Finite Automata

We present one application of finite automata: non trivial text search algorithm

Given a finite set of words find if there are occurences of one of these words in a given text

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is one for which the next state is not uniquely determined by the current state and the coming symbol

Informally, the automaton can choose between different states

A nondeterministic vending machine

Nondeterministic Finite Automata

When does nondeterminism appear??
Tossing a coin (probabilistic automata)
When there is incomplete information about the state
For example, the behaviour of a distributed system might depend on messages from other processes that arrive at unpredictable times

Nondeterministic Finite Automata

When does a NFA accepts a word??
Intuitively, the automaton accepts w iff there is at least one computation path starting from the start state to an accepting state It is helpful to think that the automaton can guess the succesful computation (if there is one)

NFA accepting all words that end in 01
What are all possible computations for the word 1010??

Nondeterministic Finite Automata

Another example: automaton accepting only the words such that the second last symbol from the right is 1

The automaton "guesses" when the word finishes

Nondeterministic Finite Automata

$$
\Sigma=\{1\}
$$

NFA accepting all words of length multiple of 3 or 5
The automaton guesses the right direction, and then verifies that $|w|$ is correct!
How to define mathematically a non deterministic machine??

NFA and DFA

We saw on examples that it is much easier to build a NFA accepting a given language than to build a DFA accepting this language

We are going to give an algorithm that produces a DFA from a given NFA accepting the same language

This is surprising because a DFA cannot "guess"

First we have to define mathematically what is a NFA

Both this definition and the algorithm uses in a crucial way the powerset operation
if A is a set, we denote by $\operatorname{Pow}(A)$ the set of all subsets of A
(in particular the empty set \emptyset is in $\operatorname{Pow}(A)$)

Nondeterministic Finite Automata

Definition A nondeterministic finite automaton (NFA) consists of

1. a finite set of states (often denoted Q)
2. a finite set Σ of symbols (alphabet)
3. a transition function that takes as argument a state and a symbol and returns a set of states (often denoted δ); this set can be empty
4. a start state
5. a set of final or accepting states (often denoted F)

We have, as before, $q_{0} \in Q F \subseteq Q$

Nondeterministic Finite Automata

The transition function of a NFA is a function
$\delta: Q \times \Sigma \rightarrow \operatorname{Pow}(Q)$
Each symbol $a \in \Sigma$ defines a binary relation on the set Q $q_{1} \xrightarrow{a} q_{2}$ iff $q_{2} \in \delta\left(q_{1}, a\right)$

Nondeterministic Finite Automata

has for transition table

	0	1
$\rightarrow q_{0}$	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
q_{1}	$\left\{q_{2}\right\}$	$\left\{q_{2}\right\}$
$* q_{2}$	\emptyset	\emptyset

$\delta\left(q_{0}, 1\right)=\left\{q_{0}, q_{1}\right\} ;$ we have $\delta\left(q_{0}, 1\right) \in \operatorname{Pow}(Q)$

Extending the Transition Function to Strings

We define $\hat{\delta}(q, x)$ by induction
BASIS $\hat{\delta}(q, \epsilon)=\{q\}$
INDUCTION suppose $x=a y$
$\hat{\delta}(q, a y)=\hat{\delta}\left(p_{1}, y\right) \cup \ldots \cup \hat{\delta}\left(p_{k}, y\right)$ where $\delta(q, a)=\left\{p_{1}, \ldots, p_{k}\right\}$
$\hat{\delta}(q, a y)=\bigcup_{p \in \delta(q, a)} \hat{\delta}(p, y)$
We write $q \cdot x \in \operatorname{Pow}(Q)$ instead of $\hat{\delta}(q, x)$

Extending the Transition Function to Strings

A word x is accepted iff $q_{0} \cdot x \cap F \neq \emptyset$ i.e. there is at least one accepting state in $q_{0} . x$
$\hat{\delta}: Q \times \Sigma^{*} \rightarrow \operatorname{Pow}(Q)$ and each word x defines
a binary relation on $Q: q_{1} \xrightarrow{x} q_{2}$ iff $q_{2} \in q_{1} \cdot x$
$L(A)=\left\{x \in \Sigma^{*} \mid q_{0} \cdot x \cap F \neq \emptyset\right\}$

Extending the Transition Function to Strings

Intuitively: $q_{1} \xrightarrow{x} q_{2}$ means that there is one path from q_{1} to q_{2} having x for sequence of events

We can define $q_{1} \xrightarrow{x} q_{2}$ inductively
BASIS: $q_{1} \xrightarrow{\epsilon} q_{2}$ iff $q_{1}=q_{2}$
STEP: $q_{1} \xrightarrow{a y} q_{2}$ iff there exists $q \in \delta\left(q_{1}, a\right)$ such that $q \xrightarrow{y} q_{2}$
Then we have $q_{1} \xrightarrow{x} q_{2}$ iff $q_{2} \in q_{1} \cdot x$

Representation in functional programming

```
next :: Q -> E -> [Q]
run :: Q -> [E] -> [Q]
run q [] = [q]
run q (a:x) = concat (map (\ p -> run p x) (next q a))
```


Representation in functional programming

We use
-- map f [a1,...,an] = [f a1,...,f an]

```
map f [] = []
map f (a:x) = (f a):(map f x)
```

-- concat [x1,..., xn] = x1 ++ ... ++ xn
concat [] = []
concat ($\mathrm{x}: \mathrm{xs}$) = $\mathrm{x}++$ concat xs

Representation in functional programming

It is nicer to take

```
next :: E -> Q -> [Q]
```

we define

```
run :: [E] -> Q -> [Q]
run [] q = [q]
run (a:x) q = concat (map (run x) (next a q))
```


Representation in functional programming

In the monadic notation (with the list monad)

```
run :: [E] -> Q -> [Q]
run [] q = return q
run (a:x) q = next a q >>= run x
accept :: [E] -> Bool
accept x = or (map final (run x q0))
```


Representation in functional programming

List monad: clever notations for programs with list
-- return :: a -> [a]
return $\mathrm{x}=[\mathrm{x}]$
-- (>>=) :: [a] -> (a->[b]) -> [b]
xs >>= $f=$ concat (map $f x s$)
This is exactly what is needed to define run (a:x) q

Representation in functional programming

Other notation: do notation

```
run :: [E] -> Q -> [Q]
run [] q = return q
run (a:x) q = next a q >>= run x
```

is written

```
run :: [E] -> Q -> [Q]
run [] q = return q
run (a:x) q =
    do p <- next a q
    run x p
```


The Subset Construction

This corresponds closely to Ken Thompson's implementation
We can now indicate how, given a NFA, to build a DFA that accepts the same language.This DFA may require more states.

Intuitive idea of the construction for a NFA N : there are only finitely many subsets of Q, hence only finitely many possible situations

Extending the Transition Function to Strings

We start from a NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
$\delta: Q \times \Sigma \rightarrow \operatorname{Pow}(Q)$
We define
$\delta_{D}: \operatorname{Pow}(Q) \times \Sigma \rightarrow \operatorname{Pow}(Q)$
$\delta_{D}(X, a)=\bigcup_{q \in X} \delta(q, a)$
If $X=\left\{p_{1}, \ldots, p_{k}\right\}$ then
$\delta_{D}(X, a)=\delta\left(p_{1}, a\right) \cup \ldots \cup \delta\left(p_{k}, a\right)$
$\delta_{D}(\emptyset, a)=\emptyset, \quad \delta_{D}(\{q\}, a)=\delta(q, a)$

The Subset Construction

This function satisfies also
$\delta_{D}\left(X_{1} \cup X_{2}, a\right)=\delta_{D}\left(X_{1}, a\right) \cup \delta_{D}\left(X_{2}, a\right)$
$\delta_{D}(X, a)=\bigcup_{p \in X} \delta_{D}(\{p\}, a)$

The Subset Construction

We build the following DFA

$$
\begin{aligned}
& Q_{D}=\operatorname{Pow}(Q) \\
& \delta_{D}: \operatorname{Pow}(Q) \times \Sigma \rightarrow \operatorname{Pow}(Q) \\
& q_{D}=\left\{q_{0}\right\} \in Q_{D} \\
& F_{D}=\{X \subseteq Q \mid X \cap F \neq \emptyset\}
\end{aligned}
$$

Representation in functional programming

Given

```
next :: E -> Q -> [Q]
```

we define its parallel version
pNext : : E -> [Q] -> [Q]
pNext a qs = concat (map (next a) qs)

Representation in functional programming

With the monadic notation

$$
\begin{aligned}
& \text { pNext :: E -> [Q] -> [Q] } \\
& \text { pNext a qs = qs >>= next a } \\
& \text { pNext :: E -> [Q] -> [Q] } \\
& \text { pNext a qs = } \\
& \text { do } \\
& \text { q <- qs } \\
& \text { next a q }
\end{aligned}
$$

Representation in functional programming

We can now define

```
run' :: [E] -> [Q] -> [Q]
run' [] qs = qs
run' (a:x) qs = run' x (pNext a qs)
```


Representation in functional programming

We state that we have for all x

```
run' x [q] = run x q
run' [a1,a2] [q]
    = pNext a2 (pNext a1 [q])
    = [q] >>= next a1 >>= next a2
    = next a1 q >>= next a2
run [a1,a2] q
    = next a1 q >>= run [a2]
    = next a1 q >>= (\ p -> next a2 p >>= return)
    = next a1 q >>= next a2
```


The Subset Construction

Lemma 1: For all word z and all set of states X we have $\hat{\delta_{D}}(X, z)=\bigcup_{p \in X} \hat{\delta_{D}}(\{p\}, z)$
Lemma 2: For all words x we have $q \cdot x=\hat{\delta_{D}}(\{q\}, x)$
Proof: By induction. The inductive case is when $x=a y$ and then

$$
\begin{array}{rlr}
q .(a y) & =\bigcup_{p \in \delta(q, a)} p \cdot y & \\
& \text { by definition } \\
& =\bigcup_{p \in \delta(q, a)} \hat{\delta_{D}}(\{p\}, y) & \\
& \text { by induction } \\
& =\hat{\delta_{D}}(\delta(q, a), y) & \\
& =\hat{\delta_{D}}(q, a y) & \\
\text { by lemma } 1 \\
\text { by definition }
\end{array}
$$

The Subset Construction

Lemma: For all words x we have $q \cdot x=\hat{\delta_{D}}(\{q\}, x)$
Theorem: The language accepted by the NFA N is the same as the language accepted by the $\operatorname{DFA}\left(Q_{D}, \Sigma, \delta_{D}, q_{D}, F_{D}\right)$
Proof: We have $x \in L(N)$ iff $\hat{\delta}\left(q_{0}, x\right) \cap F \neq \emptyset$ iff $\hat{\delta}\left(q_{0}, x\right) \in F_{D}$ iff $\hat{\delta_{D}}\left(q_{D}, x\right) \in F_{D}$. We use the Lemma to replace $\hat{\delta}\left(q_{0}, x\right)$ by $\hat{\delta_{D}}\left(\left\{q_{0}\right\}, x\right)$ which is the same as $\hat{\delta_{D}}\left(q_{D}, x\right)$ Q.E.D.

The Subset Construction

It seems that if we start with a NFA that has n states we shall need 2^{n} states for building the corresponding DFA

In practice, often a lot of states are not accessible from the start state and we don't need them

The Subset Construction

We start from $\mathrm{A}=\left\{q_{0}\right\}$ (only one start state)
If we get 0 , we can only go to the state q_{0}
If we get 1 , we can go to q_{0} or to q_{1}. We represent this by going to the state $\mathrm{B}=\left\{q_{0}, q_{1}\right\}=\delta_{D}(A, 1)$
From B, if we get 0 , we can go to q_{0} or to q_{2}; we go to the state $\mathrm{C}=\left\{q_{0}, q_{2}\right\}=\delta_{D}(B, 0)$

From B, if we get 1 , we can go to q_{0} or q_{1} or q_{2}; we go to the state $\mathrm{D}=\left\{q_{0}, q_{1}, q_{2}\right\}=\delta_{D}(B, 1)$ etc...

The Subset Construction

We get the following automaton
$\mathrm{A}=\left\{q_{0}\right\}$
$\mathrm{B}=\left\{q_{0}, q_{1}\right\}$
$\mathrm{C}=\left\{q_{0}, q_{2}\right\}$
$\mathrm{D}=\left\{q_{0}, q_{1}, q_{2}\right\}$

	0	1
$\rightarrow \mathrm{~A}$	A	B
B	D	C
$* \mathrm{C}$	A	B
$* \mathrm{D}$	C	D

The Subset Construction

Same automaton, as a transition system

The DFA "remembers" the last two bits seen and accepts if the next-to-last bit is 1

The Subset Construction

Another example: words ending by 01

The new states are
$\mathrm{A}=\left\{q_{0}\right\}$
$\mathrm{B}=\left\{q_{0}, q_{1}\right\}$
$\mathrm{C}=\left\{q_{0}, q_{2}\right\}$

	0	1
$\rightarrow \mathrm{~A}$	B	A
B	B	C
$* \mathrm{C}$	B	A

The Subset Construction

The DFA is

$\mathrm{A}=\left\{q_{0}\right\}$
$\mathrm{B}=\left\{q_{0}, q_{1}\right\}$
$\mathrm{C}=\left\{q_{0}, q_{2}\right\}$
This DFA has only 3 states (and not 8). It is correct i.e. accepts only the word ending by 01 by construction

We had only to prove the general correctness of the subset construction

Example: password

If we apply the subset construction to the NFA

we get exactly the following DFA

with a "stop" or "dead" state $q_{5}=\emptyset$

An Application: Text Search

Suppose we are given a set of words, called keywords, and we want to find occurences of any of these words.

For such a problem, a useful way to proceed is to design a NFA which recognizes, by entering in an accepting state, that it has seen one of the keywords.

The NFA is only a nondeterministic program, but we can run it using lists or transform it to a DFA and get a deterministic (efficient) program

Once again, we know that this DFA will be correct by construction This is a good example of a derivation of a program (DFA) from a specification (NFA)

An Application: Text Search

The following NFA searches for the keyword web and ebay

Almost no thinking needed to write this NFA
What is a corresponding DFA?? Notice that this has the same number of states as the NFA

Representation in functional programming

\slideheading\{Representation in functional programming\}

```
data Q = A | B | C | D | E | F| G | H
next 'W' A = [A,B]
next 'e' A = [A,E]
next _ A = [A]
next 'e' B = [C]
next 'b' C = [D]
next 'b' E = [F]
next 'a' F = [G]
next 'y' G = [H]
next _ D = [D]
next _ H = [H]
next _ _ = []
```


Representation in functional programming

```
run :: String -> Q -> [Q]
run [] q = return q
run (a:x) q = next a q >>= run x
final :: Q -> Bool
final D = True
final H = True
final _ = False
accept :: String -> Bool
accept x = or (map final (run x A))
```


An Application: Text Search

Even for searching an occurence of one keyword this gives an interesting program

This is connected to the Knuth-Morris-Pratt string searching algorithm

Better than the naive string searching algorithm

A Bad Case for the Subset Construction

Theorem: Any DFA recognising the same language as the NFA

has at least $2^{5}=32$ states!

A Bad Case for the Subset Construction

Lemma 1: If A is a $D F A$ then

$$
q \cdot(x y)=(q \cdot x) \cdot y
$$

for any $q \in Q$ and $x, y \in \Sigma^{*}$
We have proved this last time

A Bad Case for the Subset Construction

We define $L_{n}=\left\{x 1 y \mid x \in \Sigma^{*}, y \in \Sigma^{n-1}\right\}$
$A=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Theorem: If $|Q|<2^{n}$ then $L(A) \neq L_{n}$
Lemma 2: If $|Q|<2^{n}$ there exists $x, y \in \Sigma^{*}$ and $u, v \in \Sigma^{n-1}$ with $q_{0} .(x 0 u)=q_{0} .(y 1 v)$
Proof of the Theorem, given Lemma 2: If $L(A)=L_{n}$ we have $y 1 v \in L(A)$ and $x 0 u \notin L(A)$, so
$q_{0} .(y 1 v) \in F$ and $q_{0} .(x 0 u) \notin F$
This contradicts $q_{0} \cdot(x 0 u)=q_{0} \cdot(y 1 v)$ Q.E.D.

A Bad Case for the Subset Construction

Proof of the lemma: The map $z \longmapsto q_{0} . z, \quad \Sigma^{n} \rightarrow Q$ is not injective because $|Q|<2^{n}=\left|\Sigma^{n}\right|$
So we have $a_{1} \ldots a_{n} \neq b_{1} \ldots b_{n}$ with

$$
\begin{equation*}
q_{0} \cdot\left(a_{1} \ldots a_{n}\right)=q_{0} \cdot\left(b_{1} \ldots b_{n}\right) \tag{*}
\end{equation*}
$$

We can assume $a_{i}=0, b_{i}=1$. We take
$x=a_{1} \ldots a_{i-1}, y=b_{1} \ldots b_{i-1}$ and
$u=a_{i+1} \ldots a_{n} 0^{i-1}, v=b_{i+1} \ldots b_{n} 0^{i-1}$
Notice then that (*) implies, by Lemma 1

$$
q_{0} \cdot\left(a_{1} \ldots a_{n} 0^{i-1}\right)=q_{0} \cdot\left(b_{1} \ldots b_{n} 0^{i-1}\right)
$$

Q.E.D.

