
Regular Expressions [1]

Warshall’s algorithm

See Floyd-Warshall algorithm on Wikipedia

The Floyd-Warshall algorithm is a graph analysis algorithm for finding shortest
paths in a weigthed, directed graph

Warshall algorithm finds the transitive closure of a directed graph

1

Regular Expressions [2]

Warshall’s algorithm

We have a graph with n nodes 1, 2, . . . , n

We define Eij = 1 iff there is an edge i→ j

Eij = 0 if there is no edge from i to j

We define E1
ij = Eij and

Ek+1
ij = Ek

ij ∨ Ek
ikE

k
kj

Then Ek
ij = 1 iff there exists a path i → i1 · · · → il → j with i1, . . . , il all

< k

2

Regular Expressions [3]

Warshall’s algorithm

This is best implemented with a fixed array of n× n booleans

For k = 1 to n

Eij := Eij ∨ EikEkj

3

Regular Expressions [4]

Floyd’s algorithm

Now Eij is a positive number (the cost or the distance of going from i to j;
it is ∞ if there is no edge from i to j).

For k = 1 to n

Eij := min(Eij, Eik + Ekj)

4

Regular Expressions [5]

Regular expression

Now Eij is a regular expression, and we compute all possible paths from i to
j. We initialize by Eij := Eij if i 6= j and Eii := ε+ Eii.

For k = 1 to n

Eij := Eij + EikE
∗
kkEkj

5

Regular Expressions [6]

Regular expression

For the automata with accepting state 2 and defined by

1.0 = 2, 1.1 = 1, 2.0 = 2.1 = 2

We have E11 = ε+ 1, E12 = 0, E21 = ∅, E22 = ε+ 0 + 1

6

Regular Expressions [7]

Regular expression

Then the first step is

E11 = ε+ 1 + (ε+ 1)(ε+ 1)∗(ε+ 1) = 1∗

E12 = 0 + (ε+ 1)(ε+ 1)∗0 = 1∗0

E21 = ∅+ ∅(ε+ 1)∗(ε+ 1) = ∅

E22 = ε+ 0 + 1 + ∅(ε+ 1)∗0 = ε+ 0 + 1

7

Regular Expressions [8]

Regular expression

The second step is

E11 = 1∗ + 1∗0(ε+ 0 + 1)∗∅ = 1∗

E12 = 1∗0 + 1∗0(ε+ 0 + 1)∗(ε+ 0 + 1) = 1∗0(0 + 1)∗

E21 = ∅+ (ε+ 0 + 1)(ε+ 0 + 1)∗∅ = ∅

E22 = ε+ 0 + 1 + (ε+ 0 + 1)(ε+ 0 + 1)∗(ε+ 0 + 1) = (0 + 1)∗

8

Regular Expressions [9]

Regular expression

In this way, we have seen two proofs of one direction of Kleene’s Theorem:
any regular language is recognized by a regular expression

The two proofs are

by solving an equation system and using Arden’s Lemma

by using Warshall’s algorithm

9

Regular Expressions [10]

Algebraic Laws for Regular Expressions

E + (F +G) = (E + F) +G, E + F = F + E, E + E = E, E + 0 = E

E(FG) = (EF)G, E0 = 0E = 0, Eε = εE = E

E(F +G) = EF + EG, (F +G)E = FE +GE

ε+ EE∗ = E∗ = ε+ E∗E

10

Regular Expressions [11]

Algebraic Laws for Regular Expressions

We have also

E∗ = E∗E∗ = (E∗)∗

E∗ = (EE)∗ + E(EE)∗

11

Regular Expressions [12]

Algebraic Laws for Regular Expressions

How can one prove equalities between regular expressions?

In usual algebra, we can “simplify” an algebraic expression by rewriting

(x+ y)(x+ z) → xx+ yx+ xz + yz

For regular expressions, there is no such way to prove equalities. There is not
even a complete finite set of equations.

12

Regular Expressions [13]

Algebraic Laws for Regular Expressions

Example: L∗ ⊆ L∗L∗ since ε ∈ L∗

Conversely if x ∈ L∗L∗ then x = x1x2 with x1 ∈ L∗ and x2 ∈ L∗

x ∈ L∗ is clear if x1 = ε or x2 = ε. Otherwise

So x1 = u1 . . . un with ui ∈ L

and x2 = v1 . . . vm with vj ∈ L

Then x = x1x2 = u1 . . . unv1 . . . vm is in L∗

13

Regular Expressions [14]

Algebraic Laws for Regular Expressions

Two laws that are useful to simplify regular expressions

Shifting rule

E(FE)∗ = (EF)∗E

Denesting rule

(E∗F)∗E∗ = (E + F)∗

14

Regular Expressions [15]

Variation of the denesting rule

One has also

(E∗F)∗ = ε+ (E + F)∗F

and this represents the words empty or finishing with F

15

Regular Expressions [16]

Algebraic Laws for Regular Expressions

Example:

a∗b(c+ da∗b)∗ = a∗b(c∗da∗b)∗c∗

by denesting

a∗b(c∗da∗b)∗c∗ = (a∗bc∗d)∗a∗bc∗

by shifting

(a∗bc∗d)∗a∗bc∗ = (a+ bc∗d)∗bc∗

by denesting. Hence

a∗b(c+ da∗b)∗ = (a+ bc∗d)∗bc∗

16

Regular Expressions [17]

Algebraic Laws for Regular Expressions

Examples: 10?0? = 1 + 10 + 100

(1 + 01 + 001)∗(ε+ 0 + 00) = ((ε+ 0)(ε+ 0)1)∗(ε+ 0)(ε+ 0)

is the same as

(ε+ 0)(ε+ 0)(1(ε+ 0)(ε+ 0))∗ = (ε+ 0 + 00)(1 + 10 + 100)∗

Set of all words with no substring of more than two adjacent 0’s

17

Regular Expressions [18]

Proving by induction

Let Σ be {a, b}

Lemma: For all n we have a(ba)n = (ab)na

Proof: by induction on n

Theorem: a(ba)∗ = (ab)∗a

Similarly we can prove (a+ b)∗ = (a∗b)∗a∗

18

Regular Expressions [19]

Complement of a(n ordinary) regular expression

For building the “complement” of a regular expression, or the “intersection”
of two regular expressions, we can use NFA/DFA

For instance to build E such that L(E) = {0, 1}∗ − {0} we first build a DFA
for the expression 0, then the complement DFA. We can compute E from this
complement DFA. We get for instance

ε+ 1(0 + 1)∗ + 0(0 + 1)+

19

Regular Expressions [20]

Abstract States

Two notations for the derivative L/a or a \ L

Last time I have used

L/a = {x ∈ Σ∗ | ax ∈ L}

I shall use now the following notation (cf. exercice 4.2.3)

a \ L = {x ∈ Σ∗ | ax ∈ L}

and more generally if z in Σ∗

z \ L = {x ∈ Σ∗ | zx ∈ L}

20

Regular Expressions [21]

Abstract States

Example: L = {an | 3 divides n} we have

ε \ L = L, a \ L = {a3n+2 | n ≥ 0}

aa \ L = {a3n+1 | n ≥ 0}, aaa \ L = L

Although Σ∗ is infinite, the number of distinct sets of the form u \ L is finite

21

Regular Expressions [22]

Another example

Σ = {0, 1}

L = {0n1n | n > 0}

ε \ L = L, 0 \ L = {0n1n+1 | n ≥ 0}

00 \ L = {0n1n+2 | n ≥ 0}, 000 \ L = {0n1n+3 | n ≥ 0}

1 \ L = ∅, 11 \ L = ∅

In this case there are infinitely many distinct sets of the form u \ L

22

Regular Expressions [23]

Another example

L = L(E) where E is (01 + 10)∗

Then 0 \ E = 1E and 1 \ E = 0E

0 \ 0E = E and 1 \ 0E = ∅

0 \ 1E = ∅ and 1 \ 1E = E

So we have only finitely many sets of the form u \ L

23

Regular Expressions [24]

Abstract States

The sets u \ L are called the abstract states of the language L

Myhill-Nerode theorem: A language is regular iff its set of abstract states
is finite

This is a characterisation of regular sets, and a powerful way to show that a
language is not regular

24

Regular Expressions [25]

Proof of the Myhill-Nerode theorem

Assume L is such that its set of abstract states u \ L is finite.

We define Q to be the set of all u \ L. By hypothesis Q is a finite set

We define q0 to be L = ε \ L

We define δ(M,a) = a \M for a ∈ Σ and M ⊆ Σ∗ an arbitrary language

In particular δ(u \ L, a) = ua \ L

Remark: We have a\ (u\L) = ua\L and more generally v \ (u\L) = uv \L

25

Regular Expressions [26]

Proof of the Myhill-Nerode theorem

Accepting states: we say that M is accepting iff ε is in M

We write ψ(M) in this case

Thus x is in M iff ψ(x \M) iff x \M is accepting

26

Regular Expressions [27]

Proof of the Myhill-Nerode theorem

Define F ⊆ Q to be the set of abstract states u \L such that ψ(u \L). Thus
u \ L ∈ F iff u ∈ L

Lemma: We have δ̂(L, x) = x \ L

Proof: Write x = a1 . . . an. We have

δ̂(L, a1 . . . an) = δ(. . . δ(δ(L, a1), a2) . . . , an) = an \ (. . . (a2 \ (a1 \L)) . . .) =
a1 . . . an \ L

27

Regular Expressions [28]

Proof of the Myhill-Nerode theorem

If A = (Q,Σ, δ, q0, F) we have x ∈ L(A) iff ψ(x \ L) iff x ∈ L. Thus
L = L(A) and L is regular

Notice that Q is now a finite set of sets.

28

Regular Expressions [29]

Proof of the Myhill-Nerode theorem

This proves one direction: if the set of abstract sets is finite then L is regular

Conversely assume that L is regular then L = L(A) for some DFA A =
(Q,Σ, δ, q0, F)

We have

u \ L(A) = L(Q,Σ, δ, q0.u, F)

Indeed v is in u \ L(A) iff uv is in L(A) iff q0.(uv) = (q0.u).v is in F

Since Q is finite since there are only finitely many possibilities for u \ L

29

Regular Expressions [30]

Proof of the Myhill-Nerode theorem

Hence we have shown that L is regular iff there are only finitely many abstract
states u \ L

This is a powerful way to prove that a language is not regular

For instance L = {0n1n | n > 0} is not regular since there are infinitely many
abstract states 0k \ L

We still get an automaton but with infinitely many states

30

Regular Expressions [31]

Proof of the Myhill-Nerode theorem

You should compare this with the use of the “pumping Lemma” (section 4.1)
that I will present next time

31

Regular Expressions [32]

Proof of the Myhill-Nerode theorem

This can be used also to show that a language is regular and indicate how to
build a DFA for this language

L = {an | 3 divides n}

We have three abstract states q0 = L, q1 = a \ L, q2 = aa \ L hence a DFA
with 3 states

32

Regular Expressions [33]

A corollary of Myhill-Nerode’s Theorem

Corollary: If L is regular then each u \ L is regular

Proof: Since we have

v \ (u \ L) = uv \ L

each abstract state of u \ L is an abstract state of L. If L is regular it has
finitely many abstract states by Myhill-Nerode’s Theorem. So u \ L has finitely
many abstract states and is regular by Myhill-Nerode’s Theorem.

33

Regular Expressions [34]

A corollary of Myhill-Nerode’s Theorem

Another direct proof of

Corollary: If L is regular then each u \ L is regular

Proof: L is regular so we have some DFA A = (Q,Σ, δ, q0, F) such that
L = L(A). Define

u \A = (Q,Σ, δ, q0.u, F)

We have seen that L(u \A) = u \ L(A).

34

Regular Expressions [35]

Symbolic Computation of u \ L

a \ ∅ = ∅

a \ ε = ∅

a \ a = ε

a \ b = ∅ if b 6= a

a \ (E1 + E2) = a \ E1 + a \ E2

a \ (E1E2) = (a \ E1)E2 if ε /∈ L(E1)

a \ (E1E2) = (a \ E1)E2 + a \ E2 if ε ∈ L(E1)

a \ E∗ = (a \ E)E∗

35

Regular Expressions [36]

Symbolic Computation of u \ L

If we introduce the notation ψ(E) = ε if ε in L(E) and ψ(E) = ∅ if ε is not
in L(E)

a \ ∅ = ∅ a \ ε = ∅ a \ a = ε

a \ b = ∅ if b 6= a

a \ (E1 + E2) = a \ E1 + a \ E2

a \ (E1E2) = (a \ E1)E2 + ψ(E1)(a \ E2)

a \ E∗ = (a \ E)E∗

36

Regular Expressions [37]

Symbolic Computation of u \ L

Computation of ψ(E)

ψ(∅) = ψ(a) = ∅

ψ(ε) = ε

ψ(E1 + E2) = ψ(E1) + ψ(E2)

ψ(E1E2) = ψ(E1)ψ(E2)

ψ(E∗) = ε

37

Regular Expressions [38]

Symbolic Computation of u \ L

We can similarly define α(E) = ε if L(E) 6= ∅ and α(E) = ∅ if L(E) = ∅

α(∅) = ∅

α(ε) = α(a) = ε

α(E1 + E2) = α(E1) + α(E2)

α(E1E2) = α(E1)α(E2)

α(E∗) = ε

38

Regular Expressions [39]

The Derivatives

Let E be (0 + 1)∗01(0 + 1)∗

0 \ E = E + 1(0 + 1)∗

1 \ E = E

01 \ E = (0 + 1)∗

00 \ E = 0 \ E

We have three languages E,E + 1(0 + 1)∗, (0 + 1)∗

We can build then a DFA for E

39

Regular Expressions [40]

The Derivatives

Other example: let E be (01)∗0

0 \ E = (0 \ (01)∗)0 + 0 \ 0 = 1(01)∗0 + ε = (10)∗

1 \ E = (1 \ (01)∗)0 + 1 \ 0 = ∅

00 \ E = 0 \ 1(01)∗0 + 0 \ ε = ∅

01 \ E = 1 \ 1(01)∗0 + 1 \ ε = E

We have three languages E, (10)∗, ∅

We can build then a DFA for E

40

Regular Expressions [41]

The Derivatives

A more complex example E = 1∗0 + 0∗1 we get a DFA with 7 states

To get the minimal DFA for E = 01∗ + 1∗0 we have to recognize that
1∗ + ε = 1∗

41

Regular Expressions [42]

Closure properties

Regular languages have the following closure properties

closure by union

closure by intersection

closure by complement

closure by difference

closure by reversal

closure by morphism and inverse morphism

42

Regular Expressions [43]

Reversal

The reversal of a string a1 . . . an is the string an . . . a1.

We write xR the reversal of x

Thus εR = ε and 0010R = 0100

Lemma: (xy)R = yRxR

43

Regular Expressions [44]

Reversal

If L is a language let LR be the set of all xR for x ∈ L

Theorem: If L is regular then so if LR

Proof 1: We have L = L(E) for a regular expression E. We define ER by
induction

(E1E2)R = ER
2 E

R
1 (E1 + E2)R = ER

1 + ER
2 (E∗)R = (ER)∗

aR = a ∅R = ∅ εR = ε

We then prove L(ER) = L(E)R by structural induction on E

44

Regular Expressions [45]

Reversal

Proof 2: We have L = L(A) for a NFA A, we define then a ε-NFA A′ such
that LR = L(A′)

We have A = (Q,Σ, δ, q0, F)

We take q1 /∈ Q and define A′ = (Q ∪ {q1},Σ, δ′, q1, {q0}) which is an ε-NFA
with

r ∈ δ′(s, a) iff s ∈ δ(r, a) for r, s ∈ Q

r ∈ δ′(q1, ε) iff r ∈ F

Example: The reverse of the language defined by (0 + 1)∗0 can be defined
by 0(0 + 1)∗

45

Regular Expressions [46]

Monoid

Let Σ be an alphabet

Σ∗ is a monoid

It has a binary operation (x, y) 7−→ xy which is associative x(yz) = (xy)z

It has a neutral element ε: we have xε = εx = x

It is not commutative in general ab 6= ba

46

Regular Expressions [47]

Definition of Homomorphisms

Let Σ and Θ be two alphabets.

Definition: an homomorphism h : Σ∗ → Θ∗

is an application such that, for all x, y ∈ Σ∗

h(xy) = h(x)h(y) h(ε) = ε

It follows that if h(a1 . . . an) = h(a1) . . . h(an)

Notice that h(a) ∈ Θ∗ if a ∈ Σ

47

Regular Expressions [48]

Closure under Homomorphisms

Let h : Σ∗ → Θ∗ be an homomorphism

Theorem: If L ⊆ Σ∗ is regular then h(L) is regular

We define h(E) if E is a regular expression

h(ε) = ε, h(∅) = ∅, h(a) = h(a)

h(E1 + E2) = h(E1) + h(E2)

h(E1E2) = h(E1)h(E2)

h(E∗) = h(E)∗

48

Regular Expressions [49]

Closure under Homomorphisms

Lemma: If E is a regular expression then L(h(E)) = h(L(E))

Proof: By structural induction on E. There are 6 cases.

This implies that given a DFA A such that L(A) = L ⊆ Σ∗ one can build a
DFA A′ such that L(A′) = h(L)

This DFA exists because we have a regular expression (hence a ε-NFA hence
a DFA by the subset construction)

Not obvious how to build directly this DFA

49

Regular Expressions [50]

Closure under Homomorphisms

Theorem: If L ⊆ Θ∗ is regular then h−1(L) is regular

Proof: Let A = (Q,Θ, δ, q0, F) DFA for L we define A′ = (Q,Σ, δ′, q0, F)
with

δ′(q, a) = q.h(a)

A′ is a DFA of alphabet Σ, we prove then that L(A′) = h−1(L)

Lemma: We have for all x δ̂′(q, x) = q.h(x)

The proof uses the fact that q.(uv) = (q.u).v

50

Regular Expressions [51]

Closure under Homomorphisms

Notice that the proof would be difficult to do directly at the level of regular
expressions. For instance if

If h(a) = ε, h(b) = b, h(c) = ε what is h−1({ε})?

If h(a) = abb, h(b) = c, h(c) = c we have h(ab) ∈ {ab}{bc} but we have
h−1({ab}) = h−1({bc}) = ∅

51

Regular Expressions [52]

Closure under Homomorphisms

Can we prove this using Myhill-Nerode’s Theorem?

We have to compute u \ h−1(L)

v is in this set iff h(uv) = h(u)h(v) is in L

Hence u \ h−1(L) is the same as h−1(h(u) \ L)

Hence if L is regular there are only a finite number of possible values for
u \ h−1(L) and hence h−1(L) is regular

52

Regular Expressions [53]

Closure under Union

We have a direct construction via ε-NFA or variation on the product of DFA

It is interesting to notice that we have also a proof via Myhill-Nerode’s
Theorem

u \ (L1 ∪ L2) = (u \ L1) ∪ (u \ L2)

If L1, L2 are regular, we have only a finite number of possible values for
u \ (L1 ∪ L2), hence L1 ∪ L2 is regular

53

Regular Expressions [54]

Closure under Intersection, Difference, Complement

The same argument works for showing that regular languages are closed under
intersection, complement and differences

u \ (L1 ∩ L2) = (u \ L1) ∩ (u \ L2)

u \ L′ = (u \ L)′

Application: we have another way to compute 0′ We have also direct
constructions on DFAs

54

Regular Expressions [55]

Closure under Prefix

If L ⊆ Σ∗ is a language we write Pre(L) the set

{u ∈ Σ∗ | ∃v. uv ∈ L}

This is the set of prefixes of words that are in L

We present two proofs that Pre(L) is regular if L is regular

One proof using Myhill-Nerode’s Theorem, and one proof using a DFA for L

55

Regular Expressions [56]

Closure under Prefix

If (Q,Σ, δ, q0, F) is a DFA for L we define a DFA for Pre(L) by taking

A′ = (Q,Σ, δ, q0, F ′)

where F ′ = {q ∈ Q | ∃z. δ̂(q, z) ∈ F}

We then show that x in L(A′) iff δ̂(q0, x) ∈ F ′ iff there exists z such that
(q0.x).z = q0.(xz) in F iff xz in Pre(L(A)) = Pre(L)

56

Regular Expressions [57]

Closure under Prefix

We have also a proof by using regular expression: given a regular expression
E we define p(E) such that L(p(E)) = Pre(L(E))

p(a) = ε+ a p(ε) = ε p(∅) = ∅

p(E1E2) = p(E1) + E1p(E2)

p(E1 + E2) = p(E1) + p(E2)

p(E∗) = E∗p(E) ‘

57

Regular Expressions [58]

Minimal automaton

If L is regular, we have seen that there is a DFA which recognizes L which
has for set of states the set S of abstract states of L

S is the set of all u \ L

u \ L goes to (ua) \ L

This is the minimal automaton which recognizes L

58

Regular Expressions [59]

Minimal automaton

Let A = (Q,Σ, δ, q0, F) be another DFA which recognizes L

We show that Q has more elements than S

Indeed we know that u \ L is (Q,Σ, δ, q0.u, F)

Thus S has less elements than there are accessible states in Q

59

Regular Expressions [60]

Minimal automaton

For example, for L = L((0 + 1)∗01(0 + 1)∗) we have computed three abstract
states

L, 0 \ L, 01 \ L = Σ∗

Hence any automaton which recognizes L has at least three states

60

Regular Expressions [61]

Minimal automaton

Let Q′ be the set of states accessible from q0

If q0.u = q0.v I claim that we have u \ L = v \ L

Indeed this is the set recognized by (Q,Σ, δ, q0.u, F) = (Q,Σ, δ, q0.v, F)

This means that we have a surjective map ψ : Q′ → S, q0.u 7−→ u \ L

Furthermore ψ(q.a) = a \ ψ(q)

This shows that connection between any automaton recognizing L and the
minimal automaton of abstract states

61

Regular Expressions [62]

Minimal automaton

Next time, I will present an algorithm for computing the minimal automaton
for L given a DFA for L

62

Regular Expressions [63]

Accessible states

A = (Q,Σ, δ, q0, F) is a DFA

A state q ∈ Q is accessible iff there exists x ∈ Σ∗ such that q = q0.x

Let Q0 be the set of accessible states, Q0 = {q0.x | x ∈ Σ∗}

Theorem: We have q.a ∈ Q0 if q ∈ Q0 and q0 ∈ Q0. Hence we can consider
the automaton A0 = (Q0,Σ, δ, q0, F ∩Q0). We have L(A) = L(A0)

In particular L(A) = ∅ if F ∩Q0 = ∅.

63

Regular Expressions [64]

Accessible states

Actually we have L(A) = ∅ iff F ∩Q0 = ∅ since if q.x ∈ F then q.x ∈ F ∩Q0

Implementation in a functional language: we consider automata on a finite
collection of characters given by a list cs

An automaton is given by a parameter type a with a transition function and
an initial state

64

Regular Expressions [65]

Accessible states

import List(union)

isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)

closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]

closure cs delta qs =
let qs’ = qs >>= (\ q -> map (delta q) cs)
in if isSup qs qs’ then qs

else closure cs delta (union qs qs’)

65

Regular Expressions [66]

Accessible states

accessible :: Eq a => [Char] -> (a -> Char -> a) -> a -> [a]

accessible cs delta q = closure cs delta [q]

-- test emptyness on an automaton

notEmpty :: Eq a => ([Char],a-> Char -> a,a,a->Bool) -> Bool

notEmpty (cs,delta,q0,final) = or (map final (accessible cs delta q0))

66

Regular Expressions [67]

Accessible states

data Q = A | B | C | D | E
deriving (Eq,Show)

delta A ’0’ = A delta A ’1’ = B
delta B ’0’ = A delta B ’1’ = B
delta C _ = D
delta D ’0’ = E delta D ’1’ = C
delta E ’0’ = D delta E ’1’ = C

as = accessible "01" delta A

test = notEmpty ("01",delta,A,(==) C)

67

Regular Expressions [68]

Accessible states

Optimisation

import List(union)

isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)

Closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]

68

Regular Expressions [69]

Accessible states

closure cs delta qs = clos ([],qs)
where
clos (qs1,qs2) =
if qs2 == [] then qs1
else let qs = union qs1 qs2

qs’ = qs2 >>= (\ q -> map (delta q) cs)
qs’’ = filter (\ q -> not (isIn qs q)) qs’

in clos (qs,qs’’)

69

Regular Expressions [70]

Automatic Theorem Proving

If Σ = {a, b} we have

E = δ(E) + a(a \ E) + b(b \ E)

and hence E = F iff

δ(E) = δ(F)

a \ E = a \ F

b \ E = b \ F

70

Regular Expressions [71]

Automatic Theorem Proving

Given E = (a2 + a3)∗ what is the automaton of abstract states of E?

This gives an automatic way to prove that any number > 2 is a sum of 2s
and 3s

One can prove automatically a(ba)∗ = (ab)∗a or a∗(b+ ab∗) 6= b+ aa∗b∗

One finds a counterexample to (a+ b)∗ = a∗ + b∗

71

Regular Expressions [72]

The Pigeonhole Principle

An important reasoning technique (see Wikipedia)

“If you have more pigeon than pigeonholes then there is at least one pigeonhole
with two pigeons”

If f : X → Y and |X| > |Y | then f is not injective and there exist two
distinct elements with the same image

72

Regular Expressions [73]

The Pigeonhole Principle

Often used to show the existence of an object without building this object
explicitely

Example: in a room with at least 13 people, at least two of them are born
the same month (maybe of different years). We know the existence of these two
people, maybe without being able to know exactly who they are.

73

Regular Expressions [74]

The Pigeonhole Principle

Example: In London, there are at least two people with the same number of
hairs on their heads (assuming no one has more than 1000000 hairs on his head)

For a nice discussion, see

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD09xx/EWD980.html

Other formulation: if we have a bag of numbers, the maximum value is greater
than the average value

74

Regular Expressions [75]

How to prove that a language is not regular?

In a NFA with N states, any path

q0
a1→ q1

a2→ q2 → . . . qn−1
an→ qn

contains a loop as soon as n > N

Indeed, we should have i < j with qi = qj. We apply the Pigeonhole Principle.

This works for NFA as well as for DFA

75

Regular Expressions [76]

How to prove that a language is not regular?

Let Σ be {a, b}

Let L be the language {anbn | n > 0}

We show that L is not regular

We assume that L = L(A) for a NFA A and we derive a contradiction

76

Regular Expressions [77]

How to prove that a language is not regular?

Let N be the number of states of A

Let k > N and w = akbk ∈ L

So there is an accepting path q0
w→ q ∈ F and since we have only N states

we know that there is a loop “at the beginning”: we can write w = xyz with
|xy| 6 N and

q0
x→ s

y→ s
z→ q ∈ F

77

Regular Expressions [78]

How to prove that a language is not regular?

z is of the form ak−mbk with m = |xy|

We have then an accepting path for xz

q0
x→ s

z→ q ∈ F

and since y has to be of the form al, l > 0 then xz is of the form ak−lbk

Since ak−lbk /∈ L we have a contradiction: xz cannot have an accepting path.

78

Regular Expressions [79]

The Pumping Lemma

Theorem: If L is a regular language, there exists n such that if w ∈ L and
n 6 |w| then we can write w = xyz with y 6= ε and |xy| 6 n and for all k > 0
we have xykz ∈ L.

79

Regular Expressions [80]

The Pumping Lemma

Proof: We have a NFA A such that L = L(A). Let n be the number of
states of A. Any path in A of length > n has a loop. We can consider that
w = a1 . . . al defines a path with a loop

q0
x→ q

y→ q
z→ ql

with ql in F and y 6= ε and |xy| 6 n such that w = xyz ∈ L(A) Then we have

q0
x→ q

yk

→ q
z→ ql

for each k and hence xykz in L

80

Regular Expressions [81]

The pumping lemma

For instance Leq ⊆ {0, 1}∗ set of words with an equal number of 0 and 1 is
not regular.

Otherwise, we have n as given by the pumping lemma.

We have 0n1n ∈ Leq and hence

0n1n = xyz

with |xy| 6 n, y 6= ε and xykz ∈ Leq for all k.

But then we have y = 0q for some q > 0 and we have a contradiction for
k 6= 1

81

Regular Expressions [82]

The pumping lemma

Another proof that Leq ⊆ {0, 1}∗ is not regular is the following.

Assume Leq to be regular then Leq ∩ L(0∗1∗) would be regular, but this is

{0n1n | n > 0}

which we have seen is not regular.

Hence Leq is not regular.

82

Regular Expressions [83]

How to prove that a language is not regular?

Let L be the language {anbn | n > 0}

Theorem: L is not regular

However there is a simple machine with infinitely many states that recognizes
L

The Pumping Lemma is connected to the “finite memory” of FA

83

Regular Expressions [84]

How to prove that a language is not regular?

For the examples

L = {0n1m | n > m}

L′ = {0n1m | n 6= m}

the Pumping Lemma does not seem to work

We can use the closure properties of regular languages

84

Regular Expressions [85]

The Pumping Lemma is not a Necessary Condition

If L = {bkck | k > 0} then L is not regular

If we consider L1 = a+L ∪ (b + c)∗ then L1 is not regular: if L1 is regular
then so is a+L (by intersection with the complement of (b+ c)∗) and then so is
L (by image under the morphism f(a) = ε, f(b) = b, f(c) = c)

However the Pumping Lemma applies to L1 with n = 1

This shows that, contrary to Myhill-Nerode’s Theorem, the Pumping Lemma
is not a necessary condition for a language to be regular

85

Regular Expressions [86]

Applying the Pumping Lemma

L = {0n12n | n > 0} is not regular

Proof: Assume that L is regular. By the Pumping Lemma there exists N
such that if w ∈ L and N 6 |w| then we can write w = xyz with |xy| 6 N and
y 6= ε and xykz ∈ L for all k.

Take w = 0N12N . We have N 6 |w| and w ∈ L. So we can write w = xyz
with |xy| 6 N and y 6= ε and xykz ∈ L for all k. Since w = 0N12N and y 6= ε
we have y = 0p for some p > 0. But then xy /∈ L, contradiction. So L is not
regular. Q.E.D.

Other proof with Myhill-Nerode: L/0k1 = {12k−1}, infinitely many abstract
states.

86

