Finite Automata: Homework 1

- 1. We define
 - f(0) = 0, f(1) = 1, f(n+2) = f(n) g(0) = 0, g(n+1) = 1 - g(n)Compute f(2), f(3), g(1), g(2), g(3). Prove that f(n) = g(n) for all n
- 2. Design DFA for each of the following set
 - (a) the set of words in $\{4, 8, 1\}$ containing the subword 481
 - (b) the set of words in $\{0, 1\}$ with an even number of occurences of 0 and a number of occurences of 1 divisible by 3
 - (c) the set of words in $\{0\}$ whose length is divisible by either 2 or 3
- 3. Show that $(ab)^n a = a(ba)^n$ holds for all natural number n.
- 4. Let $f: \Sigma^* \to \Theta^*$ be such that $f(\epsilon) = \epsilon$ and f(xy) = f(x)f(y) for all $x, y \in \Sigma^*$. Show that if $L \subseteq \Theta^*$ is regular then so is $f^{-1}(L) = \{x \in \Sigma^* \mid f(x) \in L\}.$
- 5. Let Σ be {1}. The following NFA

accepts all words of length multiple of 3 or 5. Using the subset construction, build a DFA accepting the same language. Try then to understand intuitively how this DFA is working.