Warshall's algorithm

See Floyd-Warshall algorithm on Wikipedia
The Floyd-Warshall algorithm is a graph analysis algorithm for finding shortest paths in a weigthed, directed graph

Warshall algorithm finds the transitive closure of a directed graph

Warshall's algorithm

We have a graph with n nodes $1,2, \ldots, n$
We define $E_{i j}=1$ iff there is an edge $i \rightarrow j$
$E_{i j}=0$ if there is no edge from i to j
We define $E_{i j}^{1}=E_{i j}$ and
$E_{i j}^{k+1}=E_{i j}^{k} \vee E_{i k}^{k} E_{k j}^{k}$
Then $E_{i j}^{k}=1$ iff there exists a path $i \rightarrow i_{1} \cdots \rightarrow i_{l} \rightarrow j$ with i_{1}, \ldots, i_{l} all $<k$

Warshall's algorithm

This is best implemented with a fixed array of $n \times n$ booleans
For $k=1$ to n
$E_{i j}:=E_{i j} \vee E_{i k} E_{k j}$

Floyd's algorithm

Now $E_{i j}$ is a positive number (the cost or the distance of going from i to j; it is ∞ if there is no edge from i to j).

For $k=1$ to n

$$
E_{i j}:=\min \left(E_{i j}, E_{i k}+E_{k j}\right)
$$

Regular expression

Now $E_{i j}$ is a regular expression, and we compute all possible paths from i to j. We initialize by $E_{i j}:=E_{i j}$ if $i \neq j$ and $E_{i i}:=\epsilon+E_{i i}$.

For $k=1$ to n

$$
E_{i j}:=E_{i j}+E_{i k} E_{k k}^{*} E_{k j}
$$

Regular expression

For the automata with accepting state 2 and defined by

$$
1.0=2,1.1=1,2.0=2.1=2
$$

We have $E_{11}=\epsilon+1, E_{12}=0, E_{21}=\emptyset, E_{22}=\epsilon+0+1$

Regular expression

Then the first step is

$$
\begin{aligned}
& E_{11}=\epsilon+1+(\epsilon+1)(\epsilon+1)^{*}(\epsilon+1)=1^{*} \\
& E_{12}=0+(\epsilon+1)(\epsilon+1)^{*} 0=1^{*} 0 \\
& E_{21}=\emptyset+\emptyset(\epsilon+1)^{*}(\epsilon+1)=\emptyset \\
& E_{22}=\epsilon+0+1+\emptyset(\epsilon+1)^{*} 0=\epsilon+0+1
\end{aligned}
$$

Regular expression

The second step is

$$
\begin{aligned}
& E_{11}=1^{*}+1^{*} 0(\epsilon+0+1)^{*} \emptyset=1^{*} \\
& E_{12}=1^{*} 0+1^{*} 0(\epsilon+0+1)^{*}(\epsilon+0+1)=1^{*} 0(0+1)^{*} \\
& E_{21}=\emptyset+(\epsilon+0+1)(\epsilon+0+1)^{*} \emptyset=\emptyset \\
& E_{22}=\epsilon+0+1+(\epsilon+0+1)(\epsilon+0+1)^{*}(\epsilon+0+1)=(0+1)^{*}
\end{aligned}
$$

Regular expression

In this way, we have seen two proofs of one direction of Kleene's Theorem: any regular language is recognized by a regular expression

The two proofs are
by solving an equation system and using Arden's Lemma
by using Warshall's algorithm

Algebraic Laws for Regular Expressions

$$
\begin{aligned}
& E+(F+G)=(E+F)+G, E+F=F+E, E+E=E, E+0=E \\
& E(F G)=(E F) G, E 0=0 E=0, E \epsilon=\epsilon E=E \\
& E(F+G)=E F+E G,(F+G) E=F E+G E \\
& \epsilon+E E^{*}=E^{*}=\epsilon+E^{*} E
\end{aligned}
$$

Algebraic Laws for Regular Expressions

We have also
$E^{*}=E^{*} E^{*}=\left(E^{*}\right)^{*}$
$E^{*}=(E E)^{*}+E(E E)^{*}$

Algebraic Laws for Regular Expressions

How can one prove equalities between regular expressions?
In usual algebra, we can "simplify" an algebraic expression by rewriting

$$
(x+y)(x+z) \rightarrow x x+y x+x z+y z
$$

For regular expressions, there is no such way to prove equalities. There is not even a complete finite set of equations.

Algebraic Laws for Regular Expressions

Example: $L^{*} \subseteq L^{*} L^{*}$ since $\epsilon \in L^{*}$
Conversely if $x \in L^{*} L^{*}$ then $x=x_{1} x_{2}$ with $x_{1} \in L^{*}$ and $x_{2} \in L^{*}$
$x \in L^{*}$ is clear if $x_{1}=\epsilon$ or $x_{2}=\epsilon$. Otherwise
So $x_{1}=u_{1} \ldots u_{n}$ with $u_{i} \in L$
and $x_{2}=v_{1} \ldots v_{m}$ with $v_{j} \in L$
Then $x=x_{1} x_{2}=u_{1} \ldots u_{n} v_{1} \ldots v_{m}$ is in L^{*}

Algebraic Laws for Regular Expressions

Two laws that are useful to simplify regular expressions
Shifting rule

$$
E(F E)^{*}=(E F)^{*} E
$$

Denesting rule

$$
\left(E^{*} F\right)^{*} E^{*}=(E+F)^{*}
$$

Variation of the denesting rule

One has also

$$
\left(E^{*} F\right)^{*}=\epsilon+(E+F)^{*} F
$$

and this represents the words empty or finishing with F

Algebraic Laws for Regular Expressions

Example:

$a^{*} b\left(c+d a^{*} b\right)^{*}=a^{*} b\left(c^{*} d a^{*} b\right)^{*} c^{*}$
by denesting
$a^{*} b\left(c^{*} d a^{*} b\right)^{*} c^{*}=\left(a^{*} b c^{*} d\right)^{*} a^{*} b c^{*}$
by shifting

$$
\left(a^{*} b c^{*} d\right)^{*} a^{*} b c^{*}=\left(a+b c^{*} d\right)^{*} b c^{*}
$$

by denesting. Hence
$a^{*} b\left(c+d a^{*} b\right)^{*}=\left(a+b c^{*} d\right)^{*} b c^{*}$

Algebraic Laws for Regular Expressions

Examples: $10 ? 0 ?=1+10+100$

$$
(1+01+001)^{*}(\epsilon+0+00)=((\epsilon+0)(\epsilon+0) 1)^{*}(\epsilon+0)(\epsilon+0)
$$

is the same as

$$
(\epsilon+0)(\epsilon+0)(1(\epsilon+0)(\epsilon+0))^{*}=(\epsilon+0+00)(1+10+100)^{*}
$$

Set of all words with no substring of more than two adjacent 0's

Proving by induction

Let Σ be $\{a, b\}$
Lemma: For all n we have $a(b a)^{n}=(a b)^{n} a$
Proof: by induction on n
Theorem: $a(b a)^{*}=(a b)^{*} a$
Similarly we can prove $(a+b)^{*}=\left(a^{*} b\right)^{*} a^{*}$

Complement of a(n ordinary) regular expression

For building the "complement" of a regular expression, or the "intersection" of two regular expressions, we can use NFA/DFA

For instance to build E such that $L(E)=\{0,1\}^{*}-\{0\}$ we first build a DFA for the expression 0 , then the complement DFA. We can compute E from this complement DFA. We get for instance

$$
\epsilon+1(0+1)^{*}+0(0+1)^{+}
$$

Abstract States

Two notations for the derivative L / a or $a \backslash L$
Last time I have used
$L / a=\left\{x \in \Sigma^{*} \mid a x \in L\right\}$
I shall use now the following notation (cf. exercice 4.2.3)
$a \backslash L=\left\{x \in \Sigma^{*} \mid a x \in L\right\}$
and more generally if z in Σ^{*}
$z \backslash L=\left\{x \in \Sigma^{*} \mid z x \in L\right\}$

Abstract States

Example: $L=\left\{a^{n} \mid 3\right.$ divides $\left.n\right\}$ we have
$\epsilon \backslash L=L, a \backslash L=\left\{a^{3 n+2} \mid n \geq 0\right\}$
$a a \backslash L=\left\{a^{3 n+1} \mid n \geq 0\right\}, a a a \backslash L=L$
Although Σ^{*} is infinite, the number of distinct sets of the form $u \backslash L$ is finite

Another example

$$
\begin{aligned}
& \Sigma=\{0,1\} \\
& L=\left\{0^{n} 1^{n} \mid n \geqslant 0\right\} \\
& \epsilon \backslash L=L, 0 \backslash L=\left\{0^{n} 1^{n+1} \mid n \geq 0\right\} \\
& 00 \backslash L=\left\{0^{n} 1^{n+2} \mid n \geq 0\right\}, \quad 000 \backslash L=\left\{0^{n} 1^{n+3} \mid n \geq 0\right\} \\
& 1 \backslash L=\emptyset, 11 \backslash L=\emptyset
\end{aligned}
$$

In this case there are infinitely many distinct sets of the form $u \backslash L$

Abstract States

The sets $u \backslash L$ are called the abstract states of the language L
Myhill-Nerode theorem: A language is regular iff its set of abstract states is finite

This is a characterisation of regular sets, and a powerful way to show that a language is not regular

Proof of the Myhill-Nerode theorem

Assume L is such that its set of abstract states $u \backslash L$ is finite.
We define Q to be the set of all $u \backslash L$. By hypothesis Q is a finite set
We define q_{0} to be $L=\epsilon \backslash L$
We define $\delta(M, a)=a \backslash M$ for $a \in \Sigma$ and $M \subseteq \Sigma^{*}$ an arbitrary language
In particular $\delta(u \backslash L, a)=u a \backslash L$
Remark: We have $a \backslash(u \backslash L)=u a \backslash L$ and more generally $v \backslash(u \backslash L)=u v \backslash L$

Proof of the Myhill-Nerode theorem

Define $F \subseteq Q$ to be the set of abstract states $u \backslash L$ such that ϵ is in the set $u \backslash L$. Thus $u \backslash L \in F$ iff $u \in L$

Lemma: We have L.u=u\L
Proof: By induction on u. This holds for $u=\epsilon$ and if it holds for v and $u=a v$ then

$$
\begin{aligned}
& L .(a v)=(a \backslash L) . v=v \backslash(a \backslash L)=a v \backslash L \\
& \text { If } A=\left(Q, \Sigma, \delta, q_{0}, F\right) \text { we have } u \in L(A) \text { iff } u \backslash L \in F \text { iff } u \in L . \text { Thus } \\
& L=L(A) \text { and } L \text { is regular }
\end{aligned}
$$

Proof of the Myhill-Nerode theorem

This proves one direction: if the set of abstract sets is finite then L is regular
Conversely assume that L is regular then $L=L(A)$ for some DFA $A=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$

We have

$$
u \backslash L(A)=L\left(Q, \Sigma, \delta, q_{0} \cdot u, F\right)
$$

Indeed v is in $u \backslash L(A)$ iff $u v$ is in $L(A)$ iff $q_{0} \cdot(u v)=\left(q_{0} \cdot u\right) . v$ is in F
Since Q is finite since there are only finitely many possibilities for $u \backslash L$

Proof of the Myhill-Nerode theorem

Hence we have shown that L is regular iff there are only finitely many abstract states $u \backslash L$

This is a powerful way to prove that a language is not regular
For instance $L=\left\{0^{n} 1^{n} \mid n \geqslant 0\right\}$ is not regular since there are infinitely many abstract states $0^{k} \backslash L$

Proof of the Myhill-Nerode theorem

You should compare this with the use of the "pumping Lemma" (section 4.1) that I will present next time

Proof of the Myhill-Nerode theorem

This can be used also to show that a language is regular and indicate how to build a DFA for this language

$$
L=\left\{a^{n} \mid 3 \text { divides } n\right\}
$$

We have three abstract states $q_{0}=L, q_{1}=a \backslash L, q_{2}=a a \backslash L$ hence a DFA with 3 states

A corollary of Myhill-Nerode's Theorem

Corollary: If L is regular then each $u \backslash L$ is regular
Proof: Since we have
$v \backslash(u \backslash L)=u v \backslash L$
each abstract state of $u \backslash L$ is an abstract state of L. If L is regular it has finitely many abstract states by Myhill-Nerode's Theorem. So $u \backslash L$ has finitely many abstract states and is regular by Myhill-Nerode's Theorem.

A corollary of Myhill-Nerode's Theorem

Another direct proof of
Corollary: If L is regular then each $u \backslash L$ is regular
Proof: L is regular so we have some DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L=L(A)$. Define
$u \backslash A=\left(Q, \Sigma, \delta, q_{0} \cdot u, F\right)$
We have seen that $L(u \backslash A)=u \backslash L(A)$.

Symbolic Computation of $u \backslash L$

$$
\begin{aligned}
& a \backslash \emptyset=\emptyset \\
& a \backslash \epsilon=\emptyset \\
& a \backslash a=\epsilon \\
& a \backslash b=\emptyset \text { if } b \neq a \\
& a \backslash\left(E_{1}+E_{2}\right)=a \backslash E_{1}+a \backslash E_{2} \\
& a \backslash\left(E_{1} E_{2}\right)=\left(a \backslash E_{1}\right) E_{2} \text { if } \epsilon \notin L\left(E_{1}\right) \\
& a \backslash\left(E_{1} E_{2}\right)=\left(a \backslash E_{1}\right) E_{2}+a \backslash E_{2} \text { if } \epsilon \in L\left(E_{1}\right) \\
& a \backslash E^{*}=(a \backslash E) E^{*}
\end{aligned}
$$

Symbolic Computation of $u \backslash L$

If we introduce the notation $\delta(E)=\epsilon$ if ϵ in $L(E)$ and $\delta(E)=\emptyset$ if ϵ is not in $L(E)$

$$
\begin{aligned}
& a \backslash \emptyset=\emptyset \quad a \backslash \epsilon=\emptyset \quad a \backslash a=\epsilon \\
& a \backslash b=\emptyset \text { if } b \neq a \\
& a \backslash\left(E_{1}+E_{2}\right)=a \backslash E_{1}+a \backslash E_{2} \\
& a \backslash\left(E_{1} E_{2}\right)=\left(a \backslash E_{1}\right) E_{2}+\delta\left(E_{1}\right)\left(a \backslash E_{2}\right) \\
& a \backslash E^{*}=(a \backslash E) E^{*}
\end{aligned}
$$

The Derivatives

Let E be $(0+1)^{*} 01(0+1)^{*}$
$0 \backslash E=E+1(0+1)^{*}$
$1 \backslash E=E$
$01 \backslash E=(0+1)^{*}$
$00 \backslash E=0 \backslash E$
We have three languages $E, E+1(0+1)^{*},(0+1)^{*}$
We can build then a DFA for E

The Derivatives

Other example: let E be $(01)^{*} 0$
$0 \backslash E=\left(0 \backslash(01)^{*}\right) 0+0 \backslash 0=1(01)^{*} 0+\epsilon=(10)^{*}$
$1 \backslash E=\left(1 \backslash(01)^{*}\right) 0+1 \backslash 0=\emptyset$
$00 \backslash E=0 \backslash 1(01)^{*} 0+0 \backslash \epsilon=\emptyset$
$01 \backslash E=1 \backslash 1(01)^{*} 0+1 \backslash \epsilon=E$
We have three languages $E,(10)^{*}, \emptyset$
We can build then a DFA for E

Closure properties

Regular languages have remarkable closure properties
closure by union
closure by intersection
closure by complement
closure by difference
closure by reversal
closure by morphism and inverse morphism

Reversal

The reversal of a string $a_{1} \ldots a_{n}$ is the string $a_{n} \ldots a_{1}$.
We write x^{R} the reversal of x
Thus $\epsilon^{R}=\epsilon$ and $0010^{R}=0100$
Lemma: $(x y)^{R}=y^{R} x^{R}$

Reversal

If L is a language let L^{R} be the set of all x^{R} for $x \in L$
Theorem: If L is regular then so if L^{R}
Proof 1: We have $L=L(E)$ for a regular expression E. We define E^{R} by induction

$$
\begin{array}{lcc}
\left(E_{1} E_{2}\right)^{R}=E_{2}^{R} E_{1}^{R} & \left(E_{1}+E_{2}\right)^{R}=E_{1}^{R}+E_{2}^{R} & \left(E^{*}\right)^{R}=\left(E^{R}\right)^{*} \\
a^{R}=a & \emptyset^{R}=\emptyset & \epsilon^{R}=\epsilon
\end{array}
$$

We then prove $L\left(E^{R}\right)=L(E)^{R}$ by structural induction on E

Reversal

Proof 2: We have $L=L(A)$ for a NFA A, we define then a ϵ-NFA A^{\prime} such that $L^{R}=L\left(A^{\prime}\right)$

We have $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$
We take $q_{1} \notin Q$ and define $A^{\prime}=\left(Q \cup\left\{q_{1}\right\}, \Sigma, \delta^{\prime}, q_{1},\left\{q_{0}\right\}\right)$ which is an ϵ-NFA with

$$
\begin{aligned}
& r \in \delta^{\prime}(s, a) \text { iff } s \in \delta(r, a) \text { for } r, s \in Q \\
& r \in \delta^{\prime}\left(q_{1}, \epsilon\right) \text { iff } r \in F
\end{aligned}
$$

Example: The reverse of the language defined by $(0+1) 0^{*}$ can be defined by $0^{*}(0+1)$

Monoid

Let Σ be an alphabet
Σ^{*} is a monoid
It has a binary operation $(x, y) \longmapsto x y$ which is associative $x(y z)=(x y) z$
It has a neutral element ϵ : we have $x \epsilon=\epsilon x=x$
It is not commutative in general $a b \neq b a$

Definition of Homomorphisms

Let Σ and Θ be two alphabets.
Definition: an homomorphism $h: \Sigma^{*} \rightarrow \Theta^{*}$
is an application such that, for all $x, y \in \Sigma^{*}$

$$
h(x y)=h(x) h(y) \quad h(\epsilon)=\epsilon
$$

It follows that if $h\left(a_{1} \ldots a_{n}\right)=h\left(a_{1}\right) \ldots h\left(a_{n}\right)$
Notice that $h(a) \in \Theta^{*}$ if $a \in \Sigma$

Closure under Homomorphisms

Let $h: \Sigma^{*} \rightarrow \Theta^{*}$ be an homomorphism
Theorem: If $L \subseteq \Sigma^{*}$ is regular then $h(L)$ is regular
We define $h(E)$ if E is a regular expression
$h(\epsilon)=\epsilon, h(\emptyset)=\emptyset, \quad h(a)=h(a)$
$h\left(E_{1}+E_{2}\right)=h\left(E_{1}\right)+h\left(E_{2}\right)$
$h\left(E_{1} E_{2}\right)=h\left(E_{1}\right) h\left(E_{2}\right)$
$h\left(E^{*}\right)=h(E)^{*}$

Closure under Homomorphisms

Lemma: If E is a regular expression then $L(h(E))=h(L(E))$
Proof: By structural induction on E. There are 6 cases.
This implies that given a DFA A such that $L(A)=L \subseteq \Sigma^{*}$ one can build a DFA A^{\prime} such that $L\left(A^{\prime}\right)=h(L)$

This DFA exists because we have a regular expression (hence a ϵ-NFA hence a DFA by the subset construction)

Not obvious how to build directly this DFA

Closure under Homomorphisms

Theorem: If $L \subseteq \Theta^{*}$ is regular then $h^{-1}(L)$ is regular
Proof: Let $A=\left(Q, \Theta, \delta, q_{0}, F\right)$ DFA for L we define $A^{\prime}=\left(Q, \Sigma, \delta^{\prime}, q_{0}, F\right)$ with

$$
\delta^{\prime}(q, a)=q \cdot h(a)
$$

A^{\prime} is a DFA of alphabet Σ, we prove then that $L\left(A^{\prime}\right)=h^{-1}(L)$
Lemma: We have for all $x \hat{\delta}^{\prime}(q, x)=q . h(x)$
The proof uses the fact that $q \cdot(u v)=(q \cdot u) \cdot v$

Closure under Homomorphisms

Notice that the proof would be difficult to do directly at the level of regular expressions. For instance if

$$
\begin{aligned}
\text { If } h(a) & =\epsilon, h(b)=b, h(c)=\epsilon \text { what is } h^{-1}(\{\epsilon\}) ? \\
\text { If } h(a) & =a b b, h(b)=c, h(c)=c \text { we have } h(a b) \in\{a b\}\{b c\} \text { but we have } \\
h^{-1}(\{a b\}) & =h^{-1}(\{b c\})=\emptyset
\end{aligned}
$$

Closure under Homomorphisms

Can we prove this using Myhill-Nerode's Theorem?
We have to compute $u \backslash h^{-1}(L)$
v is in this set iff $h(u v)=h(u) h(v)$ is in L
Hence $u \backslash h^{-1}(L)$ is the same as $h^{-1}(h(u) \backslash L)$
Hence if L is regular there are only a finite number of possible values for $u \backslash h^{-1}(L)$ and hence $h^{-1}(L)$ is regular

Closure under Union

We have a direct construction via ϵ-NFA or variation on the product of DFA
It is interesting to notice that we have also a proof via Myhill-Nerode's Theorem
$u \backslash\left(L_{1} \cup L_{2}\right)=\left(u \backslash L_{1}\right) \cup\left(u \backslash L_{2}\right)$
If L_{1}, L_{2} are regular, we have only a finite number of possible values for $u \backslash\left(L_{1} \cup L_{2}\right)$, hence $L_{1} \cup L_{2}$ is regular

Closure under Intersection, Difference, Complement

The same argument works for showing that regular languages are closed under intersection, complement and differences

$$
\begin{aligned}
& u \backslash\left(L_{1} \cap L_{2}\right)=\left(u \backslash L_{1}\right) \cap\left(u \backslash L_{2}\right) \\
& u \backslash L^{\prime}=(u \backslash L)^{\prime}
\end{aligned}
$$

Application: we have another way to compute 0^{\prime} We have also direct constructions on DFAs

Closure under Prefix

If $L \subseteq \Sigma^{*}$ is a language we write $\operatorname{Pre}(L)$ the set
$\left\{u \in \Sigma^{*} \mid \exists v . u v \in L\right\}$
This is the set of prefixes of words that are in L
We present two proofs that $\operatorname{Pre}(L)$ is regular if L is regular
One proof using Myhill-Nerode's Theorem, and one proof using a DFA for L

Closure under Prefix

If $\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA for L we define a DFA for Pre (L) by taking

$$
\begin{aligned}
& A^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right) \\
& \text { where } F^{\prime}=\{q \in Q \mid \exists z . \hat{\delta}(q, z) \in F\}
\end{aligned}
$$

We then show that x in $L\left(A^{\prime}\right)$ iff $\hat{\delta}\left(q_{0}, x\right) \in F^{\prime}$ iff there exists z such that $\left(q_{0} \cdot x\right) \cdot z=q_{0} \cdot(x z)$ in F iff $x z$ in $\operatorname{Pre}(L(A))=\operatorname{Pre}(L)$

Closure under Prefix

We have also a proof by using regular expression: given a regular expression E we define $p(E)$ such that $L(p(E))=\operatorname{Pre}(L(E))$

$$
\begin{aligned}
& p(a)=\epsilon+a \quad p(\epsilon)=\epsilon \quad p(\emptyset)=\emptyset \\
& p\left(E_{1} E_{2}\right)=p\left(E_{1}\right)+E_{1} p\left(E_{2}\right) \\
& p\left(E_{1}+E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right) \\
& p\left(E^{*}\right)=E^{*} p(E)
\end{aligned}
$$

Minimal automaton

If L is regular, we have seen that there is a DFA which recognizes L which has for set of states the set S of abstract states of L
S is the set of all $u \backslash L$
$u \backslash L$ goes to $(u a) \backslash L$
This is the minimal automaton which recognizes L

Minimal automaton

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be another DFA which recognizes L
We show that Q has more elements than S
Indeed we know that $u \backslash L$ is $\left(Q, \Sigma, \delta, q_{0} \cdot u, F\right)$
Thus S has less elements than there accessible states in Q

Minimal automaton

For example, for $L=L\left((0+1)^{*} 01(0+1)^{*}\right)$ we have computed three abstract states

$$
L, 0 \backslash L, 01 \backslash L=\Sigma^{*}
$$

Hence any automaton which recognizes L has at least three states

Minimal automaton

Let Q^{\prime} be the set of states accessible from q_{0}
If $q_{0} \cdot u=q_{0} . v$ I claim that we have $u \backslash L=v \backslash L$
Indeed this is the set recognized by $\left(Q, \Sigma, \delta, q_{0} \cdot u, F\right)=\left(Q, \Sigma, \delta, q_{0} \cdot v, F\right)$
This means that we have a surjective map $\psi: Q^{\prime} \rightarrow S, q_{0} \cdot u \longmapsto u \backslash L$
Furthermore $\psi(q \cdot a)=a \backslash \psi(q)$
This shows that connection between any automaton recognizing L and the minimal automaton of abstract states

Minimal automaton

Next time, I will present an algorithm for computing the minimal automaton for L given a DFA for L

Accessible states

$$
A=\left(Q, \Sigma, \delta, q_{0}, F\right) \text { is a DFA }
$$

A state $q \in Q$ is accessible iff there exists $x \in \Sigma^{*}$ such that $q=q_{0} . x$
Let Q_{0} be the set of accessible states, $Q_{0}=\left\{q_{0} \cdot x \mid x \in \Sigma^{*}\right\}$
Theorem: We have q.a $\in Q_{0}$ if $q \in Q_{0}$ and $q_{0} \in Q_{0}$. Hence we can consider the automaton $A_{0}=\left(Q_{0}, \Sigma, \delta, q_{0}, F \cap Q_{0}\right)$. We have $L(A)=L\left(A_{0}\right)$

In particular $L(A)=\emptyset$ if $F \cap Q_{0}=\emptyset$.

Accessible states

Actually we have $L(A)=\emptyset$ iff $F \cap Q_{0}=\emptyset$ since if $q \cdot x \in F$ then $q \cdot x \in F \cap Q_{0}$
Implementation in a functional language: we consider automata on a finite collection of characters given by a list cs

An automaton is given by a parameter type a with a transition function and an initial state

Accessible states

```
import List(union)
isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)
closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]
closure cs delta qs =
    let qs' = qs >>= (\ q -> map (delta q) cs)
    in if isSup qs qs' then qs
        else closure cs delta (union qs qs')
```


Accessible states

```
accessible :: Eq a => [Char] -> (a -> Char -> a) -> a -> [a]
accessible cs delta q = closure cs delta [q]
-- test emptyness on an automaton
notEmpty :: Eq a => ([Char],a-> Char -> a,a,a->Bool) -> Bool
notEmpty (cs,delta,q0,final) = or (map final (accessible cs delta q0))
```


Accessible states

```
data Q = A | B | C | D | E
    deriving (Eq,Show)
delta A 'O' = A delta A '1' = B
delta B 'O' = A delta B '1' = B
delta C _ = D
delta D 'O' = E delta D '1' = C
delta E 'O' = D delta E '1' = C
as = accessible "01" delta A
test = notEmpty ("01",delta,A,(==) C)
```


Accessible states

```
    Optimisation
import List(union)
isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)
Closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]
```


Accessible states

```
closure cs delta qs = clos ([],qs)
    where
        clos (qs1,qs2) =
    if qs2 == [] then qs1
            else let qs = union qs1 qs2
            qs' = qs2 >>= (\ q -> map (delta q) cs)
            qs'' = filter (\ q -> not (isIn qs q)) qs'
            in clos (qs,qs'')
```

