Finite Automata: Homework 1

1. We define
$f(0)=0, f(1)=1, f(n+2)=f(n)$
$g(0)=0, g(n+1)=1-g(n)$
Compute $f(2), f(3), g(1), g(2), g(3)$. Prove that $f(n)=g(n)$ for all n
2. Design DFA for each of the following set
(a) the set of words in $\{4,8,1\}$ containing the subword 481
(b) the set of words in $\{0,1\}$ with an even number of occurences of 0 and a number of occurences of 1 divisible by 3
(c) the set of words in $\{0\}$ whose length is divisible by either 2 or 3
3. Show that $(a b)^{n} a=a(b a)^{n}$ holds for all natural number n.
4. Let $f: \Sigma^{*} \rightarrow \Theta^{*}$ be such that $f(\epsilon)=\epsilon$ and $f(x y)=f(x) f(y)$ for all $x, y \in \Sigma^{*}$. Show that if $L \subseteq \Theta^{*}$ is regular then so is $f^{-1}(L)=\left\{x \in \Sigma^{*} \mid f(x) \in L\right\}$.
5. Let Σ be $\{1\}$. The following NFA

accepts all words of length multiple of 3 or 5 . Using the subset construction, build a DFA accepting the same language. Try then to understand intuitively how this DFA is working.
