
Finite Automata

We present one application of finite automata: non trivial text

search algorithm

Given a finite set of words find if there are occurences of one of

these words in a given text

1

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is one for which the

next state is not uniquely determined by the current state and the

coming symbol

Informally, the automaton can choose between different states

1

choc
0

5kr

5kr
2

coffee

A nondeterministic vending machine

2

Nondeterministic Finite Automata

When does nondeterminism appear??

Tossing a coin (probabilistic automata)

When there is incomplete information about the state

For example, the behaviour of a distributed system might depend

on messages from other processes that arrive at unpredictable times

3

Nondeterministic Finite Automata

When does a NFA accepts a word??

Intuitively, the automaton accepts w iff there is at least one

computation path starting from the start state to an accepting state

It is helpful to think that the automaton can guess the succesful

computation (if there is one)

q0

0,1

0 q1
1 q2

NFA accepting all words that end in 01

What are all possible computations for the word 1010??

4

Nondeterministic Finite Automata

Another example: automaton accepting only the words such that

the second last symbol from the right is 1

q0

0,1

1 q1
0,1

q2

The automaton “guesses” when the word finishes

5

Nondeterministic Finite Automata

Σ = {1}

1
1

1 11
1

1

1

1

1

NFA accepting all words of length multiple of 3 or 5

The automaton guesses the right direction, and then verifies that

|w| is correct!

How to define mathematically a non deterministic machine??

6

NFA and DFA

We saw on examples that it is much easier to build a NFA accepting

a given language than to build a DFA accepting this language

We are going to give an algorithm that produces a DFA from a

given NFA accepting the same language

This is surprising because a DFA cannot “guess”

First we have to define mathematically what is a NFA

Both this definition and the algorithm uses in a crucial way the

powerset operation

if A is a set, we denote by Pow(A) the set of all subsets of A

(in particular the empty set ∅ is in Pow(A))

7

Nondeterministic Finite Automata

Definition A nondeterministic finite automaton (NFA) consists of

1. a finite set of states (often denoted Q)

2. a finite set Σ of symbols (alphabet)

3. a transition function that takes as argument a state and a

symbol and returns a set of states (often denoted δ); this set

can be empty

4. a start state

5. a set of final or accepting states (often denoted F)

We have, as before, q0 ∈ Q F ⊆ Q

8

Nondeterministic Finite Automata

The transition function of a NFA is a function

δ : Q × Σ → Pow(Q)

Each symbol a ∈ Σ defines a binary relation on the set Q

q1
a
→ q2 iff q2 ∈ δ(q1, a)

9

Nondeterministic Finite Automata

q0

0,1

1 q1
0,1

q2

has for transition table

0 1

→q0 {q0} {q0, q1}

q1 {q2} {q2}

∗q2 ∅ ∅

δ(q0, 1) = {q0, q1}; we have δ(q0, 1) ∈ Pow(Q)

10

Extending the Transition Function to Strings

We define δ̂(q, x) by induction

BASIS δ̂(q, ε) = {q}

INDUCTION suppose x = ay

δ̂(q, ay) = δ̂(p1, y) ∪ . . . ∪ δ̂(pk, y) where δ(q, a) = {p1, . . . , pk}

δ̂(q, ay) =
⋃

p∈δ(q,a) δ̂(p, y)

We write q.x ∈ Pow(Q) instead of δ̂(q, x)

11

Extending the Transition Function to Strings

A word x is accepted iff q0.x ∩ F 6= ∅ i.e. there is at least one

accepting state in q0.x

δ̂ : Q × Σ∗ → Pow(Q) and each word x defines

a binary relation on Q: q1
x
→ q2 iff q2 ∈ q1.x

L(A) = {x ∈ Σ∗ | q0.x ∩ F 6= ∅}

12

Extending the Transition Function to Strings

Intuitively: q1
x
→ q2 means that there is one path from q1 to q2

having x for sequence of events

We can define q1
x
→ q2 inductively

BASIS: q1
ε
→ q2 iff q1 = q2

STEP: q1
ay
→ q2 iff there exists q ∈ δ(q1, a) such that q

y
→ q2

Then we have q1
x
→ q2 iff q2 ∈ q1.x

13

Representation in functional programming

next :: Q -> E -> [Q]

run :: Q -> [E] -> [Q]

run q [] = [q]

run q (a:x) = concat (map (\ p -> run p x) (next q a))

14

Representation in functional programming

We use

-- map f [a1,...,an] = [f a1,...,f an]

map f [] = []

map f (a:x) = (f a):(map f x)

-- concat [x1,...,xn] = x1 ++ ... ++ xn

concat [] = []

concat (x:xs) = x ++ concat xs

15

Representation in functional programming

It is nicer to take

next :: E -> Q -> [Q]

we define

run :: [E] -> Q -> [Q]

run [] q = [q]

run (a:x) q = concat (map (run x) (next a q))

16

Representation in functional programming

In the monadic notation (with the list monad)

run :: [E] -> Q -> [Q]

run [] q = return q

run (a:x) q = next a q >>= run x

accept :: [E] -> Bool

accept x = or (map final (run x q0))

17

Representation in functional programming

List monad: clever notations for programs with list

-- return :: a -> [a]

return x = [x]

-- (>>=) :: [a] -> (a->[b]) -> [b]

xs >>= f = concat (map f xs)

This is exactly what is needed to define run (a:x) q

18

Representation in functional programming

Other notation: do notation

run :: [E] -> Q -> [Q]

run [] q = return q

run (a:x) q = next a q >>= run x

is written

run :: [E] -> Q -> [Q]

run [] q = return q

run (a:x) q =

do p <- next a q

run x p

19

The Subset Construction

This corresponds closely to Ken Thompson’s implementation

We can now indicate how, given a NFA, to build a DFA that

accepts the same language.This DFA may require more states.

Intuitive idea of the construction for a NFA N : there are only

finitely many subsets of Q, hence only finitely many possible

situations

20

Extending the Transition Function to Strings

We start from a NFA N = (Q, Σ, δ, q0, F) where

δ : Q × Σ → Pow(Q)

We define

δD : Pow(Q) × Σ → Pow(Q)

δD(X, a) =
⋃

q∈X δ(q, a)

If X = {p1, . . . , pk} then

δD(X, a) = δ(p1, a) ∪ . . . ∪ δ(pk, a)

δD(∅, a) = ∅, δD({q}, a) = δ(q, a)

21

The Subset Construction

This function satisfies also

δD(X1 ∪ X2, a) = δD(X1, a) ∪ δD(X2, a)

δD(X, a) =
⋃

p∈X δD({p}, a)

22

The Subset Construction

We build the following DFA

QD = Pow(Q)

δD : Pow(Q) × Σ → Pow(Q)

qD = {q0} ∈ QD

FD = {X ⊆ Q | X ∩ F 6= ∅}

23

Representation in functional programming

Given

next :: E -> Q -> [Q]

we define its parallel version

pNext :: E -> [Q] -> [Q]

pNext a qs = concat (map (next a) qs)

24

Representation in functional programming

With the monadic notation

pNext :: E -> [Q] -> [Q]

pNext a qs = qs >>= next a

pNext :: E -> [Q] -> [Q]

pNext a qs =

do

q <- qs

next a q

25

Representation in functional programming

We can now define

run’ :: [E] -> [Q] -> [Q]

run’ [] qs = qs

run’ (a:x) qs = run’ x (pNext a qs)

26

Representation in functional programming

We state that we have for all x

run’ x [q] = run x q

run’ [a1,a2] [q]

= pNext a2 (pNext a1 [q])

= [q] >>= next a1 >>= next a2

= next a1 q >>= next a2

run [a1,a2] q

= next a1 q >>= run [a2]

= next a1 q >>= (\ p -> next a2 p >>= return)

= next a1 q >>= next a2

27

The Subset Construction

Lemma 1: For all word z and all set of states X we have

δ̂D(X, z) =
⋃

p∈X δ̂D({p}, z)

Lemma 2: For all words x we have q.x = δ̂D({q}, x)

Proof: By induction. The inductive case is when x = ay and then

q.(ay) =
⋃

p∈δ(q,a) p.y by definition

=
⋃

p∈δ(q,a) δ̂D({p}, y) by induction

= δ̂D(δ(q, a), y) by lemma 1

= δ̂D(q, ay) by definition

28

The Subset Construction

Lemma: For all words x we have q.x = δ̂D({q}, x)

Theorem: The language accepted by the NFA N is the same as

the language accepted by the DFA (QD, Σ, δD, qD, FD)

Proof: We have x ∈ L(N) iff δ̂(q0, x) ∩ F 6= ∅ iff δ̂(q0, x) ∈ FD iff

δ̂D(qD, x) ∈ FD. We use the Lemma to replace δ̂(q0, x) by

δ̂D({q0}, x) which is the same as δ̂D(qD, x) Q.E.D.

29

The Subset Construction

It seems that if we start with a NFA that has n states we shall

need 2n states for building the corresponding DFA

In practice, often a lot of states are not accessible from the start

state and we don’t need them

30

The Subset Construction

q0

0,1

1 q1
0,1

q2

We start from A= {q0} (only one start state)

If we get 0, we can only go to the state q0

If we get 1, we can go to q0 or to q1. We represent this by going to

the state B= {q0, q1} = δD(A, 1)

From B, if we get 0, we can go to q0 or to q2; we go to the state

C= {q0, q2} = δD(B, 0)

From B, if we get 1, we can go to q0 or q1 or q2; we go to the state

D= {q0, q1, q2} = δD(B, 1)

etc...

31

The Subset Construction

We get the following automaton

A= {q0}

B= {q0, q1}

C= {q0, q2}

D= {q0, q1, q2}

0 1

→A A B

B D C

∗C A B

∗D C D

32

The Subset Construction

Same automaton, as a transition system

B
1

0A

1

0 D

0

1

C
0

1

The DFA “remembers” the last two bits seen and accepts if the

next-to-last bit is 1

33

The Subset Construction

Another example: words ending by 01

q0

0,1

0 q1
1 q2

The new states are

A = {q0}

B = {q0, q1}

C = {q0, q2}

0 1

→A B A

B B C

∗C B A

34

The Subset Construction

The DFA is

A

1

0
B

1

0

C

0

1

A = {q0}

B = {q0, q1}

C = {q0, q2}

This DFA has only 3 states (and not 8). It is correct i.e. accepts

only the word ending by 01 by construction

We had only to prove the general correctness of the subset

construction

35

Example: password

If we apply the subset construction to the NFA

t h e n

we get exactly the following DFA

q0
t

6=t

q1
h

6=h

q2
e

6=e

q3
n

6=n

q4

q5

For this NFA, δ is a partial function

with a “stop” or “dead” state q5 = ∅

36

An Application: Text Search

Suppose we are given a set of words, called keywords, and we want

to find occurences of any of these words.

For such a problem, a useful way to proceed is to design a NFA

which recognizes, by entering in an accepting state, that it has seen

one of the keywords.

The NFA is only a nondeterministic program, but we can run it

using lists or transform it to a DFA and get a deterministic

(efficient) program

Once again, we know that this DFA will be correct by construction

This is a good example of a derivation of a program (DFA) from a

specification (NFA)

37

An Application: Text Search

The following NFA searches for the keyword web and ebay

B
e

C
b

D

A

Σ
w

e

E
b

F
a

G
y

H

Almost no thinking needed to write this NFA

What is a corresponding DFA?? Notice that this has the same

number of states as the NFA

38

Representation in functional programming

\slideheading{Representation in functional programming}

data Q = A | B | C | D | E | F| G | H

next ’w’ A = [A,B]

next ’e’ A = [A,E]

next _ A = [A]

next ’e’ B = [C]

next ’b’ C = [D]

next ’b’ E = [F]

next ’a’ F = [G]

next ’y’ G = [H]

next _ D = [D]

next _ H = [H]

next _ _ = []

39

Representation in functional programming

run :: String -> Q -> [Q]

run [] q = return q

run (a:x) q = next a q >>= run x

final :: Q -> Bool

final D = True

final H = True

final _ = False

accept :: String -> Bool

accept x = or (map final (run x A))

40

An Application: Text Search

Even for searching an occurence of one keyword this gives an

interesting program

This is connected to the Knuth-Morris-Pratt string searching

algorithm

Better than the naive string searching algorithm

41

A Bad Case for the Subset Construction

Theorem: Any DFA recognising the same language as the NFA

q0

0,1

1 q1
0,1

q2
0,1

q3
0,1

q4
0,1

q5

has at least 25 = 32 states!

42

A Bad Case for the Subset Construction

Lemma 1: If A is a DFA then

q.(xy) = (q.x).y

for any q ∈ Q and x, y ∈ Σ∗

We have proved this last time

43

A Bad Case for the Subset Construction

We define Ln = {x1y | x ∈ Σ∗, y ∈ Σn−1}

A = (Q, Σ, δ, q0, F)

Theorem: If |Q| < 2n then L(A) 6= Ln

Lemma 2: If |Q| < 2n there exists x, y ∈ Σ∗ and u, v ∈ Σn−1 with

q0.(x0u) = q0.(y1v)

Proof of the Theorem, given Lemma 2: If L(A) = Ln we have

y1v ∈ L(A) and x0u /∈ L(A), so

q0.(y1v) ∈ F and q0.(x0u) /∈ F

This contradicts q0.(x0u) = q0.(y1v) Q.E.D.

44

A Bad Case for the Subset Construction

Proof of the lemma: The map z 7−→ q0.z, Σn → Q is not

injective because |Q| < 2n = |Σn|

So we have a1 . . . an 6= b1 . . . bn with

q0.(a1 . . . an) = q0.(b1 . . . bn) (∗)

We can assume ai = 0, bi = 1. We take

x = a1 . . . ai−1, y = b1 . . . bi−1 and

u = ai+1 . . . an0i−1, v = bi+1 . . . bn0i−1

Notice then that (∗) implies, by Lemma 1

q0.(a1 . . . an0i−1) = q0.(b1 . . . bn0i−1)

Q.E.D.

45

