sense. When we just say "category” without
qualihiers, questions of size are wrrelevant. We denote composition in
category by fg or feg , according to readability; we use the classical,
functional order, i.e, cod(g) = dom(f) . The morphisms of a category
are also called arrows and maps, for variety. Our notation for
applying a functor F to an object A or map f 1s usually FA , Fi
but sometimes we will write F(A) , F(f) instead.

Let € be a small elementary topos. The first step in interpreting
logic in £ is to assign, to every object X of €, a type, which we
will also denote X throughout this work. Every type has a countable
collection of variables; we write x:X tosay "x 1sof type X" For
every finite list Xq,...,¥X, of objects and every subobject
S Xy x...x Xy, we assign an n-place predicate symbol pgl-,...,=) of
the obvious arity. This assignment is unique in the sense that
between two different choices of a product diagram there 15 a unique
canonical way to go from one to the other (we will not bother with
function symbols for the time being.) A formula of typed first-order
logic ¢(xq,....8n) (with x; of type Xj) is interpreted as a subobject
[plaXyx.. . xX, . There s some well-known technical trivia here we
will not bother with, for example what to do with variables that do
not appear free in ¢ . The interpretation of ¢ is defined by
induction and to every connective of logic corresponds an operation on
subobjects. For example conjunction 1s the intersection of subobjects,
disjunction the binary sup. Quantification, say universal, 1s adjoint to
the substitution (pullback) functor: the subobject [V o(x,y)1=Y is
obtained by applying to [g(x,v)] the right adjoint to the functor
“pull back by m " Sub(Y)— Sub(XxY) , where m:XxY—=Y 15 the



projection. The difference between first order and higher order logic 15
contained in the types we can construct: the reason higher order
logic can be interpreted in any topos is that given an object-type X
the topos structure gives us access 1o P(X) , 1ts powerset type.
Another higher-order type constructor, which can be defined in terms
of P(-) ,is the function-space constructor: given objects X,Y , then
there is a type X=Y of all functions of X into Y . The formal
machinery associated to this type constructor 1s known as the simple
(typed) lambda calculus.

A very useful tool for doing calculations in E is Kripke-Joyal
semantics. Let ¢(xq,...,xn) be a formula of the language of €,
whose interpretation is a subobject [l X =Xqx...xXy . The idea
behind Kripke-Jovyal 1s that the subobject [¢] is completely
determined by the subfunctor of the contravariant representable
hy = E(-,X) (also called an X-sieve) it determines: that is, one can
define the set

[¢1* = {(LLa)l aal=X and a factors through Lol }

as the projection in our world of the “internal subset’ of X that ¢
defines. LeJ¥ has the obvious structure of being downwards closed: if
(1,2)elpl¥ and f:J—1 then (Jahelpl®; thisis another way of
saying that [¢]¥ can be viewed as a presheaf. A par (L,a), a:l—¥%
is called "an element of X of base 1", and since it can be thought of
as an I-indexed family (a1 of elements of X, we have the slogan
"to get hold of the internal set {x€X|p(x)} one has to look at all
families indexed by all objects of E , and not only at the one-element
families 1—X “. In particular the internal set X itself can be
realized in our world as the set of objects of the slice category E/X.
All the connectives of logic have an interpretation this way, which we
will recall: let ¢ be a formula, whose vector of free variables has
collective type X, and let a:l=X . Then,

- if ¢ is atomic acl@l¥ iff a factors through the subobject
associated to ¢ .

- if g=y=8 acLod* iff for all JeB , fJ—1.if afelyl¥
then afelal¥

- af =8 acl@I# 1ff aclyd¥ and aelol¥.



- f p=y¢vo aclol® 1iff there exists a (finite) covering
(fJ=1)1cjen such that af;elyI® or afjelol*

for all j.
- if ¢=T aclyl® always
- if ¢=F aclypl® iff 1 admits an empty cover, i.e. is the

mmtial object.

- af 9= (Vyy)p aclel® aff for all JeE , =1, hid=Y,
<b,af>elyd* , where <baf>:J—-YxX .

- if ¢=(3yv)y aelel¥ iff there exists a (finite) covering
(fi:Jj=11gjen » and (bj:Jj=Y)1<jen such that
<bjafpelyd® for all j.
Notice that the definition above is valid for any subcanonical site, as
soon as atomic formulas are assigned to subobjects; some rminor
simplifications could be given when £ 15 a topos. An essential
property of the definition above for a general site is that it conserves
sheafness; thus if atomic formulas are assigned to sheaves (which is
always the case 1if the site 1s subcanonical), [y1¥ 1s guaranteed to be
a sheaf.

The point of this 1s that in an elementary topos Kripke-dJoyal
semantics for the topology of finite coverings coincides with the
ordinary semantics based on universal operations on subobjects
[L-8, 84] . One way to look at the relation between the two semantics
15 to say that the finite coverings site on an elementary topos obeys a
nice comprehension scheme : if atomic relation symbols are assigned
to every subobject of the topos, then for any first-order formula
(meaning that no type of the form ®(X) appears) of that language
the sieve that models 1t is representable as a subobject.

Thus, 1t would only be natural to define a class inside a topos €
as a a sheaf H:E°P—Set for the finite covering topology, or at the
very least, as a presheaf. For every [¢E€ the set HI would be
thought of as the set of all [-indexed families of elements of H .

Given acHI (Le. (a1 ) and f:J—=1 then (Hf)(a)eHJ would be the
family obtained by reindexing, i.e. (af(j))jeg - H would be said to be
"small” if it were representable. What should H be if it were to
correspond to the class of all objects of E 7 Well, given [¢E category
theorists have known for a long time how to model an I[-indexed
family (Epj of objects of E: an element of HI should be just an



object eeE—=1 of E/I; E is to be thought of as the disjoint sum

Z,E, . Given a morphism f:J—1 then the operation of reindexing
should be modelled by pullback. This is where our troubles begin:
given an average topos, there 1s no way to define pullback
functerially, since pullback 1s defined up to unique isomorphism, and
not identity. One way out of this problem is to add the necessary
structure to £ to make pullbacks functorial: making € a
T-category [Fr-Sc] will fit the hill. It can be shown [Fr-5¢ WW]
that any category with finite limits is equivalent to a T-category. But
this goes against the grain of the whole tradition of category theory.
Suddenly we are dealing with properties of categories that are not
maimntained under equivalence. Also, making pullbacks functorial
seems artificial, since the categories we meet in practice are not that
way usually (there is an important exception to this: in many of the
categories that one meets in dependent type theory, eg. syntactical
categories, some classes of arrows admit functorial pullbacks) It
turns out that our semantics can be applied to T-categories anyway,
30 we will get the best of both worlds.

So let us give up the idea of considering € as a presheaf over
itself. What is the next best thing? Well, pullback being defined up to
isomorphism, maybe we should include the 1somorphisms in the
structure we want to define: that is, given I€E HI could be defined
to be the groupord with objects all maps E—1 and arrows
isomorphisms between maps: HI is the underlying groupoid of E/I.
That way pullback becomes a pseudofunctor E%— @God , something
which is functorial only up to (coherent) isomorphism. We think
pseudofunctors are best approached via Grothendieck fibrations
[WWW] . and we will use that language from now on. Thus H is the
codomain functor dq:Epp—E where Epp 15 the subcategory of the
arrow category E” with all its objects but where a morphism 15 a
pullback square. Therefore the first step of our program is to replace
presheaves by fibrations of groupoids: groupoids are the next best
thing to sets.

1.1 Proposition

Let X:X—=C be a functor between two categories. The following
are equivalent:



1) X 1s a Grothendieck fibration such that for any 1€C the
fiber X! is a groupoid (it is a fibration of groupoids).

ii) X is a Grothendieck fibration for which all the morphisms
are cartesian.

iiiy X is a Grothendieck fibration and reflects isos.

The proof is trivial. Let Fibg/E denote the category whose
objects are the fibrations of groupoids over the topos E and the
morphisms commuting triangles. For the time being let us consider
the objects of this category as the classes we want to define. In
particular, given XeFibg/E and 1¢E we will think of the fiber above
I as the groupaoid of all I-indexed families of objects of X . There 1s
an obvious embedding .Ser°F — Fibg/E , the Grothendieck
construction for presheaves. In particular we can compose with the
Yoneda embedding and consider the objects of E as objects of
Fibg/E . Sett" has the structure of a topos, and 1s thus a very good
candidate for a universe of all classes; since 1t cannot do the job for
us we have to ask ourselves if we can find some similar, topos-like
structure (something allowing us to interpret a useful form of logic. at
least) In Fibg/E . Just as the the objects of SettY are often thought
of as " E-moving sets”, those of Fibg/E can be considered as "E-
moving groupoids”. There is another possible notion of "E-moving
groupoid”, the category Gpd E%P of all presheaves of groupoids; this is
also the category of all groupoid objects in the topos Sertr , and we
know it 15 too "strict” for us; so what we are studying could be called
"loosely E-moving groupoids”. In going from SettF to Fibg/E there
is some obvious added structure we will have to take into account: if
X:X—E, Y:Y=E are objects of Fibg/E and F,G:X—=Y morphisms
there might exist a nontrivial natural transformation F—G between
these "E-moving functors” , it being an ordinary natural
transformations o:F—G satisfying the condition Y« =X (since all
morphisms in ¥ are cartesian all morphisms of fibrations will be
cartesian.) Thus we will working inside a 2-category, all whose 2-
cells are isomorphism (also called a groupoid-enriched category.) This
is where we depart from ordinary logic: the types (or objects) of our
logic have to be thought of as groupoids, sure. But we, as set-trained
mathematicians, always think of a groupoid as a set of objects (well, a
class maybe) with added structure.. Every groupoid in our own set-
theoretical world has an underlying set/class. But this is not possible



here: given X:X—E€ in Fibg/E there is no way to guarantee that
there is a subcategory XpCX with the same objects as X such that
by composing we get a discrete fibration Xo—E . We will have to
change our "setist” point of view and think the other way around:
take the concept of groupoid as the primitive notion. Thus a set 15 a
special kind of groupoid, a discrete one. In other words this universe is
such that given a groupoid that lives in it it is not necessarily possible
to extract the objects and morphisms as independent structure.
Things can be tightly bound.

This does have some philosophical bearing on the foundations of
mathematics. The theory of sets is not the end of the problem of
foundations; for example, there have been little success in formalizing
the notion of mathematical structure, which is truly at the center of
modern mathematics. We know how do deal with given classes of
structures (say varieties, or elementary classes), and there is a given
such class (all structures definable with higher-order logic) which
seems to be large enough to encompass all constructions encountered
in "ordinary mathematics with small sets". But it is still very ad hoc,
since for example we are bound by the choice of function symbols,
atomic predicates, etc whenever we want to describe a class of
structures.

In a foundation of mathematics based on the idea of structure the
notion of groupoid would be central: given a class of structures, say
topological spaces, the one given notion of morphism that is
guaranteed to be invariant is that of isomorphism. Continuous
functions have their use, and so do open functions, or local
homeomorphisms, but none of these definitions follows immediately
from the definition of a space itself. But given only the definition of a
topological space it is obvious how to tell a homeomorphism: it is a
correspondence between two spaces that are "“the same” space. Every
mathemetician knows by experience that 1somorphism is a much
better notion of "sameness” between two mathematical structures
than actual equality (which is hard to define in general and very
bound to conventions of notation and coding). Category theorists are
willing to say more, and that the actual notion of equality between
structures (here meaning between objects of a category) is a
dangerous notion, since use of the equality-between-objects symbol in
formulas 1s not invariant under equivalence of categories [Fr] [Bl]



So let us think of an object X:X—E of Fibg/E as a "class of
structures in € , along with all isomorphisms”. We want to interpret
logic in there, and a predicate ¢(x) , x:X will be interpreted as a
subobject of X . But if we are consistent with ourselves we will not
accept any kind of subobject. It is natural to ask that the property
@(x) be closed under isomorphisms: if @(a) and a' is isomorphic to
a then ¢(a') too. This is just saying that ¢(a) is a property
intrinsic to the structure a . This translates in Fibg/E by saying
that [l X will have the form

Y oe——X
ol », X
€

of a diagram of fibrations where Y<X is the inclusion of a full
subcategory and is closed under isomorphism classes (a rather
standard terminology 1s to say that the subobject 1s replete ) Such a
condition can be interpreted in any 2-category as we will soon see.
Then an interesting phenomenon happens: the diagonal X< XxX is
not replete unless X is a discrete fibration, as the reader can easily
check, remembering that the product in Fibg/E 15 given by pullback
of fibrations. In other words equality between objects is not a
predicate of this logic of groupoids, and this is consistent with our
philosophy. If the reader thinks that this philosophy blinds us to other
possible approaches there 1s another, purely technical reason that
forces us to interpret predicates by replete subobjects: a category of
fibrations over a base category does not have pullbacks in general, and
pullbacks are essential for interpreting substitution. One can easily
construct examples where the interpretation of F(x)=G(x") , for
F,G:X—=Y is impossible, because the equalizer of F , G (which can be
constructed as the pullback of the diagonal on Y ) does not exists. J.
Penon [Pe] has proposed the use of "bi-categorical” properties to
remedy this situation, that is, requiring that the ordinary notion of
pullback be replaced by a looser form, defined up to equivalence and
no up to isomorphism. Let us state our position here about these
matters: "bi-properties” cannot be avoided, as we will see, but their
use should be restricted as much as 1s possible, since they are
complicated and do not merge well with ordinary syntaxz. The
ultimate goal is to make "bi-properties” invisible by the means of a
coherernice theorem.



(ne detaill has to be cleared before we start discussing formal
issues: so far we have used the 2-category Fibg/E as a paradigm,
and neglected the gluing conditions that should arise if one wants to
mimic sheaves and not just presheaves; for example, it H'H—=E 1s
an E-class and f:J—=] anepiof E, acHY (that is, informally, a 1sa
family (aj) g of objects of H) such that "whenever f(j)=£(j') then
aj and aj are the same” then there should be be H' such that " a .
1s the same as bg(;) . The parallel to a sheaf in the world of
fibrations 1s called a stack [WWW] . The definition of a stack is rather
more technical than that of a sheaf due to the fact that one has to
correctly handle the concept of "the same" in this looser context. The
1somorphisms used for doing so have to satisty some coherence
relations; the reader should note that a sheaf of groupoids is not
necessarily a stack, but a stack of discrete groupoids is a sheaf and
vice versa. Things turn out for us as they should:

1.2 Theorem [777]

Let € be a pretopos. Then the fibration codomain:Epp—E€
where pr is the subcategory of E~ having the same objects and
pullback squares for morphisms is a stack for the topology of finite
COVerings.

The category of stacks over €, for the finite covering topology,
will be our most desirable universe of classes for doing category theory
in a topos. In particular the first-order logic of the topos (along with
the topos' lambda calculus, but not Q) is embedded conservatively in
this universe. But along the way we will discover other interesting
universes, whose categories of small sets may be much weaker than
toposes.

oo we are on our way to developing something which can be
called "the natural logic of groupoids”, and which we claim is "the
natural logic of categories”. The advantage of this form of logic is that
the properties of categories it will allow us to express are invariant
under equivalence type, quite a desirable feature as has been said
before. Formal systems of that sort have been proposed [Fr]; what we
are presenting here 1s as close as possible, we think, to the tradition of
ordinary logic with variables and quantifiers.

We can now explain why the elimination of equality between
objects forces us to resort to the use of dependent types. Let us go
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back to interpreting logic in the topos € and give an example in
there: let f:Y—¥X be a morphism of €. How do we express
internally that f is surjective? Well, we just write

Vix Iy v fly)=x

By the miracle of topos semantics, this formula is true in E iff f isa
regular epimorphism, in other words a one-element covering family of
¥ . But we had to use the equality symbol. Is there a way 1t can be
eliminated? Suppose now f is to be seen as an indexed family, and

that we can write it as (Yy)yx , with the intuition "Yy = Hx) "
Then we could simply express surjectivity by

Ve Iy vy T
(The instance of T is there because we need a predicate to apply the

quantifiers to!) The use of indexed families, if we can formalize it, will
allow us to eliminate many mstances of the equality symbol.

This formal theory of indexed families exists, and 15 called
dependent type theory; it is mainly the brainchild of P. Martin-Lof.
The idea is that a type may have variables in it, to express the idea of
a family of types, indexed by (or depending on) these variables. The
actual detailled syntax 1s rather ponderous, but 1ts use in an
application like ours (where no computer 1s involved) 1s quite simple
and natural, since it corresponds to common mathematical practice.
The complications come from the fact that a new variable may
depend on other, previously defined variables. This precludes the
standard rule "for every type there is a countable set of variables of
that type". Instead the variables are typeless; they are given a type
"upon appearance’, in what is called a type declaration. In other
words the formal syntax has entities of the form

x0: X0, X1:%1 , x2:¥2 ..., X1 %1, (%)

called contexts , where x;¥; means that x; is a variable which is
declared to be of type X;; a context 1s subject to the obvious
condition that the only variables that may appear free in X; are
X0,...,%-1 . In particular, Xy is always guaranteed to be an
ordinary, independent type, and thus will be modelled by an object
Xg of the category. Let us assume for the time being that the
category in which we are doing semantics 1s the topos E. Asis to be
expected the dependent type Xi(xg) , with only one free variable, is



to be modelled by a morphism X;:X1—Xg of €. If %o does not
appear free in Xj , this means that Xy is an independent type too,
and so there has to be an object Y such that X4 is the projection
Xgx¥Y—Xg . The type Xp(xg,X1) 15 modelled by a morphism
Xo:Xo—Xq , and so on: the full context x0:Xg,...,¥nXn 18
interpreted as a sequence

Ko X1 - Xp-1 Xp
I—Xg— Ky ... ¥ Kg-1—Kp , (xx)

of morphisms of €.

Suppose that the context
X,y Y(x)

is interpreted by the morphism Y:Y—X , as above. Let 5&Y bea
subobject. It is natural to assign to it an atomic predicate pg(x.y) :
this would read 1n ordinary notation as an X-indexed family of
predicates pgx(y) over Y, . We will write this as

[X,y:Y(®) ], pslx,y)

meaning “given the assignments of variables in the context the
expression to the right of the brackets is a well-formed predicate”.
Such an expression is called a predicate judgement . Now we know
that the pullback functor Y*:.Sub(X)—Sub(Y) has a right adjoint.
Applying this adjoint to S gives a subobject of X ; 1ts syntactical
counterpart is the judgement

Since vy 1s no longer free it can be removed from the context: its
typing information has been transferred to the predicate. The same
obviously can be done with 3 . This gives an example of how
Jjudgements allow us to formalize bounded dependent quantification.
In general, a predicate judgement

[20:X0,..., %0 ¥nlp @

tells us that we have an interpretation [¢l—X, for ¢ and gives us
the right (at least 1n a topos) to form the judgements

[x0:X0, .., Xn-1:Xn-1)p Yy, %, ¢ and

L XX, = o 5% 1:Xn_1]p 3xn:Xn ¢ , by applying the appropriate adjoint

11



to the pullback functor X . This means that the natural dependent
type theory of toposes has two predicate formation rules :

[F,y:Y]p P [F,ytY]p 0
[r]p Vv @ [r]pHV:Y P
where I' stands for a list of type declarations ;X .

It we wanted to formalize the language 1n full detail we would have to
explicitely mention a predicate formation rules like

(Tloe [Ty
[Clpp~y

for every logical connector. And there is more: the method of
Judgements has to be applied not only to predicates, but also to types.
Remember the well-know theorem

Glven a morphism f:I—=dJ in a topos £ the pullback functor
f*:E/J— E/I has a both a right and a left ajoint, denoted Tl
and zj respectively.

This suggests two type-forming operations. First, let us introduce
another kind of judgement, called a #ype judgement , whose brackets
are not decorated:

[x0:X0,...,%n: Xp] A

Now A is a type in which only xg,...,%, are allowed to appear free.
Its meaning is "A is a well-formed type that depends on the variables
assigned in the context”. Its interpretation will be a chain of
morphisms

Xo X1 - Xu-1 Xn A
1—Xp—X1 ... — X - 1—X,«—A

Then, 1n a topos, given a type judgement as the one above, one has
the right to construct the judgements [x0:Xp, ..., %n-1:Xn-11Tyx 3, A
and [x0:Xp, ..., %n-1:¥n-1)Zx;x, A . The interpretation of Ty x A
in E is the morphism B—X,.1 obtained by applying the right
adjoint to X(:E/X,-1—E/X, to A . The interpretation of Ty Ky A
1s the same, using the left adjoint instead; we know it is just the
composite X,A:A—X, -1 . These constructions have been used a lot
in topos theory, since dependent products and sums are a standard

12



mathematical construction, but their correct syntactical framework
has not been well known at all among category theorists. TT and X
are binding operators, like ordinary quantifiers.

Notice that i a judgement like [x0:Xg, ... Xn:XnlXn+1 thereis
an element of arbitrariness since the order on variables (and types) 15
linear, due to typographical constraints. There is a natural suborder
%i<x; of that total ordering on the variables, that expresse the
dependency of xj on %j: write X;<X; for the transitive closure of
the relation " %; appears freen X;j". Let us add a dummy variable
%41 to take account of Xpsq in the order. This i1s obviously a
transitive, antireflexive, antisymetric relation, 1.e. an ordering without
reflexivity. We will enforce a notational convention by requiring that
only the ¥i<Xj that are <-maximal should appear free i Xy . The
point is that in a judgement like [x:X,y:Y(x)], ps(x,y) the presence
of ¥ in pg is not necessary, since x appears in the context already
and y cannot exist without x anyway. So our practice will differ
from what we have done so far, and we will write this sample
judgement [x:X,y:Y(x)]lgpsly) instead. In ordinary, informal
mathematical practice, people will also use more fastidious, redundant
notations along with this approach, for reasons of emphasis. Let us
end this prelimmary discussion by saying how terms will be handled:
there will be another kind of judgement, called a term judgement
that has the form

[t e 5 B o B

and whose meaning will be " f is a well-formed term of type A", and
whose interpretation will be a diagram

Xo X1 - Xp-1 Xn A
1—Xp—Xq ... — Xp1— X, —A
f
where f is a section of A ,ile. Af=1x, . The same constraint as for
types will apply for the free vaniablesn f, that 1s, they will always
be maximal for the <-order.

13
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§2 THE FORMALISM OF DEPENDENT TYPE THOERY

Since we want to work in more general contexts than elementary
toposes let us start by giving what is almost (i.e. cf. [Eh] ) the most
general axiomatic context that allows one to do dependent type
theory. And general 1t 15

21 Definition
A display category [H-P,Ca,7?7] (C,F) consists of a category C

with a terminal object, along with a distinguished class F of arrows,
the display maps , or abstract fibrations such that

i) If EEE—=C is a display map and F:D—C any arrow then the
pullback F*E:F*E—D exists and is a display map

i) If E is as above and «:C—C', p:E'=E isomorphisms then
xEp is a display map.

A display category is said to be common if it obeys the additional
condition

i) every morphism to the terminal object is a display map.

The display maps correspond to dependent types and are the
morphisms that will appear in the interpretations of contexts and
Judgements; in other words not all morphisms of a category need
have meaning as a type (we have already seen this happen in our
discussion of pullbacks of replete monos in categories of fibrations.)
Condition 1) is called Stability in [H-P] , and says that we can
substitute any term of the right type for a variable in a dependent
type. Condition ii) is a natural complement to condition i), and
comes from our desire of making things as close as possible to
categorical practice. [t says that the property of being a display map
is intrinsic to the map, and not an arbitrary whim. iii) says that
any object can be seen as an independent type. Since there is a
terminal object, we have a type for the one-element set. If «:X' —X
is an isomorphism, the square

X —1

« ||
X —1



1s a pullback and the identity of the terminator 1s a display map by
iil) , so we get that in a common display category every iso is a
display map. Another consequence of i) and iii) is that C has
finite products and every projection 1s a display map, since taking the
product is pulling back maps to the terminator.

The assignment of a language to a display category will proceed in
two steps: the first step is for all atomic symbols and will be described
in more details than the second step, which is for the composite types
and terms, those that are built using formation rules and substitution
(the reader can skip 2.2-2.4 at first reading). In order to carry out
the first step, we have to use the axiom of choice and designate a
pullback diagram

Xty
2 —

Yy | | XY
s —— s

X

for every pair of display maps with a common codomain. If X is an
identity morphism we ask that X'Y =Y . This choice of pullbacks
does not have to be functorial, which differs from [St][Cal . We will
also need to choose the terminal object once and for all, and we will
call it 1. Recall that a graph G is a pair of sets (Gg,G1) (the
vertices and the edges , respectively) along with a pair of functions
5,1:G1—Gg , called source and target . A path «g,...,0n In G 154
sequence of edges such that s(og4q) = tlo) .

2.2 Definition

A template is a pair (G,r) , where G is a finite graph (Gg,Gq,s,t)
and r an endofunction Gq—Gy , called reference, subject to the
following conditions:



1)

ii)

iii)

)

V)

Vi)

vii)

G 15 a tree: for every vertex v there is a unique edge with
source v, and there is a vertex x such that for every veQGg
there is a path og,..., &y (necessarily unique) with s(og) =v
and tloy) == . In particular the edge with source * has
also = for target. This induces an order structure on Gy :
we write o £p 1o mean that there is a path g,...,& . This
order is usually defined on Gp: say v<Vv' if thereis a path
xQsee,%n With slog) =v' and tloy) =v; we will use the
orders on both Gp and Gy .

r 1s eventually idempotent, ie. for every «€Gy thereis n
such that r™«) = r®* () . Therefore every aeGy
determines a unique fixpoint f(x) .

r is injective except on the fixpoints, i.e.
rle)=r(p) = a=p=rla) .

for every edge o which 15 not a fixpoint r(o) £ o £ rle)
and tlo) # tlr(ed)) .

If p=r(a) and t(p) ¢ tlex) then there exists ¥<o such that
r(¥) is the predecessor of p, i.e. the unique maximal edge
B .

There is a path, «q,... .o , the mainline, where «p Is
maximal, such that all the edges not in the image of r are
in the mainline, and all other mainline edges are fixpoints.
This path is uniquely defined; in order for this to happen, it
suffices to require that the set Gq-Im(r) be linearly ordered
and that all the edges between its elements and abhove 1ts top
element be fixpoints and form a path.

Every edge not in the main line has a maximal fixpoint edge
above it,

We say that a template is prime if the maximal edge of its mainline is
a fixpoint. Let (G,r) be a template and «€Gq be a fixpoint. There is
a sub-template generated by o and it 1s prime: take the path
between o and x» andlet G be the closure of this subset under the
operation r . An easy verification shows that it is a template and its
mainline is the path «,...,* . It is also easy to see that given a prime
template (Gr) and o« the maximal mainline edge then the template
generated by o is (G,r) .

16



The reader should not panic and look at the examples to get an
idea of what is going on. We should add that conditions iv) and wvii)
are there to normalize templates, that is, get a unique template to
correspond to a given context, modulo the choice of variables. Here 1s
a pictorial example of a template, which is obviously not prime: the
thick arrows represent the action of r; we do not show it for
fixpoints. The mainline is obviously the only path of length six.

*-‘ o‘ .

The intuitive meaning 1s as follows: all the edges of the template are
to be interpreted as display maps in C, and given a fixpoint arrow
this map will also be used as an atornic type symbol in the syntax;
the reference function says that an edge « is to be interpreted as
the pullback of r(o) , but that in the syntax its type symbol is not
that pullback map, but the map corresponding to the fixpoint f(e) .
In order to make all this precise, recall that given a graph G a
G-diagram (or diagram of base G)in C is a morphism of graphs
from G to the underlying graph of €. Given a diagram D:G—C we
will use the subscript notation for edges and vertices, ie. if o:v—=v'
in G then Dg:Dy,—Dy .

23 Definition

Let T=(G,r) be a template. A decoration of T in € isa
diagram D:G—C , along with a family ¥ of maps
(roiDt(oc)_’Dt('r(oc)))oceGi such that

) D(x)=1.
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) If o isafizgpoint ¥, 1s identity.
iii) For every o, Dy =¥ Dp(x) -
"B-; Dr(«

+ =

Dr(oc) l l Dy

+ —

1?0{‘

) If o 1s not a fixpoint, then by 1v) either t(r(o))<tle) or
t(r(oe)) is unrelated (neither < nor 2 ) to t(a) . In the first
case let B be the edge <« such that t(p) = t(r(x)). Let
o, ¥9,....%,, B be the unique possible path. Then
T = DgoDy ... oDy -

rlx) | | o
P 2 .., & E——

B ¥n 0

In the second case, by v) thereis §<o such that r(§) is
the predecessor of r(e) . Let «,¥y,...,¥n.,8 be the unique
possible path. Then ®, = &FDy(5)0Dy ... Dy .

-

Dr(o) | Dyn Dh‘ol Do

B e T o S—

Dy(s) l | Dg

s &

¥g

24 Proposition
A decoration (D,(34)) is entirely determined by the values Dy
for all fixpoint edges o .

The proof is easy and done by induction on the length of the
segment below o . O

For example if we assign display morphisms of C to the fixpoint
edges of the template drawn above



we define a decoration if and only if cod(A)=cod(B)=1,
cod(X) = dom(A) , cod(Y) = dom(ATB) and
cod(Z) = (AeXeXT(ATB)o(XT(ATB))TY)'A .

We can now associate a formal language to our display category.
First, to all triples (T,D,¥) where T is a prime template and (D,%) a
decoration of T, associate an atomic type symbol <Dy, T,D,¥> , o
being the generator of T. In practice we will simply use the display
map Do to denote this type; the added information is to make type
symbols impervious to the identifications of objects of T brought
about by the chosen pullbacks. Thus we lied a little when we said we
would associate atomic types to display maps; a bit more is needed.
Let now T=(Gyr) be any template and (D,¥) a decoration of T. Let
ap,...,0y, be its mainline, and let xq,...,x, be a sequence of distinct
variables. 1f p is a fixpoint edge of G let Tlg denote the prime
template that has p as a generator, and (Dlg,Flg) the decoration
obtained by restricting (D,¥) to Tlg. We define the order < on the
variables as the transitive closure of the relation

xi<x; if there exists m such that r™(oy)<flo) .

Let X; denote the type symbol <Dg(o), Tle(ep)Dle(exi)s Elf(og) > (we get
kickbacks from the White Knight.) The decorated template (T,D,¥)
gives rise to the context

%0:X0,21:X1(k1), ..., Zn-1:Xn-1(Kn-1) , Xn: Xnlky)

19
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where k; is the sublist (for us list is just another word for a finite
sequence) of the list xg,...,%;-1,%-2 of variables that retains only the
%;j<¥; that are <-maximal. For example if we choose the sequence of
variables a,x,b,y,a',z the context we get (using morphisms as type
symbols) from our sample template is

a:A,x:X(a),b:B,y:Y(b),a" A,z Z2(x,y.a") .

In the definition that follows whenever we mention the decorated
template (T,D,¥) all its innards are denoted just as above. That is, 1ts
mainline has length n , its edges are denoted «; , etc. .

2.5 Definition

A basic context of € is a context [xg:Xg,...,xn:X,] obtained
from a decorated template (T,D,¥) and a sequence of variables by the
process above. Its interpretation is the diagram of display maps

Dag Deq Dy

le— 60— |, — s e—.
A basic type judgernent is a judgement [xg:Xg,...,%n-1:%n-1)%n
obtained by taking a basic context, dropping the last variable and
putting the last type in evidence, out of the context. Its
interpretation is the same sequence of morphisms as for the context
onie started with. Now lock at the sequence
an,r(oan),rz(ocn),...,f(ocn) , assurming that (o) = r™ (o) . Thereis a
sequence of contiguous pullback squares

§ ey e §

DOCn l lDl"(Otn) l

8} s —— * —

@ —_—

| Do) ()

¥on  Fr(an) g’rm”l(ocn)

To every f:Di(ep)—Ds(f(ery)) such that

D(on)°f = Erm=1(oen)® - Er(oy) ® Ty, @SSIEN an atomic term symbol
Pf T.D,¥ » which 1n practice we will denote by the morphism f. Then
the judgement [xg:Xg,...,%n-1:Xn-111(k):X,, is a basic term
judgement of T, where k is the sublist of the sequence
Xn-1,%p-2,..-,%0 that retains the variables that are <-maximal. The
interpretation of this judgement is the diagram

li—'f——‘ e . ¢
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where f' is the section of Dy, determined by { and the fact that
the outer rectangle in (x) is a pullback. For example, if A,B,C are
objects of T such that A:A—1,B:B—1,C.C—1 are display maps,
and f:A—B gdom(ATB)—C morphisms of C,then [a:Alf(a):B and
[a:A,b:Blg(b,a):C are term judgements of C. So the reason that we
go through some contortions to use f and not f' (as defined just
above) as the term symbol is just to make things look like ordinary
practice and thus read more easily. Finally if S X, is a display
subobject (that is, such that its representatives are display maps)
assign the predicate symbol pg Tp,3 . Then [xp:Xp,...,%n Xnlp Pslk)
is a basic predicate judgement of T, where « is the sublist of the
vanables xp,Xp-1,...,%0 of all the x; that are <-maximal. The
interpretation is the diagram
Doy Doy Doty
fe— 60—+ | —.e—.8
(We will not be bothered by the fact that a subobject is not really a
morphism and so cannot appear in a diagram; more on this soon.)
For example let D be a prime template, such that the display map
Do, has the property that its diagonal (that is, the splitting A of
Dey, Doy SUch that Dy YD oA is identity) is a display map.
Doy Dox
 —

DO(.n l l D(Dtin\r DOCn

+ g
Doty

Construct a new template T by adding one edge B with target
t{oy) , one edge on+1 Wwith target s(o,) , and such that

r(on+q) =p=r(p) . There is an obvious extension (D'¥') of the
decoration (D,¥) thatsends p to Dy, . Thenif y isanew
variable, [%0:Xg,..., X! Xn,Y: ¥nlpXn=x,y I a basic predicate
judgement of C. Usually we will not bothering indexing the equality
symbol by its type when we use it.

2.6 Note

In theory type and term symbols force the order of introduction
of the variables that appear in them. For example, if [x:X,y:Y]Z(x,y)
is a basic type judgement of € and a,b wvariables then the type
Zla,b) can only appear in contexts and judgements preceded by a
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variable declaration ...a:X...b:Y ..., and never ...b:Y... aX ... .
This is because X'Y # Y'X in general. In practice one can always
compose with the necessary isomorphism in order to use a symbol in
a context whose variables are not in the right order.

Basic contexts and judgements can be combined to form
composite terms and types. From now on though, we will not make
choices whenever we mention a universal construction like pullback.
Thus we will revert to the traditional notation F*(-) to denote the
pullback "functor”. The additional morphisms we will construct in the
interpretations will only be defined "up to unique isomorphism” and
should be thought of as equivalence classes of morphisms, in the way
of subobjects. To be more specific the interpretation of a syntactical
entity will be a large diagram ¥:D—C , a glorified decorated template,
where the graph D can be divided into two parts:

a) An "interesting" part, which is the one we look at (i.e. the
chain of display maps of a context), and whose non-basic
components (these components being subdiagrams) are
defined only up to unique isomorphism.

b) An auxihary part, which is what guarantees that the
components of the interesting part are defined (induction is
involved) only up to wnrgue isomorphism.

In other words the auxiliary part guarantees that given two diagrams
I I':D—C that are valid interpretations, there exists a unique
1somorphism ¥—¥' . For example, an "interesting" component could
be an edge o such that D« is a display map F*X which is a
pullback, while its "auxiliary” counterpart would be the other leg of
the pullback. There is some amount of technical work that has to be
done to prove that the interpretation of a judgement is invariant
from the way this judgement has been constructed: a coherence
theorem. These technical matters will await a subsequent paper
[La2] . Any category theorist worth his salt will see that coherence is
“true and obvious”, since all the operations we use are universal
constructions, and the Beck condition always holds when quantifiers
are involved. From now on, with the exception of 4.12, we will only
look at the "interesting” part of an interpretation and call it the
Interpretation.



Some of the formation rules are common to all display categories
and can be called the structural rules for types. In what follows
whenever we mention the context [' itis xg:Xp,...,xp: ¥y and has
interpretation

Xo X1 o Xp1 X
1—Xog—X1 ... — X 1—X, ,

2.7 The structural rules are

(Basic) All basic contexts and judgements are contexts and
Judgements of C.

(ChgBs) [WWWPullback rule for terms and types defined in
subcontexts]

(Subs) If T isa context and [xg:Xp,...,%-1:Xi-1]1s:X; isa
Jjudgement (the types and variables forming an initial
segment of I') then
I =Xy s w1326 BNl -8 ) B K plie-5] 152
context, where Alx<Db] means that every occurence of x
in A isreplaced by b. As usual, one has to insure that no
free variable of s will come under the scope of a quantifier;
this can be achieved by renaming things. The interpretation
of the new contxt is the sequence Yg,...,Yn-1 of display
maps, where Y;=X; for j<i and

Xi+1 Xj+2 Xn
Xje—Xje1 ... Xp-1— Xj
Xo X1 - Xiglls 7 i la
1—Xpgt— &g wew Ryt Yy # S S et S

Yo Y1 ... Y Yy Yie1  Yn-1

Yi,Yi+1,.--, Yn-1 are obtained by pulling back Xj+1,...,%n
by s, as the diagram shows. If [['JA and [T']t:A area
type and a term judgement where the interpretation of A
is A:A-X, and that of t the section t:X,.1—=X, of A,
then [AJtlx;—s]:Alz;s] and [A]Alx;<s] are judgements,
with the interpretation of Alx;~s] being the pullback
B:B—Y,-4 q:B—A of A by q,and that of t[xy«~s] the
unique t:Yp-1—B with q't'=tq. If [['];¢ is a predicate
Jjudgement then [Alpglx;<s] is a predicate judgement, the
interpretation of ¢[x;<—s] being pullback by q.

23
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(Iden) If T is a context then [[]x;:¥; is a context, the
interpretation of the second occurence of X; being the
pullback X:X—X, of X; by XjoXj+1°...°X, , with
X' X—X; as the other leg of the pullback, and the
interpretation of the second occurence of x; being the
section 8:X,—X of X such that X'e8§=%j4q10...0%y, .

(NwCn) [Introduction of new atomic terms named after sections of
composite types]

Notice that the combination of (Subs) and (Iden) finally allows us
to have repetitions of variables in a term or type. The reader may
find it a bit hard at first to chase diagrams whose arrows go in the
reverse direction from what is traditional But notice that we are
consistent in our approach. In particular, type arrows always go left
or down, and term arrows always go right or down. We can now
interpret a rudimentary form of logic in our display category,
rudimentary because the only connective we are allowed to use yet is
conjunction:

(Conjf) If [Tlye and [Tlp¢ are judgements of T, then [Tlp@~y
1s a judgement, its interpretation [yl being the
intersection of the subobjects [¢J and [yl .

(Truthf) If T is a context then [T'] T is a predicate judgement, its
interpretation being the full subobject of X, .

2.8 Definition

Given predicate judgements [T1y¢q,...,[T] ¢y and [Tly¢ we
write [T]1¢1,...,95, E{ to mean that the intersection (infimum)
Loqdn...NLy,l of the interpretations is contained in [yl . We write
[T]Ey to mean that [yl is the full subobject.

We have the usual deduction rules:

[(Weak),(Exch),(Cut),(Cony), [Tl  WWW]

29 Definition

Let (C,%) be a display category. We say that (C,%) admits
products if for every F:F—=Y in ¥ the pullback functor F*:Fy—%F
has a right adjoint TTg , and the Beck(-Chevalley) condition holds for
pullback diagrams with two parallel display maps: if



S
E—F

E|] ~|F

K==t
X

is a pullback where E,F and G:G—F arein ¥ , then the natural
morphism X*TTgG—TIgS*G in Fx is an iso.

This gives us a type formation rule:
(Prodf) [%0:Xp, ..., X Xy, 0 X] A
(Bt K, s s Zi B ] Tipm &

along with one term formation rule and one new term:

(A-abs) [%0: X0, .o, XX, 2 XA
(3808 K os s B ey FAR D) B Tl 8

(eval) [2g: X0 By Mg Kz Mg Alzey: A

These judgements are interpreted as follows: first denote
x20:X0,...,%n:Xn by T' and assume that the interpretation of
[[,x:X]t:A is the diagram

% % -~ X, X A
1—Xg—Xq ... — X, —X A
t

Then the interpretation of ['J(Ax:X)t: Ty, xA is the diagram

Xo X9 - Xn TixA
1‘_X0‘_—X1 as ‘_Xn:-)'
_tl

where t' is the unique morphism 1y —TIxA in Fx_ such that
eveX*(t') =t, ev:X*(TTxA)— A being the counit of the adjunction.
The interpretation of [[,y:X,z:TT,.xAlz'y:A is the diagram

Xo X4 - X Y g
1e—Xp—Xq ... Xpe— Xe—» =
Y*A

where Y is the pullback X*(TTxA) and g the section of Y*A
determined by ev,le. qg=ev

25



Y=X*(TTyzA)

Instead of writing z-y we will often use z(y) , the more conventional
notation. Notice that p- and n-reduction are true in C, because
they are just the syntactical translation of adjunction, and so, given
[['1s:X we should have the right to state [['J((Ax:X)t)-s = t[x—s] and
[,z Ty xAl((Ax:X)2-%) = z . But we have no way of knowing if the
equality symbols =4 and =(_ ) are available in our model. The
author did some amount of soul searching before reaching the
conclusion that there should be another notion of equality, not a
predicate, for expressing the equality of parallel maps of the model
Let us use the symbol = for that new equality. The author then
learned, much to his surprise, that Martin-Lof, whose concerns were
completely different, had reached the same conclusion and had
defined an "external’, as opposed to an "internal” notion of equality.
We will not formalize the use of the external = here, since we do not
need it to discuss the concepts we want to deal with; we will only give
an informal discussion of the whys and hows. First, a notion like =
is obviously needed if one wants to complete the Lawwvere program for
dependent type theory and construct categories from formal systems.
At one point or others terms will have to be identified by a
congruence to give morphisms, and so for every type X there will be
a =y . But the use of = will be strictly regulated; for example if
X,y are distinct variables the statement x=y will be proscribed.
This would mean that (using our faverite metaphor) given a class of
mathematical structures, we could pick two structures in it at
random and decide if they are equal or not. But mathematical
structures have automorphisms, so they can "rotate’, and we have no
way of knowing how to "orient” two structures to compare them. On
the other hand the statement x=x will be legal, because once we get
hold a structure, we can hold it firmly!

210 Proposition

Let (C,7) be a display category that admits products and KCF
a class of maps which is closed under composition, pullbacks by
arbitrary maps, and the right adjoint of pullback by arbitrary maps.

26



Then for every XeC the full subcategory KxCFxg whose objects are
the maps in X is cartesian closed and for every map F:Y—X the
pullback functor F* preserves the cartesian closed structure.

Let A:A—X  B:B—X and C:C—X bein Xg. The product
AxB in Xy is the diagonal P of the pullback

P—B

Lo
A—X

which is in X by assumption. Let B=C = TIgB*C . We get

Kx(AxB,C) = Xx(P,C) = Kx(B-B*A,C) = Kg(B*A,B*C)
Kp(A,TTgB*C)

2

and this shows Ky 1s cartesian closed. Let F:Y—=X . Itis trivial to
show F*:Xx—Xy preserves products. To show F * preserves
exponentiation use the Beck condition on the pullback square

P—B

| |B

Y—X . O
F

The construction of B=C above inspires the following notation: if
B,C are two types, and if x is a variable that does not appear in C,
then the type B=C will stand for TTy.pC.

The following is very useful technically:

211  Proposition (Streicher [St])

Let (E,F) be a display category. Then the following are
equivalent:

i)  For every display map F:F—Y the pullback functor
F*C/Y—C/F has a partial left adjoint TTp which is defined
for every object of FFCC/F andlandsin Fy.In other
words, for every display map G:G—F there is a display map
TgG:TTFG—Y and eG:F*TIpG—G in FF such that G is
(co)universal: for every H:H=Y in C we have the
jsomorphism C/Y (H,TTgG) = C/F (F*H,G) , mediated in the
usual way.
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1) ¥ admits products.

For i)=1ii) we obviously only have to prove the Beck condition.
Let E,F.S,X be the same pullback square as above, and let G:G—F
and A:A—X be display maps. Let E*A:B—E be the pullback.
E*A S G
B—E—F—@G

A*E| E| |F

A—X—Y
A X
We get
Fx(AX*TTRG) C/Y (XA TTFG) by pullback

C/F (S°E*A,G) by assumption
FE(E*A,S*G) By pullback
Fx(A,TTES*G) :

mm momw

and this being true for any A , proves the claim. For the converse,
let F;:F-Y ,6 G:G—F be display maps. We have to show that for any
X:X=Y in C C/Y(XTTG) = C/F (F*X,G) . Let S:E—F , E:E~X be
the pullback of F and X . Then

C/Y (X,TTgG) C/X (1x,X*TTFG) by pullback
Fx(x,X*TFG) by Unit
Fx(1x,TTES*G) by Beck

I3

1]

e

Ty (1E,3%G) by TIg-adjunction
= C/F(S,G) by pullback
C/F(F*¥X,G) . QED. O

212 Definition

Let (C,%) be a display category. We say that it admits sums if
F is closed under composition.

Note that it follows trivially from this that for every F:F-Y in
7 the pullback functor F*:F¥y—Fg has a left adjoint Sp=Fo(-)
and the Beck condition holds for pullback diagrams with two parallel
display maps. But the converse is not true in general. If (5,F)
admits sums we have access to the following formation rules and
terms (using the same notation for I',X,t as in 2.9 ):
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(Surmnf) [T, x:X]A
(M ZexA
(Pair) [Tle:X [Tt:Alxes]

[Ths,t>: 2y A
(Proj1) [[,y:ZexAlnly):X

(Proj2) [T,y:ZyxAlm'(y):Aln(y))

Supposing that the interpretation of s is the section s of X, that of
t the section t of s*A then the interpretation of <s,t>:2y.xA is the
map qt, where q is the other leg of the pullback

A
R Ay
Xllst Ta
X,=—A
s*A
The interpretation of m(y):X is the section m of (XA)*X determined
by the morphism A:XA—X of F/X,.

x(—-.
X ] NA | XA*X
Xn e A
XA =2y wA
By (Subs) the interpretation of A(m(y)) is the pullback A*A . The
interpretation of m'(y) is then the diagonal of A™A
A
K=
£/ 14 1
Xn<—A¢——-—.

ZewA=XA A%A

The reader can verify the equations [[']m(<s,t>) =xs,
[TIm'(<s,0) =a(n(s)) t and [Ty ZexAlcn(y),n'(y)> =( )y , which we
give for the record.
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One consequence of the definitions is that if x does not appear in
A we can denote ZyxA by XxA. Then the pair <s,t> is the
ordinary cartesian pair.

2.13

If a display category admits sums there is another logical
connective at our disposal: Let [T x:X]p@ be a predicate judgement
such that

[Fx:X,y:Y]o,plx—y]k x=y (%)

Then we can introduce the predicate 3!,.x¢ , with the judgement
[Tl3'xx ¢ . The point is that if X:X—X, is the interpretation of X
and [gl X is that of ¢, the sequent (x) asserts that the
composite L9l X, is a monomorphism, and since it is a display
map it can be used as the interpretation of 3!,.%¢ . The deduction
rules for 3! are those of 3 (4.2) . This allows us, ameong other things
to give a comprehension scheme that turns predicates into types. Let
[F]pq; be a predicate judgement. Since its interpretation is a display
map, it also corresponds to a type: [']T, . This type always has an
equality symbol (the diagonal of a mono is the identity) and so we can
write [I'x:Ty,y:Ty)x=y , which internally asserts that the display
map is a mono; all this can be done in any display category, but the
following cannot: we get

[M13tg1, Ty and [Tlyk e, T
which internally asserts the validity of the comprehension scheme.

Another thing that 3! allows us to do is give a notion of term
descriptor. Let [[x:X],¢ as above be such that [[]E dlex9 . This
asserts that the composite [9lsX—X,, is an isomorphism. This
isomorphism enables us to construct a section t:X,—X of X and so
1f we want we can add a term formation rule

(Descr) [TlE Iy
[T (6x)¢g: X

where § is a binding operator meaning "the unique x such that
¢ ", and thus

[T']E @((6x)g)



§3 THE “ESSENTIALLY ALGEBRAIC® THEORY

31 Definition

A groupoid (or category) is be said to be free if it isomorphic to
the free groupoid (or category) generated by a graph. A groupoid (or
category) is said to be finitely presented if it can be described with a
finite number of objects, generating morphisms and equations
between parallel morphisms. If E is a category with a sufficient
amount of structure (the reader can read this as "an elementary
topos” without much loss of generality), we will often call its objects
E-sets and its morphisms E-functions , in order to emphasize that
there exists a semantics that allows us to legitimately reason
informally as if the objects were sets, if we make sure we tayle logic
we use to the amount of categorical structure available.

Let @ be a groupoid-enriched category, that is, a 2-category all
whose 2-cells are isomorphisms. We will sometimes call its objects
G-groupoids , the 1-cells between them Q-functors, and the 2-cells
G-transformations . Unless otherwise noted, whenever we talk about
limits in a 2-category, like products or pullbacks, we mean 2-limits: if
(Xg)gep is a diagram in § seen as an ordinary category, then Y
along with a cone to (Xg)q is a 2-limit for (Xg)q if given any Aec$
the usual natural isomorphism

F(AY) = Cone(A,(Xgq)

1s an isomorphism of groupoids, not only of set; it is easy to see that
the right side of the isomorphism has a natural groupoid structure.
For instance, if we say § has products, we mean that for any 4-
groupoids A,X,Y, we always have 3(A,XxY) = 3(A,X)x3(A,Y) as
groupoids. Let I be a (set-)groupoid. Write G(X,Y)! for the groupoid
of all functors and natural transformations 1—3(X,Y) . This means
that if I’eg(X,Y)I and o:i—j in I thereis ¥;¥—¥;in X)Y),
etc.. Let F:D—X in 4 . Denote by ¥xF the object of Q(D,Y)I that
sends i€l to ¥F . If ouF—=F in 4(D,X) there is an obvious

Ixox: IxF—TI=F' . We leave the following for the reader to prove: If
Ce9 and B:G—G isin G(C,D) then

Ix(FQ) = (IxF)xG , x(Fp)=(¥xF)xp



We say ¢ has finite cotensors [Ke] if, given a finitely presented
groupoid 1, and a @-groupoid X, there exists Xleg along with
@:I—>9(XI,X) with the following universal property: for any Ae$,
the morphism of groupoids $(A,X1)=G(A,X)! which sends F to 3xF
is an isomorphism. The paradigm for cotensors is the arrow (comma)
object: suppose § has finite cotensors; if 2 is the free groupoid
with two objects 0,1 and one (iso)morphism 0—1 , then for any
XeG X2 comes equipped with do,dlzxz—)x ,and p:dg—dq , such
that for any A€@, c:X—=Y in 9(A,X), there exists a unique
a:A—X2 with pa=o . Let K:I=J be a morphism of finitely
presented groupoids. For Xe@ thereis XX:XJY—X! which is defined
by the equation &xXK=TK , where & ,¥ are the universal diagrams
of X!, XY respectively. From now on ¢ will be assumed to have
finite products and cotensors.

Let CeG . A fibration above C isa G-functor E:E—C such
that, given any Ae3, X, X:A—=E and o:X'—X, then for any
Y:A—E such that EY=X ("Y isabove X" or " Y Is in the fiber of
X" ) there exist Y:A—E ,p:Y'—>Y such that EY'=X' and Ep=«. A
fibration E is discrete if any A,X,XY,a as above determine a
unique Y',p with the required property. A simple translation
argument shows that this is the same as saying that whenever
¥:Z'=Z 1s such that EZ'=EZ and E¥ is the identity then already
Z'=Z and ¥=17 ("every fiber is discrete”) Given another fibration
F:F—C, a morphism of fibrations H:E—F isa $-functor HHE—F
such that FH=E .

As has been repeatedly said, the intuition behind our approach is
that an object C of § should be thought of as a class of
mathematical structures, which are the "elements”, in the Kripke-
Joyal sense, of C, along with the isomorphisms between these
elements/structures, the whole forming a groupoid. The fibrations will
be the display maps: a fibration F:F—C is an indexed family (XJ)¢cc
of groupoids X, , indexed by the groupoid C.If c¢—d is a morphism
in C it is quite natural to require that there be an equivalence
X.— Xy , since groupoids have more structure that sets and we have
to take that structure into account. If F above is discrete, this
means that all the X. are discrete, i.e. sets (or classes). A discrete
fibration of groupoids has another intuitive interpretation, due to
Joyal. Think of the groupoid F as a class of structures which are
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richer than those of C, and of F as a forgetful functor, say from
rings to abelian groups. Then a set X is the class of all F-structures
definable on the underlying structure ¢, and the action of C
corresponds to transport of structure along an isomorphism [Jo] . The
fact that F is discrete means that the structure C acts as a
"sufficient support" for the structure F. An arbitrary fibration F
can also be considered as a forgetful functor, of a more general sort;
for example one sees that the forgetful functor from the groupoid of
small categories and isomorphisms to the groupoid of sets and
bijections that sends a small category to its set of objects is &
fibration, but not a discrete one; this means that some important
information is lost by not looking at the morphisms of the small
categories.

g can be endowed with intuitive contents in another way. Given
a groupoid G , one can think of it as a given class of concepts to be
realized by terms, which are the objects of G. A morphism of G is
to be thought of as a proof that two terms realize the same concept.
A fibration G—H is a mapping between terms and proofs such that
proofs in H can be lifted to G . We feel this approach should have
applications in proof theory ( G. Huet also proposed this idea [Hu] .)

3.2 Proposition
Let E:tE—C be a fibrationin ¢, G:D—C a $-functor.

a) If the (2-)pullback P:P—-D exists, it is a fibration. If E is
discrete, P is discrete too.

b) Any projection AxC—C is a fibration. In particular the
unique A—1 to the terminal object is a fibration.

¢) The composite of two fibrations is a fibration, and the
composite of two discrete fibrations a discrete fibration.

d) If F:F—>C is a discrete fibration, then any morphism H:E—F
in F¢ is a fibration E-F; if E is also discrete, H is
discrete,

e) Any monomorphism X—C which is a fibration is a discrete
one.

f) If § has finite cotensors and [ is a f.p. groupoid then
ELEIscl s a fibration. If E is discrete El is discrete.



We will do the first part of d) and leave the others, all trivial, to
the reader. Let X, X'"B—=F , o:X'=»X and Y:B—E with HY=X.
Since E is a fibration thereis Y:B—E and p:Y'—Y such that
Ex =Fp , in particular EY'=FX'. Then both o and Hp are sent by
F to Fp and so Hp=o since F 1is discrete.

A GQ-groupoid A is said to be discrete if A—1 is a discrete
fibration, i.e. if $(X,A) is a discrete groupoid for any X . Obviously
any morphism between discrete objects is a discrete fibration.

The presence of discrete fibrations will add one feature to the type
theory, in that we will distinguish between ordinary fibrations and
discrete ones, since discrete types are obviously very important. It
bears repeating that a fibration which is a monomorphism is always
discrete; we call such monos replete monos; we know they will be
used to interpret predicates.

3.3 Examples

Take G to be the category of small groupoids. Then a fibration
E:E—C in §, as defined, is just a Grothendieck fibration of groupoids.
That is, if x'—x is morphism of C and y€¢E such that Ey=x then
there exists y',p:y' =y such that Ep=o . To derive this from the
abstract definition, just put A=1. The converse is easy to prove too,
but notice that it requires the axiom of choice. A discrete fibration in
g is just a Grothendieck fibration E:E—C where for every yeC the
fiber E€=E1(c) is discrete.

Let € be a small category. We recall that Fibg/C is the
2-category whose objects are diagrams X:X—C of small categories
that are fibrations of groupoids. Our convention on notation should be
clear: we use a bold letter for an object of the category, i.e. a fibration
above € , and the corresponding "blackboard bold" letter for the total
category of the fibration. A morphism F:X—=Y Isa functor F:X-Y
between the underlying categories such that YF =X . Obviously, it is
always a cartesian functor., Given F,G:X—-Y ,a 2-cell F—=G Isa
natural transformation o:F—G above identity, i.e. such that
Yo = 1x . This makes Fibg/C into a groupoid-enriched category,
since Y reflects isos. Let us show that in Fibg/C , F:X—-Y isa
fibration iff the corresponding functor X—Y is itself a Grothendieck
fibration (which makes it automatically a fibration of groupoids).

First we claim
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34 Proposition

Let F:X—Y be as above. Then every morphism of X 1is
cartesian for F.D

The proof is left to the reader. Now, assume that F is a fibration
in Fibg/C. Let XeX,and a:A—FX in Y. Assume that X is above
S in C, and that a is above s:T—S. For every rR—S in C
choose ¥,.:r*X—X above r in X. This defines a functor
Ky:€/S—X, which 1s a morphism of fibrations Ug—X , where
Us:C/S8—C is the standard discrete fibration that sends rR—S to
R . In other words, Ug is the representable contravariant functor
determined by S; there is a Yoneda lemma for fibrations which
asserts that the fiber groupoid X5 is equivalent to the groupoid of
morphisms of fibrations Ug—X , and this equivalence is mediated by
choices ¥ of cartesian arrows. Look at FKy:C/S—Y. F¥s is above
s ,and sois a. Therefore there is a unique o:Fs*X— A above 1T
such that ao =Y. Define H:C/S—Y along with o:Ky—H, as
follows:

Hr =FKyr =F(r*X) and or isidentity if r#s
Hs=A and «os is o .

H is obviously a morphism of fibrations and o a transformation
above identity. By assumption, there is L:C/S—X and p:Ky—L,
with FB=« . Then ps isaniso s"X—A , hence b’s(Bs)'1 Is a
meorphism above a , which proves that F as a functor is a fibration.
The converse, which asserts that if F is a Grothendieck fibration then
it is a fibration in @(C) , is left to the reader. Here again the axiom of
choice is used.

Let us now show that F is a discrete fibration in Fibg/C iff F
i1s a discrete fibration as a functor. First assume F 1is a discrete
fibration in the traditional sense. Let

H K
Y—f—3K

in Fibg/C , along with o:FK—=H . By the above we know that there
is LAY and B:H—L with Fp=« . Let L"A—=Y and p"H-L'
also give Fp'=o. For every AeA,BA and p'A are isomorphisms
with FpA=« =Fp'A. Since F is discrete, we get pA=g'A , and this
shows p=p'. For the converse, assume F is a discrete fibration in
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Fibg/C . Let XeX be above SeC and a:A—FX above s:T—=5. We
already know thereis y:Y—X with Fy=a. Let z:Z—X be another
morphism with Fz=a . By Proposition 1 thereis o:Y—Z with
zoao=y and Fa=1p . For every riR—S in C/S with r#s let

¥ r*X—=X be a choice of a (cartesian) arrow above r . Define
K,L:C/S—X by

Kir)=L(r)=r*X if r#s
Kis)=Y , L(s)=Z

The value on morphisms is determined by the cartesian arrows.
There is an obvious natural transformation o:K—L , whichis « on
s and identity elsewhere. Obviously, we have Foa=1pg=1Fp . Since
K,L and « can be seen to live in Fibg/C , and F is a discrete
fibration therein, we get that o is identity, and so y=z.

35 Proposition

Let § be a groupoid-enriched category with finite cotensors. Let
K:I—=J be a morphism of finitely presented groupoids which is
injective on objects. For any Xe@ the natural xKxJ-x! isa
fibration. If K is bijective on objects, XX is a discrete fibration.

Let T:J-3(XYX) and &:1-8(X! X) be the universal diagrams.
Then 3xXK=0K . Let o:XKX—YVY be some 9-transformation, for
X:A—XY and Y:A—X!. For jeJ , define ©;;A—X along with
8:¢;X—0; , as follows:

- If j=K() then @;=8;Y and &;=8;o,ie.
sjl @JX = @iXKX_‘*@iY v

- If j isnotin the image of K, then ®;=%;X and 9; isthe
identity.

Now the family (@j)jej can be extended to a diagram ©:J—3(A,X).
Given o:j—k in J, one just has to define ®; to be 8o E‘UXOSJ_i ;
%
BRX1 ] 6
Py X— By
Ok
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This obviously gives a natural transformation €:¥xX—0 In
9(!’1,){)J , and by universality there is Z:A—XJ with ¥xZ=0 and
p:X—Z with ¥xp=9 . We then have

Bx(XKp) = (8% XX)xp = (TK)*p |
and so for v:i—i' in I
(B3x(XXp)), = ((BK)%B), = Tk ()P = Ok (y) = By = (Bxx),

hence &xXXp=&xa , and by the universal property of & we get
XK& = .

Suppose now that K is bijective on objects, and let
X.Z,Z':A—O{‘J along with p:X—Z and p:X—Z' such that
XKB = XKB' = o . By the universal property of ¥, it suffices to show
$;8=0:8 for any a:j—k in J. Since K is bijective on objects, by
assumption we already have that ¥;p=¥,p' . But then

Top = TppoloX = Typ'oEeX = Top' O

3.6 Definition
A trope G is a groupoid-enriched category with a terminal

object, finite cotensors, and such that the (2-)pullback of any fibration

by any 9-functor exists.

An alternate definition of a trope would be to say that it is a
groupoid-enriched category 4 with finite cotensors such that (4,%)
is a display category, where 7 is the class of fibrations. Recall that
3.2 asserts that the class DCTF of discrete fibrations is closed under
pullbacks, and that both D and F are closed under composition.
Given a trope &, for every Xe¢@ there is a natural enrichment of
Fx over groupoids; that is, given A:A—X ,6 B:B—X objects of Fx
and F,G:A—B,a 2-cell F—=G isa $-transformation o«:F—G such
that Ba=1p . So when we write Ty we will mean that we take
this 2-categorical structure into account, unless we say otherwise.
Notice now that given H:Y—X , the adjunction between He(-) and
H* is a 2-adjunction, that is, the natural isomorphism
Fx(Ho(-),-) = Fy(-,H*(-)) is an isomorphism of groupoids.

We will denote by Dyx the full subcategory of Fx whose
obejects are the fibrations. The 2-categorical structure Dy inherits
from its inclusion in Fyx is trivial, since 2-cells can only be identity,
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and so Dy is "just a category”. It is trivial to show LDx has all
finite limits for any X . We will use the notation Ry for the inf-
semilattice of replete subobjects of X .

37 Proposition
Let § be atropeand Xe§ . Then Ty isa trope.

The proof is easy and hinges on the fact (3.2) that given AA—X,
B:B—X objects of Fx and F:A—B then F isa fibrationin Fyx iff
F:A—-B is a fibrationin ¢ .0

38 Proposition
Fibg/C is a trope for any small category C.

There is little left to prove. The terminal object is obviously the
identity of €. Let 1 be a groupoid and X:X—C a fibration of
groupoids. A simple calculation will show that the cotensor X! in
Fibg/C is the fibration Y:Y—C where Y is the category of all
functors M:I=X such that XM is a constant functor, and all
natural transformations between such functors. There is an obvious
"forgetful” functor Y—C . Finally, if

E
|E
X—Y
F

is a diagram in Fibg/C , where E is a fibration, we know that E is a
fibration as a functor, and then that the pullback P:P—X is a
Grothendieck fibration. Then defining P to be the composite XP
makes P a fibration, since Grothendieck fibrations compose, and
therefore P is thus made an object of Fibg/C. It is then trivial to
check that the square in Fibg/C thus obtained is a 2-pullback
diagram. O

Let us explore the dependent type theory of tropes, which is
already quite rich. First we will add the variable declaration %X In
contexts to mean that X is a discrete type, interpreted as a discrete
fibration. Notice that since discrete fibrations are stable under
pullbacks, the structural type formation rules will retain the
semantics of . Given a type judgement [[']X we will use a
subscript [[J4X to mean that X is a discrete type. Obviously we
have the rule
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[T]X

which may or may not be useful. For term judgements we will write
[T]t:X to mean that X is discrete.

Tropes give us access to all the structural rules, along with
(Sumf), (Pair), (Projl) and (Proj2) . Since discrete fibrations are
closed under composition we have a new rule:

(Sumfy) [T,x:X]gA
[Ty 24 x A

Also, the cotensor structure gives us new uniformly defined terms and
types. All the discrete types (and only them) have an equality
predicate:

(Eq) [T,xX,yiXlpx=y
We also get internal hom-sets:

(Hom) [T,x:X,y:X ]qHomx(x,y)

We will use the simpler notation X(x,y) for Homgy(x,y) whenever it
is unambiguous, which is most of the time. Let I'=x0:X0,..-,Xn:Xn
have the usual interpretation
X0 X1 - Xn
1—Xog—Xy ... — X,
and X be interpreted by X:X—X, . Therefore [T,x:X,v:Y] is
interpreted as
Xo X1 -+ X X X*X
1e—Xg—Xq ... — Xp—X—Xxx X
Look at the display map <d0,d1>:X2—>X><X in the trope ¥y, . It
translates as a diagram
(do,d]_)
Y —Xxx X
X2\ XxX
Xy
in § (here XxX is not to be confused with the morphism
XxX—-X,xX, , which we will write X*xX when we need it to avoid
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confusion.) But XxX is obviously X+X*X and we define the
interpretation of Homy(x,y) to be <dp,dy> . We also have access to
the internal groupoid structure of X : the term judgements

[Ix:X]1,X(x,%)
[[x:X,y:X,z: X ,1:X(x,9),g:X(y,2) ] gof: X(x,2)

have interpretations defined as follows: in the first case, let i:X— X2
be the morphism in ¥x, such that dgei=1yx=dqei and pi is the
identity. If A:X—=XxX is the diagonal, we obviously have
1e<dg,d1>=A , and so 1 determines a section i' of A*<dg,dy> . But
the latter fibration is the interpretation of Homy(x,x) and we define
the interpretation of 1, tobe i'. In the second case let T be any
trope and A€T an object. The judgernent

[x:A,y:A,z:A f:A(x,y),g:A(y,2)] is translated by the sequence

A A Ap Az Ay
j—A—AxA—AxAxA—A"xA—B
where Aq is A*A (that is, the second projection from the product) ,
Az =(AcA1)*A , Az=Ap*(<dp,dy>) , Ag=Az*C, C:AxA”—>AxAxA being
the display map 1px*<dg,d1>. UGH! WWW.

The reader can verify that all the axioms of a groupoid hold. In
particular

[[,2:X,y: X, 06 X(x,y)] 3 g, x(y,x) (xop =1y ~ poct=1y)
and this gives rise to a term:
M x:X,y:X, 06 X(x,y)] o Xy %) .

Also, if F:Y—X is a morphism in ¥/X, , there is F2.v25%2 defined
by the requirement that pF2= Fp (cf 3.1), and this is internalized by
the judgement

[Tx:Y,y:Y,06 Y(x,y)]F2(o): X(Fx,Fy)

It comes as no surprise that the pair (F,F 2) define a functor between
the internal groupoids X and Y , as the reader may verify to his
leisure. Thus, a trope can truly be seen as a generalization of the
category of groupoids.
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329

Also, 1f F above 1s a discrete fibration, let us call W the type
that 1t gives rise to, 1e. [[,x:X]gW(x) . In this case 1t 1s better to view
F2 asa morphism <Fdg,Fdy» = <dg,dy> = X(-,-) in ?Xxxnx: let B
be the type ZyxW(x) . Then we have

[F,x,x‘:X,in(x),y'EW(x'),oc:HomB(_<.x,y>,<x',y'>J]F2(ocJEX(X,X'J ;
and we can internalize our definition of discrete fibration:

[Tx,x: X,y:Wix),0cX(x,x)] 3wy El!3:B(<x,y>,<x',yl>;‘?2ff3) = .

Remark

There is more than one notion of groupoid in a trope. We have
stressed the 1dea that "the right” notion 1s that of an object of ¢ .
But for example since JDq has finite limits we can construct groupoid
objects in it. These groupoids are "less internal” than $-groupoids,
since they require more information to build than a single ob ject.
Eventually they will turn out to be cases of §-pre-groupoids.

3.10 Definition

Let F:F—X be a fibration in the trope 3 . Let
Q
P——F
Pl | F
X2—X
do

be a pullback diagram. A cleavage for E is a pair (Q',p), where
Q:P—X ,EQ=4d4P and p:Q'—Q is such that Ep=pP . Given any
fibration the existerice of a cleavage 15 always guaranteed by the
definition of a fibration.

3:11 Proposition

Let E be a category with finite limits. Then the 2-category
Gpd(€) of internal groupoids (also called groupeid objects) in € 1s a
trope. In particular E can be SetC%P where € 1s any small
category; this is to be compared with the case Fibg/C .

In fact, € could be any category with finite limits. We
ermphasize the topos case mostly because the internal logic of



categories with finite lirmits [Co] 18 not as famihiar as the internal logic
of toposes, although it is a restriction of it. It is easy to see that the 1-
category of groupoids in € has all finite limits, and they are
calculated just as for sets; this 1s because the notion of a groupoid 1s
definable using only finite limits, and limits commute with limits. Let
us be a bit more fastidious: let E be a finitely presented category
and (X®)ef a diagram E—Gpd(E) . That is, for every object ecE
there 1s a category object (XH,X%,d,d3,15m® in B where as usual
d3,d1: X1 —=Xh , 19X —X5 | m®:X5,—X7 , where X% is the usual
pullback, and well-known equations are satisfied, as well as the
requirement that X® be a groupoid: this can be expressed by a first
order sentence in the internal language, and 1t guarantees the
existence of a uniquely defined endomorphism of X‘i representing the
operation of taking the inverse. For every morphism ac:e—e' there
are two morphisms X§,X7 , XI: Xf—eX‘fl and they define a functor
X% Xe—=X® . Then we have Just stated that the hrmt groupoid Y 15
constructed by putting the obvious structure on (Yp,Y1) where Y,
is lime g X5 . It is easy to verify that Y is actually the 2-limit of
(X®)e ; recall that given any parallel pair of morphisms F.G:A—B in
Gpd(E) a 2-cell F—G 1s a morphusm o:Ag—B1 such that dgo=Fp
and dija =Gy (notation follows pattern above.)

S0 we are left to prove that Gpd(E) has finite cotensors. It is
easy to construct arrow objects: given XeGpd(E) the
Gpd(E)-groupoid X2 will have for object of objects X1 and for object
of maps the E-set of all commutative squares m X . The internal
category structure is given just as if £ were sets. The E-maps
dp,d1:X1—=Xp can be naturally extended to morphisms d@,dl:Xz—»X
in Gpd(E) , and there is a natural p:dg—d4 with the required
universal property. Let now 1 be a free groupoid, generated by the
fimte graph (Gg,G1) , with s,t:Gy—Gg . To get the cotensor X! firet
construct the category G, whose set of objects is the disjoint union
Gp+Gy . The non-identity morphisms of G are as follows: for every
a€Gy there1s a morphism a%a—s(a) and a morphism ala—t(a) .
Notice that there are no non-trivial ways to compose morphisms. Let
D:G—-Gpd(E) be the diagram that sends every neGypCG to X, every
a€GICG to X2, every a:a—s(a) to d01X2—>X and every
al:a—t(a) to d;:X2—X . Then 1t s easy to see that the himit of D
will be the desired cotensor X! . If now 1 is any finitely presented
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groupoid, we know by definmition that 1 1s the coequalizer of a
diagram

t
H=K
g

of free groupoids that are both generated by finite graphs. Then
taking the equalizer in Gpd(E) of

xf
XK — xH
XE

will give us X! . We have proved that Gpd(E) is a trope, since 1t has
more than the required amount of 2-limits. O

It is natural to ask what a fibration means in Gpd(E) , from the
point of view of the internal logic of B . The answer is that all
fibrations 1n a trope are cleft (admit a cleavage), and that a cleavage
has a precise internal meaning: given a fibration E:E—X a cleavage
for E is a choice for every o:x'—x in X andevery y in E
above x of a p:y'—y above p. In other words since E does not
necessarily have the axiom of choice the naive V¥ 3-sentence that
defines a fibration is not enough when applied in £ to make E a
fibration in Gpd(E) ; our definition of a fibration in the latter
category requires a choice function.
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§4 THE HIGHER-ORDER THEORY

First we have to say that the axioms below are not "complete”, in
the sense that we do not attempt to axiomatize the colimit structure
of our model categories. In particular there i1s no way an analogue of
Giraud's theorem can be proved. The reason for limiting ourselves 1s
that some things are not well understood at this time and seem a bit
too complicated for cornfort. For example categories of fibrations have
nice coproducts that are disjoint and umversal (these notions make
sense since the coprojections are fibrations), but categories of stacks
have only bi-coproducts. As we will see still a lot (everything we
want to do, actually) can be done foundation-wise. A technical
advantage of limiting our ambition 1s that 1t makes the proot of
theorem 4.16 easy.

We will first give a definition which is slightly too strong, and
explore its consequences. We will use the qualifier "strict” to a concept
to mean it will be weakened later.

41 Definition

A strict universe § is a trope that satisfies two axioms, the first
one being:

SU1  (9,9) admits products, To be more specific, for every
fibration F:Y—X the pullback functor F* has a 2-adjoint
Ty @ the usual natural 1somorphism (F*X)Y) =(X,TIgY) 1s an
isomorphism of groupoids, and the Beck condition holds.

Thus we have the rules associated to products: (prodf),(A-abs)
and (eval) . By 2.10 (requiring that all the natural isos of the proof be
isos of groupcids) we get that for every XeG the category Fyx is 2-
cartesian closed, in the obvious sense, and that for every g-functor
F:Y—X the pullback functor preserves the (ordinary!) cartesian
closed structure. Now, it is trivial to prove that for every discrete
fibration A:A—Y ,if F above is a fibration then the fibration TTpA
15 discrete. We thus get a rule for discrete products:

(Prod') [[xXlgA
[TlqTMyxA




45

It follows that (looking at the construction in 2.10) for any B,C
objects of Fyx ,if C is discrete then the exponential object B=C in
Fx is also discrete. In particular Dyx , the category of discrete
fibrations over X , 15 cartesian closed and F*:Dg— Dy preserves the
cartesian closed structure for any F:¥Y—X . The subobjects of the
terminator of Dy (or of Fy ) are just the replete subobjects of Y .
It is easy to show that if U:U—=Y is a mono fibration and F a
fibration then TTFpU 1s mono too, and so the functor Tl restricts to
a monotone function Ry—Ryx which is the right adjoint to pullback;
hence we have the universal quantifier:

(Vﬂ [r,X:X]plp
Ty

and 1t 1s subject to the rule

(¥) (T1@q,....9nF Veexy 1t [T,xeX]@q,...,9pF ¢ (x notin
)

By 210 Ry is always cartesian closed, and thus we have access to
implication:

(=) [Tlpe [Ty
[]“]p =y

subject to the usual rule
(MTo1,....onke=¢  iff  [Tloy,....on0F Y

The second axiom is:

SU2  There is a discrete object Q in 9 that classifies replete
subob jects.

For every Xe¢3 we will denote the projection QxX—X by Qx.
Since (Ox obviously classifies subobjects in Dy and Dyg 1s
cartesian closed and has pullbacks, we get that Dy 1s an elementary
topos. Given F:Y—X it is trivial to show that F* sends Qx to Qy
and therefore preserves the full topos structure of Dy : F* isa
logical functor.

The immediate syntactical consequence of SU2 1s that we can
transform predicates into terms: we have the type Q and the
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constant T:Q and given any predicate judgement [[] ¢ thereis a
characteristic function: [[']1%4:Q such that

[(TloE %e=T and [Tl X,=TEg
Also, since the morphisrm T:1—Q 15 a discrete fibration, there 15 a
type [o:Q]tr(e) which is "monomorphic”

ERORS (CINA (AP ERY

this type by 1tself gives us the comprehension scheme: given [T'ly¢
the type tr(X,) has the same properties as T, in 2.13:

Tlrpe 3!xttr(x¢)

4.2

The presence of a classifier for repletes also allows us to construct
all the other standard logical connectives, by a method due to
Prawitz. We refer to [Lk-5¢] for the details. Thus we get the
formation rules

(v [Tloy [Tlpy (3D [T xXlpo
[r]p Qv [T13cx¢
(F) [, F

and the usual rules of intuitionistic logic hold:

() [T &,pveky iff [[13yky and [[B,8F ¢
(3 [T18,3,x9ky iff [[,xX]@,¢ky (x notin )
(F) [TIFEg

where @ is short for a list of predicates ¢1,...,¢, . In what follows
we will use the standard notational simplification of identifying a
predicate @ with its characteristic function. There is no confusion
possible since they live in different worlds. We will be consistent 1n
that approach by considering the logical connectives as operators on
Q when we need to: eg. if [T]@:Q and [T1y:Q then [[e=¢:Q is
a valid judgement, whose interpretation should be obvious.

Until we say otherwise, 4 will denote a strict universe.



43 Proposition

For every Xe%, Fyx 15 a strict universe.

The proot 15 easy. O

44 Theorem

The inclusion functor Dq— @ has a left adjoint mg . It obeys the
Beck condition in the following way: if F:Y—X is a morphism of §,
A anobject of Fx and g:A—mp(A) the universal map in Fyx then
F*t is the universal map F*A—-F*(ng(A)) in Fy.

Everything we do during this proof belongs to ordinary category
theory, not 2-category theory. First notice that the inclusion D1—%
preserves all finite limits, since it preserves pullbacks and the
terminal object. Let R(-) denote the "internal replete power object
functor”, ie. RX=0%X By a very standard argument we know that
R:3°P—=G has for left adjoint R:3—3°% . Therefore we get a monad
(Rz,n,u) where 11— RZ is the adjoint to identity and p=RnR .
Notice that the image of ® isin g and that if R 1s restricted to
that topos it is just the ordinary power object functor, and so the
monad we get is an extension of the "double power-object monad”

P2 | a rather famous one in topos theory [WWW] . If (X,h) is an
‘Rz—algebra, then X has to be discrete sincg 1t 1s a retract of a
discrete object. Therefore the category QR‘ of algebras is identical to
the category Dlﬂjz . Let K:§%— 93;"2 be the comparison functor, ie.
KX=(RX,RnX). By [B-W,3.3,Prop 4] the diagram

RORZK RnX
ROX —=—=RX— RX (%)
R$'ﬂx
Is a coequalizer. By a theorem of Paré we know that the restriction of
K to D4°P is an equivalence of categories, and so there exists mpX
in &g such that K(mpX)=(RX,RnX) . [B-W,3.3,Theorem10] tells us
how to find mgX by taking the reflexive R-contractible equalizer
(coequalizer in D4°P) X :

nR4X eX
RIK = REX —mpX  (xx) .
R4nX

But nX:X— REX equalizes nRZX,RZnX, and so there Is
EX.X—=mpX with tX«eX=7X. (x%) isin £Dq, and so by the Beck
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theorem, applying R to it gives a coequalizer diagram in 4§ (or Dq.)
But if we replace t¢X by nX in (x¥x) and apply R we get (%),
and since (%) is also a coequalizer, this shows REX is an
1somorphism. The constructions above are obviously functorial, and
we get an endofunctor mg of § along with natural transformations
Eld—=mg , c:n0—>5R2 with £¢& =7, and we claim £ is a reflector for
Dq . Let A bediscrete and f:X—A . We want to show thereis a
unique g:moX—A such that geeX=f. By naturalty

mofeEX =EA°f . By [B-W, 3.3, Lemma 6] and the fact that discrete
objects form a topos, in which all monos are regular, we know that
since A is disrete, T]A:A—)'RZA is the equalizer of nRZA and
RZnA . Since tA is also the same equalizer, €A has to be an 1so0,
and therefore (E,A'l)oﬂof will fit the bill for g¢. Now such a g is
unique, since ReX is an isomorphism, and in the topos Dq R is
faithful. The Beck condition is obvious since the construction of
uses only operations that are preserverved by pullback. O

The syntactical consequence of this 1s that we have a type
formation rule

(rtpf) [T1X
[[lgmeX

and the terms

[x: X]R:mgX

(mpf) [[x:X]tZ
[[yimplX) 1 (txy:X)iZ

where T is an operator that binds the first variable after it like A
( x 1n this case), but such that a new free variable (v in this case)
always needs to be introduced. The adjunction gives us the external
equations

[T, X{(txy:X)t)yvE]=t

WWW
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45 Note

Given any fibration F:Y—=X the pair (TTg,F*) can be considered
as a geometric morphism of toposes Dy—Dx ; since F* is logical
such a geometric morphism is called an atomic morphism of toposes.
For more on atornic rmorphistns the reader is referred to Barr-
Diaconescu [B-D]; they are closely related to groupoids in the target
topos ( Dx here) The reader should agree that our axioms are a
natural generalization of those for an elementary topos. In fact, a
strict universe all whose objects are discrete is an elementary topos,
and vice-versa. There 1s one essential difference with classical topos
theory, though: the Lawvere-Tierney axioms ensure all finite
colimits, and this is not the case here, as we have said above.

46 Theorem

Let € be a topos. Then Gpd(E) , the 2-category of all groupoid
objects in E , is a strict universe. In particular, Gpd(Set) , the
category of ordinary groupoids, is one.

WWW . O

47 Remark

In the category of groupoids (or any category of the form
Gpd(E) , for that matter), given any morphism F:X—Y , the pullback
functor F*:Dy—Dx will have both a left and a right adjoint. This is
simply the theory of Kan extensions; these adjoints do not seem to be
a consequence of our axiomatization. But notice that the Beck
condition will not be true in general: for an easy counterexample just
take the pullback square

& ——{0)
l |

{1}—1{0,1}
where all the arrows are inclusions and the set {0,1} 1s given the full
equivalence relation {0,1}x{0,1} . We conclude from this that Kan
extensions in general do not have syntactical meaning, at least not at
this present stage of our knowledge of syntax. Hence the extra Kan
extensions are unessential features of our models, inasmuch as these
models are to be thought of as interpretations of syntactical entities.

We have said that the notion of strict universe 1s a bit too strong
for our needs. The reason is that there is a way in which a 2-
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category of fibrations admits products, but it is not the strict way
that we have described above; we have to resort to some "bi-
categorical” notions,

47 Proposition

Let K:J—I1 be a functor between (Set-)groupoids. Then the
following are equivalernt:

) K is surjective on objects and an equivalence of groupoids
1) K is full and faithful and surjective on objects.

iii) K is a fibration such that every fiber is equivalent to the
one-element groupoid.

The proof of i)=ii) is trivial since an equivalence is always full
and faithful. To prove ii)=1ii) let jeJ and oci'—Kj. Since K is
surjective there exists j'eJ with Kj'=i'. Since K is full and faithful
there exists a unique g:j'—j with Kp=« and therefore K is a
fibration. Since K is full and faithful for every k,k'eJ such that
Kk =Kk' there exists a unique ¥:k—k' above identity, and so every
fiber is equivalent to the one-element groupoid. We leave the proof of
iii)=1) to the reader.

We will call a morphism of groupoids satisfying the conditions
above a surjective equivalence .

49 Definition

Let @, B be 2-categories, F:G—B a 2-functor. Wesay F hasa
right bi-adjoint [WWW] if for every XeB there exists an object
UXe@ and a morphism eX:FUX—X such that for every YeQ the
functor "apply F and postcompose with £X":Q(Y,UX)— B(FY,X) is an
equivalence of categories. We say F has a loose right adjoint if the
functor defined above is a sur jective equivalence. The corresponding
"left" notion 1s defined by duality.

Contrarily to ordinary adjoints, U 1s not defined up to
1somoerphism but only up to equivalence, and does not extend to a 2-
functor B—Q but only to a pseudo-functor.

410 Definition

Let 4 be a trope. We say 4 admits loose products if for every
pair of fibrations F:F—Y the pullback functor Fy—%x has a loose
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right adjoint: for every A:A—F , there is a fibration TTpA:TIFA—Y
and a morphism ev:F*TTfFA—A in Fg such that for every fibration
B:B—Y the operation "pull back by F and postcompose by ev "
induces a morphism of groupoids Fy(B,TTpA) = F(F*B,A) which 1s a
surjective equivalence, and if the Beck condition holds in the following
sense: for every pullback square

S
E——F

E| |F
X—Y
X

where E,F are fibrations and every A:A—F in Fp the pair

S*ev)
( X*TTpA , E*X*TTFA = S*F*TTFA — S™A )
has the universal property described above with A replaced by

S*A | Le. it induces a surjective equivalence
Fx(C.X*TIgA) = FR(E*C,S*A) .

Qur insistence on surjective equivalences makes things a bit
stnicter (and much less complicated) than the standard theory of bi-
adjoints. But naturally, as we have said above, given A,F as above
ITrpA is defined only up to equivalence in 4, not isomorphism, as the
reader can verify. If we choose a value of TIgA for every fibration
F:F=Y in 4 and every AeFg we get a form of lambda calculus
where currying 1s defined "up to a unique 2-cell”. For example, given
Aie¥F,1=1,2,3, choose a value for TIgA;. Then, for S:A1—Ay,
T:Ap— Az we can choose values for TTgS:TTpA1—TTFA> ,
MeT:TipA>—TTpAz , and TIR(TS): TTgA1—=TTfpAz . Then, 1t not
guaranteed that TTR(TS) = TTRT-TTES , but there will be a uniquely
defined "natural” isomorphism TTg(TS) = TTgT=TTgS . This would seem
to wreak havoc with the syntax, but we will see that almost
everything can be salvaged.

411 Definition
A universe is a trope ¢ such that
U1 G adrnits loose products.

U2 There is a discrete object Q in 4 that classifies replete
subob jects.
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Now we can go through all the facts proven in 4.1 and 4.2 and see
that they also apply to the case of a non-strict universe. In
particular, if § is a universe then Fyx is a universe for any object
X . Also, since a surjective equivalence of discrete groupoids 1s an
1somorphism of sets, the adjunctions dealing with discrete fibrations
are ordinary adjunctions:

4.12 Proposition

Let 4 be a universe. Then

1) If F:F—=X 1is a fibration and A:A—F a discrete fibration
then TIgA is a discrete fibration and satisfies the
ssomorphism  FE(F*B,A) = Fx(B,TTIgA) for any BeFyx . For
any CeFg the strict exponential object C=A exists and is
discrete,

1) For any Xe$ the category Dy Is an elementary topos, and
pullback functors preserve the full topos structure. Pulling
back by a fibration has both a left and a right adjoint, and
the ordinary Beck condition holds. O

We now have to show how the type theory is adapted to non-
strict universes. Recall that the full interpretation of a term
judgement [T]t:Y is a diagrams D—§ whose auxiliary part
guarantees it is only defiried up to unique isomorphism. But now we
are in a 2-category, and we can extend the uniqueness-up-to-
unique-isomorphism to ferms that is, in the next paper of the series
we will define a notion of 2-graph which will have both an
“interesting” and an auxiliary part, and such that its possible
interpretations will be 2-diagrams that are defined in a suitable
unique way. For this to work it is necessary to restrict the (NwCn)
rule as follows: it can only be applied to judgements [[']Y such that
the TI operator does not appear anywherein I’ or Y .

413 Theorem
Let € be a category. Let 4 be Fibg/C . Then § 1s a universe.

Remember that for any object X:X—=C of Fibg/C the 2-
category Fx is equivalent, in the strictest possible sense of
equivalence, to the 2-category Fibg/X . To avoid an orgy of symbols,
we will often identify these 2-categories, and say things like: let
F:F—YX be a fibration above X . In other words we have a diagram
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F

F——X
FN /X
C
of categories where every functor is a fibration. Given F,F.F as
above, let A:A—F bein Fg,i1e. AiA—-F in Fibg/F . The object
MMrA:E—X will be constructed as follows: let x€X be above SeC.
an object of E above x is a pair (¥,R), where

- %:C/5-X is a morphism Ug—X in @ such that ¥(lg)=x
(Ug asin 34); in other words & is a choice of a cartesian
arrow to x for every morphism to S.

- R “"would be a morphism F*¥—A in Fg if ¥ werea
fibration" ; in other words, R is a functor from the pullback
object F*(C/S) making the triangle commute:

A

R /N A
FX(C/S) = F

| IF

C/5—X
¥

To describe the universal arrow ev:F*TIRA—A |, notice that an object
of

ev
FFE— A
FFTIpA N\, / A
F
F*E above yeF is an object of E above Fy (and and that that
is, it is a pair (¥,R) , where WWW . O

We can now give a synthetic approach to the theory of stacks. As
usual, given a universe $ ,a topologv on 4 isa j:Q—Q satisfying
[o: Q] F 3(5e)) = jl@) , [:QIF 9= j(g) , [@,p:QIE jlo~y) = jl@)~ (@) .
Given Ac%Y and a replete B A, the closure B A is defined as
usual, and B is said to be dense if B=A, saturated if B=-B.

415 Definition

Let j be a topology on 4. A J-stack 1s an object Xe$4 such
that for every dense B— A the induced functor 3(A,X)—3(B,X) is
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an equivalence of goupoids. The 2-full subcategory of 4 whose
objects are the j-stacks is denoted St;(3) .

416 Theorem

For every j Stj(3) is a universe. If @ 1sstrict, St(@) 1s strict
too.

The first part of the proof is to show that St;(3) is a trope. We
first show that St j(g) is closed under, and therefore has, finite
cotensors: if X is a j-stack, I a finitely presented groupoid, B—A
a dense replete mono, then since the bottom row is obviously an
equivalence and the sides isomorphisms

g(A,xh > (B, X1

l l
God (1,3(A, X)) — God (1,3(B. X))

we get that the top row is an equivalence, QED. Then we show that if
F—X is a morphism of j-stacks which is a fibration in & , its
pullback in 4 by any morphism Y—X of j-stacksisisa
morphism of j-stacks. The least offensive way we have found of
proving this is to first show the following lemma: if

15 a commutative cube of Ser-groupoids (all faces commute), where all
the vertical arrows are fibrations, both left and right faces pullbacks,
and all horizontal arrows but the top one equivalences, then the top
horizontal arrow 1s an equivalence. The proof will be left to the
reader (hint: recal that a morphism F:I—J of groupoids is an
equivalence iff it is full and faithful, and for every jeJ thereis iel
such that Fi=j.) Then given a dense B—A we just apply this
lemma to the cube whose left face 1s G(A, the pullback square) , whose right
face is G(B,the pullback square ) (keeping the fibrations vertical!), and
whose horizontal arrows are induced by B—A .

All we have left to do to prove St;(3) is a trope is to show that a
fibration in Stj(8) is a fibration in ¢ . Butif F:F—=X is a fibration
i 5t(3) 1t admits a cleavage (Q',p) (these symbols, along with P



55

have the same meaning as in 3.10) in St;(3) because PeSt;(3) since
dO:X2—>X is a morphism of stacks, and a fibration in §, by 3.2 ¢) .
We then use that cleavage to show F is a fibration in 4, since it will
allow us to hift anything we want.

We now want to show Stj(g) admits loose products, or the
stricter variety if 4 1s strict. All we have to do is show that if
F:F—X and A:A—X are fibrations of stacks, then TIrA is a
fibration of stacks, and this is very easy.

Finally, let Q; be the equalizer of j and identity. Qy is
obviously the classifier of saturated replete subobjects. It 15 left to
show that given a sheaf X and a replete subobject Y&X ,Y 1sa
subsheaf iff Y is saturated. WWW . O

416 Remark

If § is Fibg/C , where C has finite limits, then a j-stack in
our definition is the same as a stack in the traditional definition
[Gi] (we are very happy not to have to use the traditional definition in
this paper.) If § is Gpd(E) for a topos E then a j-stack is
something new, which we think has never been explored. Naturally,
another way to get a universe from £ and j is to take the category
Gpd(Sh;(E)) [proof that they are not "equivalent"WWW] . A conclusion
of this is that the notion of universe is a more subtle one, in a sense,
than the notion of elementary topos, since there is more than one
way of embedding a topos E in a universe § in such a way that €
is the topos of discrete objects of § (also, compare Gpd(5et°) and
Fibg/C .)

It seemed at first that the "right" definition of stack would have
used sur jective equivalences instead of ordinary equivalences of
groupoids, but it seems impossible to prove that the categories of
stacks thus defined are tropes in general, Both notions coincide if §
is the paradigmatic Fibg/C .



§5 KRIPKE-JOYAL SEMANTICS

Given Xe§ we will sometimes use the notation X for the full
subobject XX , and sometimes T , when the context is clear. Also
we will use Fx< X to denote the least replete subobject of X . Fy 1s
the subobject classified by Feo!:X—Q where F 1s falsehood. Let us
recall that a predicate judgement

[XOiXO, vy xn.Xn]p (P
15 Interpreted as a sequence

Xo X1 - Xpt Xn
1—Xp—Xq ... — Xp-1— Xy lg]

in 4, the subobject at the end being replete. Given a judgement as
above we define [¢]¥ to be the set

Lo} = {(1a),al=X, | a factors through [¢l}

h.1 Definition

Given Xe§ a covering family of X is a finite family
(Y;:Y;—X); of fibrations such that the sup over i of the subobjects
dy,(T) is X, in other words such that

[x:X]E Vi (3yevi 0 T

(Remember: the instances of T are there only to make the syntax
correct!.) A one-element covering family is called a gurjection .
Obviously, a G-groupcid that admits the empty family as a covering
1s an object that has only 1tself as a replete subobject. In all the
models we know the only such object is the initial one 0, but we
cannot prove it is always this way.

5.2 Proposition

Let F:F—=X be a fibration and Y& X replete. Then the
universal morphism Y — dpY is a surjection. Surjective families are
stable under pullback and composition (the meaning of “stability
under composition” for covering families being as usual.)

The proofs are easy. D

56
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5.3 Theorem
Let T be the judgement xg:Xp,...,xn: X, and let 1t be
interpreted by

Xo X1 - Xp-1  %p
Le—Xp——X{ ws Ky-gt— X,

Let [T'lg¢ , [Ty e be predicate judgements, and a:I—=X,,
c:I=X,-1. Then

) aclTI* always.
i) aclFI* iff T admits the empty cover.
ii) aely~ol¥ iff aelyl® and aclol¥ .
iv) aely=9l* iff for every f:J—1I,if afelyI¥ then
af e[ol¥ .
v) aelyvol¥ iff there exists a covering family (fidj—1);,

along with morphisms (bj:J;—Xy); such that
for every i, either bjelyl¥ or bjelel¥ .

vi) celVy .x,WI* 1iff for every fiJ—I and b:J—X, such that
Xyeca=cf we have belyl¥ .

vi)) cel3y, g, 0I¥ iff there exists a surjection f:J—I anda
morphism b:J—=X with X,°b=cf such that
be[yI¥

The proof is straighforward, just like [Lk-Sc]. O

Kripke-Joyal semantics does not have to be done all over 4, if
we are lucky:

b.4 Definition

A generating class € (there should be a qualifier here, since
there are so many kinds of generators...) is a class of objects of &
such that given a replete mono A—B in ¢ itis aniso iff
3(G,X)—3GY) is an iso for all GeC.

In all the models we have seen so far (in all the models we know!)
Dy is a generating class. Also, if § is Fibg/C , the small subclass of
Dq of all representables is a generating class. The point is that given
[eI—X , in order to define [9l# we can restrict ourselves to
morphisms G—X where G isin C; there are enough such
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morphisms to recover [¢l, and the definition of the semantics will
apply just the same.

b5 Definition

Let [I',x:X ]pcp be a predicate judgement. We use the notation
Al for dyx¢ to mean that it is also true that
[x:X,y:X]E 3 ex(x,v)T - 3! Is the predicate of existence up to unique
isomorphism, the most important connective in category theory.

Some of our models are distinguished by an important property:

5.6 Definition

We say @ has the axiom of trivial choice (ATC) if every
surjective equivalence in G splits; that is, given a fibration
Y(-):Y—X such that

[:X1E gy T

then Y has a splitting, in particular (modulo the restrictions on
(NwCn) 1n 4.12) there exists a term t such that

[xX]E t():Y(x) .
5.7 Proposition (parametrized form of ATC)
Let § have ATC. Let
[rly
be a type judgement such that
[l Elyy , (%)
Then (modulo...) there exists a term t with
(1) %X

The proof is just the verification that in the interpretation of the
judgement [[']Y, (¥) means that

Xog X1 - o Y
1—Xp—X1 ... Xp-1— X, —Y

the fibration Y is a sur jective equivalence. O
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5.8 Proposition (internal form of ATC)
Let § have ATC . Then for any type [[,x:X]Y we have

[Pk VexAlyy = WMemex v T
WWW B

5.9 Proposition
For any small category C , Fibg/C has ATC.

This is just because a surjective equivalence Y—X in Fibg/C 1s
a surjective equivalence Y—X of categories in our world, and
sur jective equivalences split in our world.

5.10 Theorem
Let (C,j) be a subcanonical site. Then Stj(Fibg/C) admits ATC.

The proof will make use of the fact [Bal] that in a subcanonical
site one-morphism covering families are regular epis, and that the
inclusion £1—¢ 1n a category of fibrations "preserves finite colimits”,
in the sense that every finite colimit diagram in D4 is a loose colimit
diagram in §. WWW . O

The axiom of trivial choice has very significant consequences for
the foundations of category theory in a topos. It is a form of choice
which 15 available in universes whose logic can very well be non-
boolean; it basically says that “existence up to unique isomorphism
always defines a function”. Naturally, the quantifier of existence up
to unique isomorphism is THE important quantifier in the universal
algebra of categories; this means that category theory in a universe
with ATC becomes very much like category theory in our world of
sets with choice (the only world so far where category theory is a
comfortable activity), provided we take care of defining the categories
in such a way that their isomorphisms are the internal isomorphisms
of the universe; this is the subject of the next chapter. For example,
if we take the notion of a category with products, we can define it in
a universe in such a way that the two conflicting constructive
definitions, "weak" and "strong”, i.e.

For every pair of objects there exists a product diagram

and



There exists a functor CxC—C along with natural
transformations blablabla

actuallv comncide.
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§6 CATEGORY THEORY

6.1 Definition

A proto-category C in § (or §-proto-category) is a quadruple
(ICl.Home(=,-),1(=),(-)0(-)) , where (for ease of notation we will write
C(-,-) for Homgc(-,-) whenever possible)

a) ICleg and C(-,-):C”—|CIx|C| is a discrete fibration, ie.
[x,v:ICl]4C(x,y) .

b [RlCh L]
¢)  [xy.z:ICl, f:C(x,y),g:Cly,z)] gof: C(x,2)

d) The usual associativity and unit properties hold.

e) An additional equation holds, which will be described shortly.

In other words a)-d) just say that a proto-category is an ordinary
category object in 4 , requiring that the usual dg,dq:C1—Cp , here
denoted C(-,-):C”—=|CIx|C| be a discrete fibration, so we can have
access to the internal predicate of equality between parallel arrows,
and thus internalize everything.

From now on the variable declaration x:IC| will be written x:C,
as we have always done in the metalanguage. In order to describe the
last equation we need a notation for the internal presheaf C(-,-)'s
action on internal morphisms of |Cl. We will consider C(-,-) as a
left-contravariant, right-covariant functor, as befits a horn-set
functor:

[¢,¢',d,d"C,e¢ICl(c",0),pilCId,d"),EC(c,d)] p2fzrxiClc',d') .

In other words the ternary operation (-)#(-)#(-) is obtained by
applying the method of 3.9, mutatis mutandi. It goes without saying
that

[LIE1gzf=elo=f ~ p'z(pafaa)zo = (p'op) 2fz (ceat')

We abbreviate p#f#1., by p#f and lg#f#o« by f#o . Condition
e) is that the “Yoneda" operation [c¢,d:C,o¢|Cl(c,d)] F ax#1.:iClc,d) is a
functor, i.e.

[c,d,e:C,cx:[Cl(c,d),pidCl(d,e) ] E (p#Ig)o(ax#]s) = (Boc) =], .

For example, an object X of § always has a natural proto-category
structure, given by taking fog="feg . Given proto-categories C,D a
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functor F:C—D is defined just as usual, 1e. it is a pair (F,F1) where
F:ICI—ID| and

[x,y:ICl,f:C(x,y)]F1f:D(Fx,Fy) , satisfying the usual

[x,y...] E Fi(gof) =Fif 0Fyg ~ F1(ly) = Ipy
Given a functor (F,F1) as above we write Ff for Fif, to conform to
usage.

From now on we will denote f¢g by feg and I. by 1.. Let
Iso(f) denote the predicate " f is an isomorphism"” i.e.

[%,y:C,£:C(x,y) 1k Isolf) & (Fg.c(y,x) fog=1x~gof=1y)
notice that we always have, by the functoriality of "Yoneda"

[x,y:C, c:ICl(x,y) 1 F Iso(ex=1y) .

A G-pre-category is a proto-category C such that "Yoneda" is
injective, ie.

[x,y:C,o,p:ICIx,y) ] E aczely=p2l, = =P .

A G-category (or just category, when the meaning is clear) C is a
proto-category such that "Yoneda" is an isomorphism between the §-
groupoid [C| and the underlying groupoid of C, ie.

[%,y:C,E:C(x,y) ] E Iso(f) = 3 o |c(x,y) **x = -

Functors between pre-categories and categories are defined just as for

proto-categories. We can also define $-proto-groupoids, 3-pre-
groupoids and $-groupoids : they are $-(etc) such that

[x,y:C,f:C(x,y) ] E Isolf)

Notice that by this definition a 9-groupoid is the same (modulo some
silly coding) as an object of 4 , as should be the case, if our
terminology is to be consistent.

6.2 Examples

A category object in Dq is always a §-pre-category but never a
G-category, unless it 1s a discrete category object. Here 1s an example
of a proto-category which is not a pre-category: Take an object X,
let ICl=X, and let C(-,-) be the identity on XxX . Thatis, C is the
full equivalence relation. "Yoneda" will just be the unique morphism of
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fibrations <dg,d1>—1xxx In Dxyx . Then if X is not a discrete
object "Yoneda" cannot be injective.

Suppose that 4 is Fibg/C for a small category €. Let E:E—C
be an ordinary Grothendieck fibration (not necessarily of groupoids.)
Let |[EICE be the subcategory with the same objects as E , but
where the morphisms are he cartesian arrows of E . This gives an
object IELIEI—=C of §. Let E*CE™ be the full subcategory whose
objects are morphisms of E that are above identity. There is an
obvious functor <dg,d1>:E*—I|E|x¢lEl to the pullback of [E| by itself.
It 1s obvious that this functor is a discrete fibration; in other words
we have created a discrete fibration E(-,-):E”—[EIx|El in § . The
composition and identity operations on E translate easily to a
composition and identity as defined above, that satisfy axiom d) , and
axiom e) is trivial in this case, because “Yoneda" is the injection
I[E*—E* , where |EI* is defined just like E*. Thus E is a pre-
category. It is not hard to prove that it is a §-category. All the
constructions above are obviously functorial, and we get a functor
Fib/C—Cat(Q) . The reader [well eventually I will do it] can prove
that this functor is actually a 2-equivalence; as a hint we will
describe the inverse. If D is a G-category we know that ID.D—C is
a fibration of groupoids and Homp(-,~)=<dg,d1>: H—=DxgD a discrete
fibration. Define a Grothendieck fibration G:G—C as follows. & has
the same objects as D . Given A,BeG a morphism of G is an
equivalence class in the set of all pairs (f,a) such that feH, seD
and dif =doml(a) , modulo the relation

(f,s) ~(g,t) iff [Dls=IDlt and (x#1)of=g ,

where « is the unique iso above identity such that t«=s. This
equivalence allows us identify $-categories with Grothendieck
fibrations above C; thus we recover the ordinary theory of
fibrations in our world, with the advantage (among many others)
that, given a §-category C we can construct its opposite C°P
through a trivial manipulation, which is to be compared with the case
of ordinary fibrations.

Everything we have said also applies if § is St;(Fibg/C) for a j-
topology; that is, a §-category then is "the same” as a stack. [more
on this one day]

We have a diagram of inclusions



G= Gpd(Q)  Cat(g)

PreG;J;a’(g) sy Precl’az(g)

mmépdtg) —’sz.‘i@pd(g)
Gpcl’(Dl) — C’al‘(i)l)

Proposition
The horizontal arrows have a right adjoint. WWW

Here is another important example of a protocategory: let
U(-):U—=X be a discrete fibration. Let us notate the covariant
internal action of U by *:

[x,v: X, 0: X(x,y),2:U(x) ] «™(a):Uly)

"

We can construct the "full-sub-proto-category S generated by U(-)
as follows: take [S|=X and given x,y:X let S(x,y)=Ux =Uly),
which is obviously discrete. Composition in the protocategory is
ordinary functional composition; thus "Yoneda" is:

[%,y:8,00:8(x,y) 1 Aa Uy ™ (@): UR) = Uly)

Definition

A gauge is a discrete fibration U(-):U—X such that the
construction above vields a category. In other words, a gauge 1s a
discrete fibration with the property that

[x,y: X, £:U)=U[) ] EBi(f) = 3. x(x,y) Va Ux) () = «*(a) ,

where Bi(f) 1s the predicate that asserts " f 1s a bijection”. A pointed
gauge 1s a gauge such that there exists t:1—X such that the
pullback U(t) is identity.

The notion of (mostly pointed) gauge will be used as an
abstraction for the category of small sets in a universe. In other
words, everything in category theory that pertains to smallness can
be defined relative to a gauge.

Examples

Let (C,F) be a an ordinary display category, where € is small.
Then we can construct a gauge U(-):U—X in Fibg/C : take for X
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the fibration F,p—C , where Fp is the full category of €7 whose
objects are arrows of ¥ and whose morphisms are pullback squares.
We want to define a discrete fibration U:U—=%Fp),; given an object
a:A—1 in Ty, the fiber above a 1s just the set of all splittings of a .

WWW

If ¥ contains all isomorphisms, the gauge obtained will be pointed.
We see how the concept of gauge is a generalization of the notion of
calibration, due to Bénabou [Bel] .

In particular, let € have finite products. Then we can take for
F all projections, morphisms of the form AxI—I. The pointed gauge
thus obtained we will call the Lambek gauge. An object of X above
I is a constant [-indexed family of objects of 1. If € has all finite
limits, we can take F to be all morphisms of €, and this will give us
the Paré—Bénabou gauge. This is the standard way of making € a
small category in Fibg/C , as we have said at the beginning of this
work.

Proposition
Let € be a pretopos. Let j be a site structure which is coarser
than (contained in) the finite covering topology. Then the Paré-

Bénabou gauge is a morphism of j-stacks and is a gauge in
St(Fibg/C) .
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