
An algorithm for testing conversion in Type
Theory

Thierry Coquand

INRIA and University of Göteborg/Chalmers

Introduction

The goal of this note is to present a “modular” proof, for various type sys-
tems with η-conversion, of the completeness and correctness of an algorithm
for testing the conversion of two terms. The proof of completeness is an ap-
plication of the notion of logical relations (see Statman 1983 [14], that uses
also this notion for a proof of Church-Rosser for simply typed λ-calculus).

An application of our result will be the equivalence between two formu-
lations of Type Theory, the one where conversions are judgement, like in
the present version of Martin-Löf set theory, and the one where conversion
is defined at the level of raw terms, like in the standard version of LF (for a
“conversion-as-judgement” presentation of LF, see Harper 1988 [6]). Even
if we don’t include η-conversion, the equivalence between the “conversion-
as-judgement” and “conversion defined on raw terms” formulation appears
to be a non-trivial property.

In order to simplify the presentation we will limit ourselves to type
theory with only Π, and one universe. This calculus contains LF. After
some motivations, we present the algorithm, the proof of its completeness
and, as a corollary, its correctness. As a corollary of our argument, we prove
normalisation, Church-Rosser, and the equivalence between the two possible
formulations of Type Theory.

1 Informal motivation

1.1 The algorithm

The idea is to compute the weak head-normal form of the two terms (in an
untyped way), and, in order to take care of η-conversion, in the case where

1This research was partly supported by ESPRIT Basic Research Action “Logical

Frameworks”.

1

one weak-head normal form is an abstraction (λx:: A)M and the other is N
a variable or an application, to compare recursively apply(N, ξ) and M [ξ].

This algorithm can be applied also for Authomath like system (and
General Type Systems extended with η-conversion). But it is not complete
if the type system does not have the normalisation property. It is directly
used for type-checking and proof-checking in Type Theory.

1.2 Some remarks about the rules of Type Theory

The syntax is the following

M := ξ | U | apply(M,M) | (λx::M)M | (Πx::M)M

We will denote by EXP the set of syntactic closed expressions. We
make a distinction between free, or real variables, or parameters, written
ξ, ζ, . . ., and the bound, or apparent, variables, written x, y, z, . . . If M is an
expression with a bound variable x, and N any expression, we will denote by
M [N] the expression [x = N]M , which behaves like an ordinary substitution
except that [x = N]((λy:: A)M) = (λy:: A)M and [x = N]((Πy:: A)M) = (Πy::
A)M if y = x. We denote by PAR the set of parameters, which is supposed
to be infinite. We don’t assume that terms are considered up to α-conversion.
This is crucial if we want to describe really an actual implementation. This
will be possible by an indexing over finite sets of parameters and later by
an indexing over contexts.

Given a finite subset I ⊂ PAR, we denote by EXP (I) the set of expres-
sions whose free variables belong to I. If ξ ∈ PAR does not belong to I, we
denote by I, ξ the set I ∪ {ξ}.

The rules of Type Theory are presented in the appendix. They describe
inductively when a judgement J holds in a context Γ. There are four possible
forms of judgement, that are A set, A = B, a ∈ A and a = b ∈ A.

Let us define an order relation between context by Γ ⊆ Γ1 iff if ξ ∈ A
is in Γ, then it is also in Γ1. A direct inductive argument shows that if
a judgement holds in Γ, and Γ ⊆ Γ1, then the same judgement holds also
in Γ1. From now on, we will consider contexts as “possible worlds” in a
Kripke-like manner. This is a convenient way of making precise the notion
of parameters “available at a given moment of time” (see [5] for another
example of this method).

2

Lemma 1 If a judgement J holds in a context Γ1, ξ : A,Γ2, and M ∈ A in

the context Γ1, then (ξ/M)J holds in the context Γ1, (ξ/M)Γ2. If B set in the

context Γ1, ξ : A,Γ2 and M1 = M2 ∈ A in the context Γ1 then (ξ/M1)B =
(ξ/M2)B in the context Γ1, (ξ/M1)Γ2. If N ∈ B in the context Γ1, ξ : A,Γ2

and M1 = M2 ∈ A in the context Γ1 then (ξ/M1)N = (ξ/M2)N ∈ (ξ/M1)B
in the context Γ1, (ξ/M1)Γ2.

This is directly proved by induction.
In this approach, substitution is a meta-operation on terms. Another

possible formulation of Type Theory is to take substitution as an explicit
term forming operation.

Once the substitution lemma is proved, it is direct to prove that if A = B
holds in Γ, then both A set and B set holds in Γ, and that if M = N ∈ A
holds in Γ, then both M ∈ A and N ∈ A holds in Γ.

Since we have chosen a “Russell-like” formulation of universes (see Martin-
Löf 84 [9] for an explanation of this terminology), there are some lemmas to
be proved about equality judgements between sets.

Lemma 2 The following properties hold:

1. if A = B and A ∈ U or B ∈ U , then both A,B are of type U and

A = B ∈ U,

2. if A = B, then either A,B are both U, or A = B ∈ U or A is (Πx::
A0)A1, B is (Πy:: B0)B1, and A0 = B0, A1[ξ] = B1[ξ] [ξ ∈ A0],

3. if A set and A is not U or a product, then we have A ∈ U,

4. if A = U [Γ], or U = A [Γ], then A is U,

5. if M ∈ A [Γ] and M is a product, A is U.

Proof: The first claim is proved directly by induction. The second claim is proved

using the first. The last three claims are proved by a direct induction.

One property that does not seem directly provable is strengthening,
which says that if a judgement J holds in the context Γ1, ξ : A,Γ2 and ξ
does not occur in Γ2 and J, then J holds in Γ1,Γ2. This property will be
a consequence of our main proposition 1. Strengthening will be essential

3

in proving closure by η-reduction, and the equivalence between the present
formulation of Type Theory and a formulation where conversion is defined
at the level of raw terms.

Because of this, it is essential to formulate the rule Π-equality 2, which
expresses the rule of η-conversion, as the equality f = (λx:: A)apply(f, x) ∈
(Πx :: A)B, if f ∈ (Πx :: A)B. Indeed, it does not seem possible to prove
directly that if (λx:: A)apply(f, x) ∈ (Πx:: A)B holds and x does not appear
free in f, then f is typable in the empty context.

Another property that does not seem directly provable is closure by
β-reduction. This is a consequence of the fact that Π is one-to-one.

1.3 About the correctness and completeness proof

In this paper, we will show first the completeness, and then the correctness
of the algorithm described above. We want to stress two features of this
proof.

The first is that we work with a type system where equality between sets
or between terms is a judgement. We have thus four kinds of judgement,
namely A set, A = B, a ∈ A and a = b ∈ A. This is to be contrasted with
a presentation of type theory where equality is defined at the level of raw
terms, and there are only two judgements, namely A set, and a ∈ A. This
last version was the first one chosen by Martin-Löf, see for instance Martin-
Löf 72 [8], and the first version appears in Martin-Löf 84 [9], or Harper 87
[6]. It is not at all clear that these two presentations are equivalent, even in
the case where there is only β-conversion. Actually, when we work with the
equality as judgement version of type theory, and we define the computation
of the head-normal form M ⇒ c in an untyped way, it is not clear that if
A set and A ⇒ B, then A = B, or even B set, and that if a ∈ A and
a ⇒ b, then a = b ∈ A. A key lemma in proving this appears to be that
Π is one-to-one, that is, if (Πx:: A1)B1 = (Πy :: A2)B2, then A1 = A2 and
B1[ξ] = B2[ξ] [ξ ∈ A1]. This will be a corollary of our proof, as well as the
equivalence between the two formulations of type theory.

The second is that our proof will be a syntactic reflection of the seman-
tical proof of consistency described in Martin-Löf 84. What we are doing
here is thus very close to the interpretation presented in Smith 84 [13], but
for a non-extensional theory. To each set A, we will associate one predicate
ΦA defined on syntactic expressions, and one equivalence relation ∆A on
the set of expressions that satisfy ΦA. We will show then that if M ∈ A,
then ΦA(M) and if M = N ∈ A, then ∆A(M,N). We will also show that if

4

ΦA(M) then M is normalisable, and if ∆A(M,N) then M,N have a com-
mon β, η reduct. As corollary of the correctness proof of the algorithm, we
will get the normalisation and the Church-Rosser property.

We can thus see our proof as a generalisation of the usual computability
method, as in Martin-Löf 72. In this generalisation, one defines inductively
a predicate and one equivalence relation on the set defined by this predicate,
instead of defining only one predicate.

2 Weak head-normal form

We will say that a term is canonical if, and only if, it is U or an abstraction
or a product.

The notion of weak head-normal form is given by its operational seman-
tics.

ξ ⇒ ξ

U ⇒ U

(λx:: A)M ⇒ (λx:: A)M

(Πx:: A)M ⇒ (Πx:: A)M

M ⇒ (λx:: A)M1 M1[N] ⇒ P

apply(M,N) ⇒ P

M ⇒M1

apply(M,N) ⇒ apply(M1, N)
M1 not canonical

We say thatM has a weak head-normal form N iffM ⇒ N . M1 and
M2 areweakly equivalent, notationM1 ≃M2 iffM1 andM2 have identical
weak head-normal forms. A term is simple iff it has a weak head-normal
form which is not canonical. Notice that a weak head-normal form that is
not canonical is either a parameter, or of the form apply(N,M) where N is
a weak head-normal form that is not canonical.

5

It is important to notice the difference between the relation M1 ≃ M2

and Kleene equality, which would be defined as: if M1 (resp. M2) has a
weak head-normal form, then so has M2 (resp. M1) and they are identical.
With the present definition, M1 ≃M2 implies that both M1 and M2 have a
weak head-normal form.

Lemma 3 The following facts hold:

1. a given term has at most one weak head-normal form,

2. if M ∈ EXP (I) and M ⇒ N, then N ∈ EXP (I),

3. If apply(M,N) has a weak head-normal form, then so does M,

4. if M1 ≃ M2, and apply(M1, N) has a weak head-normal form, then

apply(M1, N) ≃ apply(M2, N).

Remark: The first claim says that the algorithm described by the relation
⇒ is deterministic, The last claim is false in general if apply(M1, N) has
no weak head-normal form. For instance, with ∆ = (λx:: U)apply(x, x), we
have that ∆ ≃ ∆, but not that apply(∆,∆) ≃ apply(∆,∆).

3 An algorithm for β, η-conversion

3.1 The algorithm

We define recursively when two termsM1 andM2 are “equivalent”, notation
M1 ⇔M2. This will be defined between closed expressions, and we need to
consider also the relation M1 ⇔ M2 [I], I finite subset of PAR, M1,M2 ∈
EXP (I). A consequence of the indexing by a finite set of parameters (and,
later, of the use of contexts as Kripke world) is that we don’t have to assume
anything about α-conversion. The indexing by a finite set of parameters
follows also the actual implementation of the algorithm, where we keep track
of the real variables used so far in order to create a fresh variable.

M ⇔ N [I] if, and only if, M has a weak head-normal form M0, N has
a weak head-normal form N0 and the pair (M0, N0) is of one of the following
form:

• (ξ, ξ),

• (U,U),

6

• ((λx:: A1)M1, (λy:: A2)N1) and M1[ξ] ⇔ N1[ξ] [I, ξ],

• ((Πx::M1)M2, (Πy:: N1)N2) withM1 ⇔ N1 [I] andM2[ξ] ⇔ N2[ξ] [I, ξ],

• (apply(M1,M2), apply(N1, N2)) with M1 ⇔ N1 [I] and M2 ⇔ N2 [I],

• ((λx:: A)T,N0) with T [ξ] ⇔ apply(N0, ξ) [I, ξ], where N0 is not canon-
ical,

• (M0, (λx:: A)T) with apply(M0, ξ) ⇔ T [ξ] [I, ξ], whereM0 is not canon-
ical.

It can be shown that the choice of the “generic parameter” ξ such that
ξ does not belong to I is irrelevant (there exists such a ξ because PAR is
infinite). From this remark, we see that if M1 ⇔ M2 [I] and I ⊆ I1, then
M1 ⇔M2 [I1].

One of the goal of the paper is to show that, if M,N are two syntactic
expressions that are sets, or are terms of the same type, then M,N are
convertible iff M ⇔ N .

It is clear from this definition that ⇔ is symmetric. Furthermore, if
M1 ≃M2 and M2 ⇔ N , then M1 ⇔ N .

Notice that the algorithm described by ⇔ “forgets” the type of the
abstractions. Intuitively, this is because M ⇔ N is considered only if it is
known already that M,N set or M,N ∈ A. This is also essential for the
next two lemmas.

Lemma 4 If M1,M2 ∈ EXP (I) verify apply(M1, ξ) ⇔ apply(M2, ξ) [I, ξ],
then M1 ⇔ M2 [I]. If a ⇔ b [I], and a, b are simple, then apply(a,M) ⇔
apply(b,M) [I1] for any I ⊆ I1, M ∈ EXP (I1).

Proof: We suppose thatM1,M2 ∈ EXP (I) verify apply(M1, ξ) ⇔ apply(M2, ξ) [I, ξ].
Then, both apply(M1, ξ) and apply(M2, ξ) have a weak head-normal form. It
follows by lemma 3 that both M1,M2 have a weak head-normal form, that are
abstraction or non-canonical. There are then four cases that can be checked di-
rectly. For instance, if M1 ⇒ (λx :: A)T and M2 ⇒ M0, M0 not canonical,
apply(M1, ξ) ⇔ apply(M2, ξ) [I, ξ] is equivalent to T [ξ] ⇔ apply(M0, ξ) from which
M1 ⇔M2 follows.

The other part is direct.

7

Lemma 5 ⇔ is a partial equivalence relation, i.e. is symmetric and tran-

sitive.

Proof: By induction on the proof that M1 ⇔M2, we show that if M2 ⇔M3, then

M1 ⇔M3.

3.2 Normalisable terms

We define inductively a predicate Norm on the set of syntactic expressions.
It will be a family of predicates Norm(M) [I] defined on EXP (I) such that
Norm(M) [I] and I ⊆ I1 implies Norm(M) [I1].We say that Norm(M) [I],
or that M ∈ EXP (I) is normalisable iff M ⇒M0 and M0 is of the form:

• ξ,

• U ,

• (λx::M1)M2 and Norm(M1) [I], Norm(M2[ξ]) [I, ξ],

• (Πx::M1)M2 and Norm(M1) [I], Norm(M2[ξ]) [I, ξ],

• apply(M1,M2) and Norm(M1) [I], Norm(M2) [I].

Notice that given a proof of Norm(M1), Norm(M2) [I], we can decide
whether or not M1 ⇔ M2 [I], that is, ⇔ is a decidable relation on the set
of normalisable terms. Notice also that if Norm(M) [I], then M ⇔ M [I].
The relation Bisim is the equivalence relation on {M ∈ EXP | Norm(M)}
which is the restriction of ⇔ on this set.

4 Computability relation

4.1 Contexts as Kripke possible world

We have four inductively defined relations on the set of syntactic expressions
that correspond to the four judgement of type theory. They are described in
the appendix. If Γ is a context, and I the finite set of parameters that occur
in Γ, we will write EXP (Γ), M1 ⇔ M2 [Γ] and Norm(M) [Γ] respectively
for EXP (I), M1 ⇔M2 [I] and Norm(M) [I].

We recall that we have defined an order relation between context by
Γ ⊆ Γ1 iff if ξ ∈ A is in Γ, then it is also in Γ1. A direct inductive argument

8

shows that if a judgement holds in Γ, and Γ ⊆ Γ1, then the same judgement
holds also in Γ1. From now on, we will consider contexts as “possible worlds”
in a Kripke-like manner. This is a convenient way of making precise the
notion of parameters “available at a given moment of time” (see [5] for
another example of this method).

From now on, we take the convention that any statement or proof is,
even if it is not stated explcitely, relativised to an arbitrary context.

For instance, a set X is now a family X(Γ) of sets such that X(Γ1) ⊆
X(Γ2) if Γ1 ⊆ Γ2. We will denote also by x ∈ X [Γ] the fact that x belongs
to X(Γ), and we will say in this case that x belongs to X at level Γ. A
predicate ϕ on X is a now a proposition ϕ(x) [Γ] depending on a context
Γ and on x ∈ X(Γ), which is increasing in the context Γ, that is such that
ϕ(x) [Γ] and Γ ⊆ Γ1 implies ϕ(x) [Γ1]. There is a similar definition for
relations. An example of such a set is the set of expressions. A predicate on
this set is the predicate Norm, and a binary relation on this set is ⇔.

Let ϕ1, ϕ2 be two predicates on EXP . Following the rules of Kripke
semantics, we say that ϕ1(x) implies ϕ2(x) at level Γ iff for all Γ0 ⊇ Γ,
ϕ1(x) [Γ0] implies that ϕ2(x) [Γ0].

We let X(Γ) be the set of pairs (ψ, δ) where ψ is a predicate on EXP
at level Γ and δ an equivalence relation on {M ∈ EXP | ψ(M)} at level
Γ. The equality on X(Γ) is (ϕ1, δ1) = (ϕ2, δ2) [Γ] iff ϕ1(M) ≡ ϕ2(M) and
δ1(M,N) ≡ δ2(M,N) at level Γ (where ≡ denotes logical equivalence).

4.2 Definition of the computability relation

If A set, let us say that a pair (Φ,∆) ∈ X is a computability relation on
A iff the following conditions are satisfied:

1. Φ(a) implies a ∈ A,

2. ∆(a, b) implies a = b ∈ A,

3. a ∈ A, a simple and Norm(a) imply Φ(a),

4. a = b ∈ A, a, b simple and Bisim(a, b) imply ∆(a, b),

5. if Φ(a) then Norm(a),

9

6. if ∆(a, b) then a⇔ b,

7. if Φ(a), a = u ∈ A, a ≃ u, then Φ(u),

8. if ∆(a, b), u = a ∈ A, u ≃ a, b = v ∈ A, b ≃ v, then ∆(u, v).

We are going to define a predicate Ψ on EXP . Intuitively, Ψ(A) means
that A is a “well-formed” set. We will have that Ψ(A) implies A set. For A
such that Ψ(A), we will define ΘA = (ΦA,∆A) ∈ X computability relation
on A.

We first define ΦU . Actually we define simultaneously ΦU such that
ΦU (A) implies A ∈ U , and for A such that ΦU (A) we define θA = (ϕA, δA) ∈
X computability relation on A.

We say that ΦU(A) [Γ] iff A ∈ U [Γ] and

• either A is simple, in which case we ask Norm(A) and we define
ϕA(M) [Γ1], for Γ1 ⊇ Γ, by M ∈ A, Norm(M) at level Γ1 and
δA(M1,M2) is M1 =M2 ∈ A & M1 ⇔M2 at level Γ1,

• or A⇒ (Πx:: A0)A1, in which case we ask

1. A = (Πx:: A0)A1 ∈ U,

2. ΦU(A0),

3. ϕA0
(a) implies ΦU(A1[a]),

4. δA0
(a, b) implies θA1[a] = θA1[b].

These last conditions are stated at level Γ.

In this case, we define ϕA(M) [Γ1] for Γ1 ⊇ Γ by M ∈ A and

– ϕA0
(a) implies ϕA1[a](apply(M,a)),

– δA0
(a, b) implies δA1[a](apply(M,a), apply(M, b)),

– if M ⇒ (λy:: B0)T, then Norm(B0).

δA(M1,M2) is the equivalence relation on {M ∈ EXP | ϕA(M)} de-
fined by

M1 =M2 ∈ A & [ϕA0
(a) ⇒ δA1[a](apply(M1, a), apply(M2, a))].

These last definitions are stated at level Γ1.

10

Remark: A priori, it is not clear that if A ∈ U , and A ⇒ B, then A is
simple or B is a product. It will follow from the fact that Π is one-to-one
that A is simple or B is a product, that B ∈ U , and that A = B.

Let us explicit the definition of ϕA(M) [Γ1] in the case where A⇒ (Πx:
: A0)A1. It means first that the judgement M ∈ A holds in the context
Γ1. Next, if Γ1 ⊆ Γ2, then ϕA0

(a) [Γ2] implies ϕA1
(apply(M,a)) [Γ2] and

δA0
(a, b) [Γ2] implies δA1[a](apply(M,a), apply(M, b)) [Γ2]. Finally, if M ⇒

(λy:: B0)T [Γ1] then Norm(B0) [Γ1].

Notice that if follows directly from this definition that ΦU(A), A = B ∈
U, and A ≃ B imply ΦU(B) and θA = θB.

There is a problem a priori in such an inductive definition, because of
the fact that the predicate ΦU that is defined has negative occurences. A
discussion on this difficulty is postponed to the next section. This discussion
will justify also the following induction principle. Let P be a predicate on
EXP . Suppose that if A is simple, then ΦU (A) implies P (A), and that if
ΦU (A), A⇒ (Πx:: A0)A1, A = (Πx:: A0)A1 ∈ U , P (A0), ϕA0

(a) ⇒ P (A1[a]),
then P (A). Then, we can conclude that, for all A, ΦU(A) implies P (A).

Lemma 6 If ΦU (A), then Norm(A) and θA = (ϕA, δA) is a computability

relation on A.

Proof: Remark that this entails that if ΦU (A), then ϕA(ξ) [ξ ∈ A], because ξ is
simple and normalisable.

Consider the property P (A) that ΦU (A) and

1. Norm(A),

2. a ∈ A, a simple and Norm(a) imply ϕA(a),

3. a = b ∈ A, a, b simple and Bisim(a, b) imply δA(a, b),

4. if ϕA(a) then Norm(a),

5. if δA(a, b) then a⇔ b,

6. if ϕA(a), a = u ∈ A, a ≃ u, then ϕA(u),

7. if δA(a, b), u = a ∈ A, u ≃ a, b = v ∈ A, b ≃ v, then δA(u, v).

11

By definition of ΦU , P (A) if A is simple and ΦU (A).
Next, suppose ΦU (A), A ⇒ (Πx:: A0)A1, A = (Πx:: A0)A1 ∈ U , P (A0), and

ϕA0
(a) implies P (A1[a]).
Notice first that, by induction hypothesis, ϕA0

(ξ) [ξ ∈ A0], since ξ is simple
and normalisable of type A0 at level ξ ∈ A0.

Since ΦU (A), we have ΦU (A1[ξ]) [ξ ∈ A0] and hence, Norm(A1[ξ]) [ξ ∈ A0] by
induction hypothesis. We have also Norm(A0) by induction hypothesis, and hence
Norm(A).

Let M ∈ A be simple and normalisable. For any a such that ϕA0
(a), we

have that apply(M,a) is simple and normalisable, because M is simple and a nor-
malisable, and hence by induction hypothesis, ϕA1[a](apply(M,a)). For any a, b
such that δA0

(a, b), we have that apply(M,a) and apply(M, b) are simple and that
Bisim(apply(M,a), apply(M, b)), because Bisim(a, b) and M is simple. Hence,
by induction hypothesis, δA1[a](apply(M,a), apply(M, b)). This shows that ϕA(M)
holds.

In the same way, we can show that ifM,N ∈ A,M,N are simple andBisim(M,N),
then δA(M,N), using lemma 4.

If ϕA(M), then we have ϕA1[ξ](apply(M, ξ)), because ϕA0
(ξ) [ξ ∈ A0]. Hence

Norm(apply(M, ξ)) at level ξ ∈ A0. This implies that M is simple or has a weak
head-normal form which is an abstraction. IfM is simple, then Norm(apply(M, ξ))
implies Norm(M). If M ⇒ (λy :: B0)T, then Norm(B0). This, together with
Norm(apply(M, ξ)), implies that M is normalisable.

If δA(M,N), then we have δA1[ξ](apply(M, ξ), apply(N, ξ)), because we have
ϕA0

(ξ) [ξ ∈ A0]. Hence apply(M, ξ) ⇔ apply(N, ξ) at level ξ ∈ A0 by induction
hypothesis. We deduce M ⇔ N by lemma 4.

Next, suppose that a ∈ A, ϕA(a), a = u ∈ A, and a ≃ u and we have to show

that ϕA(u) holds. We have u ∈ A since a = u ∈ A. If M ∈ A0 and ϕA0
(M), then

we have to show that ϕA1[M](apply(u,M)) holds. We have ϕA1[M](apply(a,M))

because ϕA(a). Furthermore apply(a,M) = apply(u,M) ∈ A1[M]. By lemma 8, we

have that apply(a,M) is normalisable and hence has a weak head-normal form. By

lemma 3, we have apply(a,M) ≃ apply(u,M). By induction hypothesis, the lemma

holds for A1[M]. Hence ϕA1[M](apply(u,M)). Furthermore, if u⇒ (λx:: B0)T, then

Norm(B0) because u ≃ a and ϕA(a). The proof of the last claim is similar.

Notice the essential use of contexts as Kripke worlds in this reasoning.

We define the equivalence relation ∆U on the set of expressions that
satisfies ΦU by: ∆U(A,B) iff A = B ∈ U, θA = θB, A⇔ B and if A⇒ (Πx::
A0)A1, B ⇒ (Πy:: B0)B1 then A0 = A1 and B0[ξ] = B1[ξ] [ξ ∈ A0].

Lemma 7 (ΦU ,∆U) is a computability relation on U.

12

We can now define Ψ(A), and for A such that Ψ(A), the predicate ΦA

and the equivalence relation ∆A. We say that Ψ(A) [Γ] iff A set [Γ] and

• either A is U , we have already defined ΦU and ∆U ,

• or A ∈ U [Γ] and ΦU(A) [Γ], in which case we take ΘA to be θA,

• or A is (Πx:: A0)A1, in which case we ask

– Ψ(A0),

– ΦA0
(a) implies Ψ(A1[a]),

– ∆A0
(a, b) implies ΘA1[a] = ΘA1[b].

These last conditions are stated at level Γ.

In this case, we define ΦA(M) [Γ1] for Γ1 ⊇ Γ by M ∈ A and

– ΦA0
(a) implies ΦA1[a](apply(M,a)),

– ∆A0
(a, b) implies ∆A1[a](apply(M,a), apply(M, b)),

– if M ⇒ (λy:: B0)T, then Norm(B0).

∆A(M1,M2) is the equivalence relation on {M ∈ EXP | ϕA(M)}
defined by

M1 =M2 ∈ A & [ΦA0
(a) ⇒ ∆A1[a](apply(M1, a), apply(M2, a))].

These last definitions are stated at level Γ1.

Notice that this definition is a priori ambiguous, since we can have both
A ∈ U , and A is (Πx:: A0)A1. But in this case, we have also A0 ∈ U , and
A1[ξ] ∈ U [ξ ∈ A0], and we can show inductively on the proof of A ∈ U that
both cases give the same definition. This ambiguity does not appear if we
use a formulation “à la Tarski” of universes, as in Martin-Löf 84 [9], or if
we restrict the proof to LF, where there is a syntactic distinction between
types and kinds.

Lemma 8 If Ψ(A), then Norm(A) and ΘA = (ΦA,∆A) is a computability

relation on A.

Proof: The argument is the same as the one for ΦU given above, and is by induction

on the proof that Ψ(A). We use furthermore the fact that the statement holds for

U, using lemma 7 and 6.

13

4.3 Justification of this definition

The inductive definitions of Ψ, and of ΦU are of the following form: we
define simultaneously both a predicate ϕ on the set EXP , and a function
on {M ∈ EXP | ϕ(M)}. For ΦU for instance, we define simultaneously the
predicate ΦU and θA ∈ X defined for A ∈ {M ∈ EXP | ΦU(M)}. We have
to convince ourselves that the above definition is correct. We will show how
to reduce this kind of definition to the existence of a least fixed-point of a
monotone operator on a complete lattice.

For a first such reduction, consider the set Y of pairs (ϕ, f) where ϕ is
a predicate on EXP and f a function from {M ∈ EXP | ϕ(M)} to X.
Notice first that Y is a complete lattice for the ordering (ϕ1, f1) ≤ (ϕ2, f2)
defined by ϕ1(M) ⇒ ϕ2(M) and, if ϕ1(M), then f1(M) = f2(M). Notice
next that the definition of ΦU can be seen as a monotone operator from Y
to Y . This is essentially the justification implicit in Martin-Löf 72 [8] which
is explained in another framework in Aczel 77 [1].

For a second reduction, more set-theoretical in nature, we consider A 7−→
(ϕA, δA) as a functional relation R between EXP and X, that is a relation
R on EXP × X such that, for any M ∈ EXP , there exists at most one
x ∈ X such that R(M,x). Notice first that the definition of ΦU can be seen
as a monotone operator on the set of relation between EXP and X. This is
a complete lattice for the inclusion. Notice next that the least fixed-point of
this operator is a functional relation. We define then ΦU to be the domain of
this functional relation, that is the set of M ∈ EXP such that there exists
x ∈ X such that R(M,x). This reduction appears in Allen 87 [2], and was
pointed out to the author by S. Hayashi.

Of course, we have now to show that a monotone function on a complete
lattice has a least fixed-point, at least in these particular cases. It is well-
known how to do it using an impredicative definition (this is Tarski fixed-
point theorem). One may wonder if there exist more basic reductions. One
alternative is even to admit the existence of ΦU and the induction principle
over it as a new axiom. We will limit ourselves here to have indicated
these two possible reductions to the existence of a fixed-point of a monotone
function on a complete lattice.

14

5 Completeness of the algorithm

We define first inductively when a “type-checking” context Γ = ξ1 ∈ A1, . . . , ξn ∈
An is valid, and when it is valid, when a substitution, written (ξ1/a1) . . . (ξn/an),
fits this context at level Γ0, and when two such substitutions (ξ1/a1) . . . (ξn/an)
and (ξ1/b1) . . . (ξn/bn) are considered to be equal at level Γ0.

If Γ = ξ ∈ A, then Γ is valid iff Ψ(A). Furthermore (ξ/a) fits Γ at level
Γ0 iff ΦA(a) [Γ0] and (ξ/a), (ξ/b) are equal iff ∆A(a, b) [Γ0].

Next, if Γ is valid, if A set [Γ], and Ψ(σA) for any σ that fits Γ at level
Γ0, and Θσ1A = Θσ2A [Γ0] whenever σ1 and σ2 are equal, then Γ, ξ ∈ A
is valid. Furthermore, σ(ξ/a) fits Γ, ξ ∈ A at level Γ0 iff ΦσA(a) [Γ0], and
σ1(ξ/a1), σ2(ξ/a2) are equal iff σ1, σ2 are equal and ∆σ1A(a1, a2) [Γ0].

Proposition 1 If A set, then Ψ(A). If A = B, then Ψ(A), Ψ(B), ΘA =
ΘB. If a ∈ A, then Ψ(A) and ΦA(a). Finally, if a = b ∈ A, then Ψ(A) and

∆A(a, b).

Proof: More generally, we prove inductively that if Γ is a valid context, σ a
substitution that fits Γ at level Γ0, and σ1, σ2 two equal substitutions that fit Γ at
level Γ0, then

• if A set [Γ], then, at level Γ0,Ψ(σA), and Ψ(σ1A),Ψ(σ2A), and Θσ1A = Θσ2A,

• if A = B [Γ], then, at level Γ0, Ψ(σA), Ψ(σB) and ΘσA = ΘσB,

• if a ∈ A [Γ], then, at level Γ0,Ψ(σA), ΦσA(σa), and Θσ1A = Θσ2A,∆σ1A(σ1a, σ2a),

• if a = b ∈ A [Γ], then, at level Γ0 Ψ(σA), Θσ1A = Θσ2A, and ∆σA(σa, σb).

This is proved by induction together with the fact that any context is valid.
Lemma 8 handles the rules of β-conversion and the rule of η-conversion.

Let us show for instance how is handled the rule Π-equality 2. To simplify the

notations, we suppose the context empty. We have then Ψ((Πx:: A)B),Φ(Πx::A)B(f),

and we want to show Φ(Πx::A)B((λx:: A)apply(f, x)) and ∆(Πx::A)B(f, (λx:: A)apply(f, x)).

By the definition of Ψ, we have that Ψ(A), that ΦA(a) implies Ψ(B[a]), and

∆A(a, b) implies ΘB[a] = ΘB[b], ΦA(a) implies ΦB[a](apply(f, a)) and ∆A(a, b) im-

plies ∆B[a](apply(f, a), apply(f, b)). Let us assume ΦA(a) and show that ΦB[a](apply((λx:

: A)apply(f, x), a)). This follows from ΦB[a](apply(f, a)) and lemma 8. SinceNorm(A0)

because Ψ(A0) and by lemma 8, we have Φ(Πx::A)B((λx:: A)apply(f, x)). In the same

way, if ∆A(a, b), then we have that ∆B[a](apply((λx:: A)apply(f, x), a), apply((λx::

A)apply(f, x), b)) follows from the fact that we have ∆B[a](apply(f, a), apply(f, b))

and lemma 8.

In particular, if M = N , or M = N ∈ A, then M ⇔ N and this
expresses the completeness of our algorithm for testing conversion of terms.

15

6 Correctness of the algorithm

A first application is the fact that Π is one-to-one.

Proposition 2 If (Πx:: A0)A1 = (Πy :: B0)B1, then A0 = B0 and A1[ξ] =
B1[ξ] [ξ ∈ A0].

Proof: We use lemma 2. The result is clear in the case of Π-formation 2. And if

(Πx:: A0)A1 = (Πy:: B0)B1 ∈ U , then ∆U ((Πx:: A0)A1, (Πy:: B0)B1) by proposition

1, hence the result.

The rest of this section collects direct consequences of the fact that Π is
one-to-one.

Corollary 1 If M ∈ A1, M ∈ A2, then A1 = A2.

Proof: By induction on M using proposition 2.

Lemma 9 If (λx:: A1)b ∈ (Πy:: A2)B, then A1 = A2 and b[ξ] ∈ B[ξ] [ξ ∈ A1].

Proof: We have (λx :: A1)b ∈ (Πx :: A1)B1, with b[ξ] ∈ B1[ξ] [ξ ∈ A1] and (Πx ::

A1)B1 = (Πy:: A2)B. By proposition 2, we get A1 = A2 and B1[ξ] = B[ξ] [ξ ∈ A1],

hence he result.

Lemma 10 If A set and A ⇒ B, then B set and A = B. If a ∈ A, and
a⇒ b, then b ∈ A and a = b ∈ A.

Proof: We show by induction on M ⇒ N, that if M ⇒ N then if M set, then
N set and M = N, and if M ∈ A, then N ∈ A and M = N ∈ A.

Let us show the case where M is apply(M1, N1), M1 ⇒ (λx :: A2)M2 and

M2[N1] ⇒ N. We have M1 ∈ (Πx :: A1)B1, N1 ∈ A1. By induction hypothesis,

(λx:: A2)M2 ∈ (Πx:: A1)B1 and M1 = (λx:: A2)M2 ∈ (Πx:: A1)B1. By lemma 9, A1 =

A2 and M2[ξ] ∈ B1[ξ] [ξ ∈ A1]. We deduce that M2[N1] ∈ B1[N1]. By induction

hypothesis, N ∈ B1[N1] and M2[N1] = N ∈ B1[N1]. But we have apply(M1, N1) =

apply((λx:: A2)M2, N1) ∈ B1[N1] by Π-elimination 2, and apply((λx:: A2)M2, N1) =

M2[N1] ∈ B1[N1] by Π-equality 1.

This lemma can be expressed as the statement of the subject-reduction
for β-reduction.

The next proposition states the correctness of the algorithm correspond-
ing to the relation ⇔. This is only stated in the empty context, but the
relativised version to any context holds as well.

16

Proposition 3 If A set, B set, and A ⇔ B then A = B. Similarly, if

a ∈ A, b ∈ A and a ⇔ b, then a = b ∈ A. Furthermore, if a ⇔ b, a ∈ A,
b ∈ B, and a, b are simple, then A = B, and a = b ∈ A.

Proof: We use essentially lemma 10 and lemma 2. We prove simultaneously by
induction on M ⇔ N that if M ⇔ N , then if M,N set then M = N, if M,N ∈ A
then M = N ∈ A, and if M,N are simple and M ∈ A,N ∈ B, then A = B and
M = N ∈ A.

Let us consider for instance the case where M ⇒ apply(M1,M2) and N ⇒

apply(N1, N2) and M1 ⇔ M2, N1 ⇔ N2. We have that M, N are simple. If

M ∈ A, N ∈ B, then we have M1 ∈ (Πx:: C)A1, M2 ∈ C, N1 ∈ (Πy:: D)B1, N2 ∈ D

and A1[M2] = A, B1[N2] = B. This follows from lemma 10. Since M1, N1 are

simple, we can apply the induction hypothesis and we get that (Πx:: C)A1 = (Πy:

: D)B1, and M1 = N1 ∈ (Πx:: C)A1. By proposition 2, this implies C = D and

A1[ξ] = B1[ξ] [ξ ∈ C]. We have then M2, N2 ∈ C. By induction hypothesis, this

impliesM2 = N2 ∈ C. We then get that apply(M1,M2) = apply(N1, N2) ∈ A1[M2],

and A = A1[M2] = B1[N2] = B.

Corollary 2 If A,B set and A = B [Γ], then A = B. If M,N ∈ A and

M = N ∈ A [Γ], then M = N ∈ A.

Proof: By proposition 1 and proposition 3.

The relativised version of this corollary says that the equational theory
at level Γ1 is a conservative extension of the one at level Γ ⊆ Γ1.

7 Equivalence with another formulation of Type

Theory

Lemma 11 If M set then M has a β-normal form M0 such that M =M0.

If M ∈ A, then M has a β-normal form M0 such that M =M0 ∈ A.

Proof: We have Norm(M) if M set or M ∈ A by proposition 1. We prove next

by induction on the proof that Norm(M) using lemma 10 that if Norm(M), then

if M set then M has a normal form M0 such that M =M0, and if M ∈ A then M

has a normal form M0 such that M =M0 ∈ A.

Let us say that two expressionsM,N are confluent if they can be reduced
to a same term by β, η-reductions.

17

Proposition 4 If M = N , or M = N ∈ A, then M,N are confluent.

Proof: We define the size s(M) of a term M as the number of symbols in M. We
prove by induction on s(M) + s(N) that if M ⇔ N , M,N in β-normal form then
if M,N set then M,N are confluent, if M = N ∈ A then M,N are confluent, and
finally, ifM,N are simple andM ∈ A,N ∈ B, then A = B andM,N are confluent.

Let us treat only two cases. Let us suppose that M is (λx:: P)M1 and N is (λy::
Q)N1, and M1[ξ] ⇔ N1[ξ], and M = N ∈ A. We have then M1[ξ] ∈ B1[ξ] [ξ ∈ P]
and N1[ξ] ∈ C1[ξ] [ξ ∈ Q] with A = (Πx:: P)B1 = (Πy:: Q)C1. By proposition 2, we
have P = Q, and B1[ξ] = C1[ξ] [ξ ∈ P], and thus M1[ξ] = N1[ξ] ∈ B1[ξ] [ξ ∈ P]. By
induction hypothesis, we have that M1[ξ] and N1[ξ] are confluent. Furthermore,
P = Q implies P ⇔ Q by proposition 1. By induction hypothesis, P and Q are
confluent. Hence, M and N are confluent.

If M is simple, and N is (λx:: T)N1, and M = N ∈ A, then we have A = (Πx::
T)B with N1[ξ] ∈ B[ξ] [ξ ∈ T]. We have then apply(M, ξ) = N1[ξ] ∈ B[ξ] [ξ ∈ T].
By induction hypothesis, using the fact that s(apply(M, ξ)) + s(N1[ξ]) < s(M) +
s(N), we get that apply(M, ξ) and N1[ξ] are confluent. Hence, M and N are
confluent.

We can then apply proposition 1, and lemma 11.

Lemma 12 If A set and A = (Πx:: B0)B1 [Γ], then A = (Πx:: A0)A1 with

A0 = B0 [Γ] and A1[ξ] = B1[ξ] [Γ, ξ ∈ A0].

Proof: This is clear if A = (Πx:: B0)B1 [Γ] can be derived by Π-formation 2. If A =

(Πx:: B0)B1 ∈ U [Γ], then ∆U (A, (Πx:: B0)B1) at level Γ, and so A ⇒ (Πx:: A0)A1,

and at level Γ, A = (Πx:: A0)A1 ∈ U, A0 = A1 ∈ U, B0[ξ] = B1[ξ] ∈ U [ξ ∈ A0]. By

lemma 10, we get actually that A = (Πx:: A0)A1 in the empty context.

Lemma 13 If A set [Γ1, ξ : B,Γ2] and ξ does not appear in Γ2 and A, then
A set [Γ1,Γ2]. If M ∈ A [Γ1, ξ : B,Γ2] and ξ does not appear in Γ2 and M,
then there exists A′

set [Γ1,Γ2] such that M ∈ A′ [Γ1,Γ2] and A = A′ [Γ1, ξ :
B,Γ2].

Proof: By induction, using lemma 12 and corollary 2.

Corollary 3 If the judgement J holds in the context Γ1, ξ : A,Γ2 and ξ does
not appear in Γ2 and J, then J holds in Γ1,Γ2.

Notice that this lemma does not hold in extensional Type Theory (like
the one of Martin-Löf 84 [9]).

18

Lemma 14 The subject reduction property holds for η-reduction.

Proof: This means that, if (λx : A)apply(f, x) ∈ C and x is not free in f , then
f = (λx:: A)apply(f, x) ∈ C.

Indeed, we have C = (Πx:: A)B, with apply(f, ξ) ∈ B[ξ] [ξ ∈ A]. Hence, at
level ξ ∈ A, the type of f is a product (Πx:: A1)B1 and we have that A = A1, and
B1[ξ] = B[ξ]. By lemma 13 and lemma 12, we deduce that f ∈ (Πx:: A2)B2 in the
empty context, with, at level ξ ∈ A, A1 = A2 and B2[ζ] = B1[ζ] [ζ ∈ A2]. This
means A1 = A2 [ξ ∈ A] and B1[ζ] = B2[ζ] [ξ ∈ A, ζ ∈ A2].

This implies B2[ξ] = B[ξ] [ξ ∈ A]. By corollary 2, we have also A2 = A in the

empty context. Hence, (Πx:: A)B = (Πx:: A2)B2 and f is of type (Πx:: A)B = C.

By the rule of Π-equality 2, and by the rule of Set equality, we get f = (λx :

: A)apply(f, x) ∈ C.

Proposition 5 If A,B set and A,B are confluent, then A = B.

It is now clear the “conversion-as-judgements” version of type theory
is equivalent to the version where conversion is defined at the level of raw
terms, like for the usual presentation of LF [6] or in [8]. Indeed, one can see
a priori that if a judgement holds for the “conversion-as-judgment” version,
it holds for the other version. Proposition 4 shows the converse.

One can also deduce the decidability of type-checking, following an usual
argument (see for instance [5]).

Conclusion

We tried to present a direct, semantically motivated, proof of the correctness
and completness of an algorithm that tests conversion in type theory. Our
proof can be seen as an expression of one possible semantics of type theory.
It applies also to Edinburgh LF. It may be interesting to apply it for the
case of set theory expressed in Martin-Löf’s logical framework.

Acknowledgement and related works

In [7], D. Howe proves the fact that Π is one-to-one for NuPrl and extensional
Type Theory.

In [12], A. Salvesen proves that Π is one-to-one and the Church-Rosser
property for the version of LF where “conversion defined on raw terms”.

19

The problem of conversion of terms in presence of η-conversion is also
studied in [4].

In [11], the idea of contexts as Kripke worlds is used for giving a con-
structive version of the notion of possible worlds.

I want to thank Catarina Svensson for pointing out to me that the
equivalence between the two formulations of Type Theory was a non-trivial
property. Thanks also to Bengt Nordström, Jan Smith, Lena Magnusson
and Anne Salvesen for interesting discussions on this topic. Finally, I want
to thank Per Martin-Löf for his remarks on a previous version of this paper.

A The Rules.

General rules.

Context formation

A set

ξ ∈ A context

Γ context

ξ ∈ A [Γ]

Where ξ ∈ A in Γ.

Γ context A set [Γ]

Γ, ξ ∈ A context

Where ξ not in Γ.

The rules below are also valid when relativised to an arbitrary context.
The restriction on the parameter ξ is that it is “generic” w.r.t. the conclusion
of the rule, i.e. does not appear in this conclusion. It can be proved that its
choice is irrelevant.

Reflexivity

a ∈ A

a = a ∈ A

A set

A = A

Symmetry

20

a = b ∈ A

b = a ∈ A

A = B

B = A

Transitivity

a = b ∈ A b = c ∈ A

a = c ∈ A

A = B B = C

A = C

Set equality

a ∈ A A = B

a ∈ B

a = b ∈ A A = B

a = b ∈ B

Cartesian Product of a Family of Sets.

Π – formation 1

A set B[ξ] set [ξ ∈ A]

(Πx:: A)B set

Π – formation 2

A = C B[ξ] = D[ξ] [ξ ∈ A]

(Πx:: A)B = (Πy:: C)D

Π – introduction 1

b[ξ] ∈ B[ξ] [ξ ∈ A]

(λx:: A)b ∈ (Πx:: A)B

Π – introduction 2

A1 = A2 b1[ξ] = b2[ξ] ∈ B[ξ] [ξ ∈ A1]

(λx:: A1)b1 = (λx:: A2)b2 ∈ (Πx:: A1)B

Π – elimination 1

f ∈ Π(A,B) a ∈ A

apply(f, a) ∈ B[a]

21

Π – elimination 2

f = g ∈ (Πx:: A)B

a = b ∈ A

apply(f, a) = apply(g, b) ∈ B[a]

Π – equality 1

b[ξ] ∈ B[ξ] [ξ ∈ A]

a ∈ A

apply((λx:: A)b, a) = b[a] ∈ B[a]

Π – equality 2

f ∈ (Πx:: A)B

f = (λx:: A)apply(f, x) ∈ (Πx:: A)B

The Set of Small Sets.

U – formation:

U set

U – introduction 1:

A ∈ U B[ξ] ∈ U [ξ ∈ A]

(Πx:: A)B ∈ U

U – introduction 2:

A = C ∈ U B[ξ] = D[ξ] ∈ U [ξ ∈ A]

(Πx:: A)B = (Πy:: C)D ∈ U

Set – formation 1

A ∈ U

A set

Set – formation 2

A = B ∈ U

A = B

22

References

[1] Aczel. P. (1979), Frege structures and the notions of propositions,
truth, and set in: Barwise, J., Keisler, H.J., and Kunene, K. (eds),
Logic Colloquium 77, North-Holland, Amsterdam.

[2] Allen. S. (1987), A Non Type-Theoretic Semantics for Type-Theoretic
Language, Ph. D. Thesis, Cornell U.

[3] Beeson M.J. (1984), Foundations of Constructive Mathematics,
Springer-Verlag, Berlin.

[4] Breazu-Tannen V., Gallier J. (1989), Polymorphic rewriting conserves
algebraic strong normalisation and confluence, Proceedings of ICALP,
Stresa.

[5] Coquand Th., Gallier J. (1990), A Proof of Strong Normalisation Us-
ing a Kripke-Like Interpretation, Draft, in the proceeding of the first
workshop on Logical Framework.

[6] Harper. R. (1988), An Equational Formulation of LF, LFCR Report
Series, ECS-LFCS-88-67, Edinburgh.

[7] Howe. D. (1989), Equality In Lazy Computation Systems, in the pro-
ceedings of the fourth Logic in Computer Science.

[8] Martin-Löf. P. (1972), An Intuitionistic Theory of Types, Unpublished
manuscript.

[9] Martin-Löf. P. (1984), Intuitionistic Type Theory, Studies in Proof
Theory, Lecture Notes, Bibliopolis.

[10] Nordström B., Petersson K., Smith. J. M. (1990), Programming in

Martin-Löf Type Theory, Oxford Science Publications, Clarendon
Press, Oxford.

[11] Ranta. A. (1988), Constructing possible worlds, Mimeographed, Uni-
versity of Stockholm, to appear in Theoria.

[12] Salvesen. A. (1989), The Church-Rosser Theorem for LF with beta,eta-
reductions, Draft.

23

[13] Smith. J. (1984), An Interpretation of Martin-Löf’s Type Theory in a
Type-Free Theory of Propositions, Journal of Symbolic Logic, Vol. 49,
no. 3, 730 - 753.

[14] Statman. R. (1983), λ-definable functionals and β, η-conversion, Arch.
Math. Logic 23, 21 - 26.

24

