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Abstract
In this paper we study the problem of pri-
vate stochastic multi-arm bandits. Our notion
of privacy is the same as some of the ear-
lier works in the general area of private on-
line learning (Dwork et al., 2010; Jain et al.,
2012; Smith and Thakurta, 2013). We design
algorithms that are i) differentially private, and
ii) have regret guarantees that (almost) match
the regret guarantees for the best non-private
algorithms (e.g., upper confidence bound sam-
pling). Moreover, through our experiments on
simulated and real-world data sets, we empiri-
cally show the effectiveness of our algorithms.

Note: A version of this paper with the techni-
cal details appears in the appendix.

1. Introduction
Consider a set of k arms C = {a1, · · · , ak}. At each
time step t ∈ [T ] an arm a ∈ C gets pulled, where T
is the time horizon. Corresponding to the pulled arm a,
a reward of ft(a) ∈ R is awarded by the environment.
The objective is to design an algorithm (or learner) which
maximizes the total reward (i.e.,

∑
t ft(a)) over all time

steps T . The only information the algorithm gets while
interacting with the system is the set of rewards for the
arms it has pulled during the period 1, · · · , T . This class
of online learning algorithms which work under partial
feedback (i.e., at any time step t, it cannot see the rewards
for any of the arms it has not pulled) are called bandit
algorithms.

Bandit algorithms have been broadly categorized into
two classes: i) Adversarial bandits (where the environ-
ment chooses the rewards adversarially), and ii) Stochas-
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tic bandits (where the environment chooses the rewards
from an unknown but fixed distribution). Both stochas-
tic bandits and adversarial bandits have been studied ex-
tensively in the online learning literature. (See (Shalev-
Shwartz, 2011) or (Bubeck and Cesa-Bianchi, 2012) for
a detailed survey.)

Recently, (Smith and Thakurta, 2013) analyzed bandit
algorithms under the constraint of differential privacy
and provided nearly optimal error guarantees for adver-
sarial bandits. Informally speaking, differential privacy
ensures that from the output of the algorithm (i.e., the
arms the algorithm pulls), an adversary’s1 information
gain about the rewards assigned to C by the environ-
ment at any time step t is small. In this work, we study
the problem of stochastic bandits while preserving dif-
ferential privacy. We provide nearly optimal algorithms
for differentially private stochastic bandits, and provide
experimental evidence for the effectiveness of our algo-
rithms.

Often privacy forms a serious bottleneck in the usage of
bandit learning algorithms in practice. As a concrete ex-
ample, consider the scenario of recommendation (or ad-
vertisement) system. One can view the set of candidate
recommendations for the user, as the set of arms C. If the
user clicks on one of the recommendations, then a partic-
ular reward is given back to the recommendation system
based on user’s click. Since user preferences can be po-
tentially sensitive, a recommendation system can leak a
lot of potentially sensitive information about a user. At-
tacks on real recommendation systems (Calandrino et al.,
2011) have heightened the privacy concerns to a large
extent. Our bandit algorithms provide provable privacy
guarantees to the individuals in the data set whose data
are used to train recommendation systems.

1Here adversary is the one who wants to extract information
about rewards from the environment. N.B. This should not be
confused with adversarial bandit learning, where the environ-
ment chooses the rewards so as to minimize the total reward for
the bandit algorithm.



In this work we extend the ideas from (Smith and
Thakurta, 2013; Dwork et al., 2010; Jain et al., 2012) for
private online learning under full-information and adver-
sarial bandits to the case of stochastic bandits. The two
main novelties of our results are: i) We show strong ex-
perimental evidence that our private algorithms are use-
ful on real-scale data, and ii) We extend our algorithms to
the general case of contextual bandits. Contextual bandit
is a generalization of the basic stochastic bandit formu-
lation above, where at each time t, a context vector za(t)
is provided for each arm a ∈ C. The reward for an arm a
at time step t has a distribution parameterized by za(t).
(For details see Section 4.) The underlying algorithm we
use in our work is the upper confidence bound (UCB)
sampling algorithm, initially proposed by (Auer et al.,
2002). Both for the contextual and the context free case
of the UCB sampling, the privacy analysis is similar to
that of (Smith and Thakurta, 2013). However, we need
to provide a fresh analysis as a direct black box reduction
is not possible.

Algorithmic idea. Stochastic multi-armed bandit algo-
rithms usually run in two implicit phases; exploration
phase and exploitation phase. During the exploration
phase, the algorithm uses the pull of the arms in the ini-
tial rounds to get a sufficiently accurate estimate of the
means of the distributions from which the reward for
each arm is drawn. In the second phase it uses this in-
formation to guide the choice of arms in the later rounds.
In order to ensure differential privacy, we are required to
introduce some randomness in the observed rewards, but
a direct noise addition will grossly corrupt the estimates
for the arms. We address this issue by increasing the
number of rounds used by the algorithm to estimate the
means. The exact details are slightly more complicated
and are discussed in Section 3.

Privacy semantics. We now focus on the semantics of
differential privacy in the setting where the data points
(the rewards) arrive online in a stream at every time step.
This setting was first studied by (Dwork et al., 2010)
and then followed by (Jain et al., 2012) and (Smith and
Thakurta, 2013). Let ft = 〈ft(a1), · · · , ft(ak)〉 be the
vector of rewards for all the arms in C at time step t. Pri-
vacy guarantee will ensure that from the output of the
algorithm over all the T time steps the adversary will not
be able to distinguish between the presence or absence
of any single reward vector ft. (Jain et al., 2011) stud-
ied differentially private online algorithms in the full-
information setting, where at each time step t the algo-
rithm can see the complete reward vector ft as opposed
to ft(a) for the arm a pulled in the bandit setting. (Smith
and Thakurta, 2013) extended this line of work to obtain
tighter and nearly optimal regret guarantees for both full-
information and adversarial bandit settings. Recall that

in the non-private world, the full-information and the ad-
versarial bandit settings both have optimal regret guaran-
tee of Ω(

√
T ) (see (Shalev-Shwartz, 2011)). In contrast,

stochastic bandit algorithms enjoy a regret of O(log T ).
In this work we obtain the first and nearly optimal re-
gret guarantees by building on the algorithmic technique
of (Smith and Thakurta, 2013) to the case of stochas-
tic bandit problems. Since, stochastic bandit algorithms
have a very different flavor than adversarial bandit algo-
rithms, our results do not follow directly from (Smith and
Thakurta, 2013).

One important point to keep in mind is that although we
make stochastic assumptions on the data to ensure strong
utility guarantees, we do not make any assumptions on
the data while ensuring privacy for our algorithms. Us-
ing the distributional assumption on the data for any kind
of privacy guarantee may be disastrous, since real world
data may not follow the assumed distribution. For our
algorithms, privacy should hold in the worst case sce-
nario but the utility guarantee holds under distributional
assumptions on the data.

Finally, we provide experimental evidence to corroborate
our theoretical guarantees.

1.1. Our Contributions

Here, we provide an overview of our contributions.

• Differentially private UCB sampling: We provide a
differentially private variant of UCB sampling algo-
rithm which enjoys the same utility guarantee as the
non-private algorithm up to poly-logarithmic factors
in the number of time steps T . The privacy guaran-
tee follows via standard reduction to the tree-based-
aggregation scheme, proposed by (Dwork et al., 2009;
Chan et al., 2010). Our utility analysis goes via care-
fully analyzing the exploration phase of the algorithm,
where it estimates the means of the arms. As a conse-
quence, we provide a version of UCB sampling algo-
rithm that is robust to noise.

• Differentially private contextual bandits: We pro-
vide the first differentially private algorithm for con-
textual bandits. We modify our basic private UCB al-
gorithm to the contextual case, and use the algorithm
of (Li et al., 2010) as the basic building block. Al-
though we do not provide any formal utility analysis,
we show the effectiveness of our private algorithm on
real-world data sets.

• Experimental evaluation: We provide a thorough ex-
perimental evaluation of the private UCB sampling on
both simulated and real world data sets (Yahoo! news
recommendation data). On the simulate data sets we
show that our basic private UCB sampling algorithm
perform as good as the non-private counter part. For
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the contextual UCB algorithm, we show that on the
Yahoo! news recommendation data set, our algorithm
perform comparable to the non-private counterpart of
(Li et al., 2010).

2. Background and Problem Definition
2.1. Background on Differential privacy

In this section we provide a short overview of differential
privacy. Let D = 〈f1, · · · , fT 〉 be a data set of all the
reward functions. We call a data set D′ neighbor of D if
it differs from D in exactly one reward function. Let CT
be the space of all T outputs by Algorithm A.

Definition 1 (Differential privacy (Dwork et al., 2006)).
A randomized algorithm A is ε-differentially private if
for any two neighboring data sets D and D′, and for all
sets O ⊆ CT the following holds:

Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O].

As per the semantics of the definition, differential pri-
vacy ensures that an adversary gets to know “almost the
same thing” about a reward function ft irrespective of its
presence or absence in the data set D. This closeness is
measured by the privacy parameter ε. A typical choice
of ε is a small constant (e.g., 0.1). One important re-
quirement for the definition is that the guarantee should
hold for every pair of neighboring data sets. Therefore,
for the regret analysis of our algorithm A although we
can assume that the rewards come from some underlying
distribution, but we cannot make any stochastic assump-
tion on the reward functions for privacy guarantee. Next,
we discuss some of the basic tools for designing differ-
entially private algorithms.

Laplace mechanism and Gamma mechanism. Laplace
mechanism (Dwork et al., 2006) and Gamma mecha-
nism (Chaudhuri and Monteleoni, 2008; Chaudhuri et al.,
2011) are simple sensitivity based methods to achieve
differential privacy. The best way to introduce Laplace
mechanism is via the following setting. Consider a do-
main of data entries U and a function f : U∗ → R. For
the domain of data sets Un, we define the sensitivity of
the function f as below.

s = Sensitivity(f) = max
NeighborsD,D′∈U∗

|f(D)− f(D′)| .

Let Lap(λ) be the Laplace distribution with scaling pa-
rameter λ, i.e., the density function of this distribution is
given by 1

2λe
−|x|/λ. Laplace mechanism states that for a

given data set D and noise N ∼ Lap
(
s
ε

)
, f(D) + N is

ε-differentially private. The proof of this claim directly

follows from the density function for Laplace distribu-
tion and triangle inequality. (See (Dwork et al., 2006)
for the proof.)

Gamma mechanism is also very similar to Laplace mech-
anism. The only difference being that we now need to
work with a vector valued function f : U∗ → Rp. Anal-
ogous to the Laplace mechanism, let us define the L2-
sensitivity of the function f as below,

s = Sensitivity(f) = max
NeighborsD,D′∈U∗

‖f(D)− f(D′)‖2 .

Gamma mechanism states that if we sample the noise
vector N ∈ Rp from the noise distribution with ker-
nel e−ε‖N‖2/s, then f(D) +N is ε-differentially private.
(See (Chaudhuri et al., 2011) for the proof.)

Tree based aggregation. Initially proposed by (Dwork
et al., 2009; Chan et al., 2010), this aggregation scheme is
extremely effective in releasing private continual statis-
tics over a data stream. Suppose at every time step
t ∈ [T ], one entry from the dataset D, ft ∈ [0, 1] ar-

rives and the task is to output vt =
t∑

τ=1
ft while ensur-

ing that the complete output sequence 〈v1 · · · , vT 〉 is ε-
differentially private. This algorithm uses a binary tree
based aggregation scheme, which assures an additive er-
ror of O

(
log1.5 T

ε

)
per query. (We defer the details of

the scheme to the full version.) Moreover, it is simple
to extend this scheme to the case where ft ∈ Rp and
‖ft‖2 ≤ 1 for all t ∈ [T ].

2.2. Background on Stochastic Multi-arm Bandits
and Problem Definition

A typical setup for an online learning problem is as
follows: There is a sequence of reward functions
f1, · · · , fT arriving in a stream (i.e., one at every time
step t ∈ [T ]), where each fi maps from some fixed set C
to R. At every time step t, an online learning algorithm
A is expected to produce an element xt ∈ C before ft is
revealed to it. Once ft gets revealed to A, the algorithm
pays a cost of ft(xt). The objective ofA is to be compet-
itive with the best choice of x ∈ C in the hindsight, i.e.,

be competitive with max
x∈C

T∑
t=1

ft(x). ( For a detailed dis-

cussion, see (Shalev-Shwartz, 2011).) A natural measure
of the utility of A is regret, defined as:

RegretA(T ) = max
x∈C

T∑
t=1

ft(x)−
T∑
t=1

ft(xt).

Under this umbrella of regret minimization, there are two
popular settings under which these problems are studied,
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namely, i) online learning under complete feedback or
the full-information setting, and ii) online learning under
partial feedback or the bandit setting. In the first setting,
it is assumed that at time step t after the algorithm A has
produced xt, it gets to see the complete reward function
ft. In the second setting, the algorithm observes much
lesser information from the environment and only gets to
see the evaluation of ft at xt.

Problem Statement. Let ft be defined as ft : C → [0, 1]
for all t ∈ [T ], where C is the set of k-arms. Addition-
ally we assume that for each arm a ∈ C, each ft(a) is
an independent sample from a distribution with mean
µa. The objective is to design differentially private al-
gorithms, whose regret (defined in (1)) depends poly-
logarithmically on the number of reward functions T .

E [RegretA(T )] = T max
a∈C

µa − E

[
T∑
t=1

ft(a(t))

]
. (1)

Here, a(t) ∈ C is the arm played in the t-th time step.

3. Private Upper Confidence Bound
Sampling

Upper Confidence Bound (UCB) sampling by [(Auer
et al., 2002)] is an algorithm for stochastic multi-arm
bandit (MAB) problems, which despite being very sim-
ple gives very strong utility guarantees. The regret for
UCB O∗(log T ) infact matches the asymptotic lower
given by (Lai and Robbins, 1985) upto a problem de-
pendent constant. This is in sharp contrast with the algo-
rithms for adversarial multi-arm bandit problems where
the regret depends polynomially on the time horizon T
(see (Agarwal et al., 2010; Flaxman et al., 2005)). Re-
cently (Smith and Thakurta, 2013) provided differen-
tially private algorithms for adversarial bandit problems,
which are almost optimal in the parameter T . In this
section, for stochastic MAB, we provide a differentially
private UCB algorithm whose expected regret is poly-
logarithmic in T . Before we move to the private UCB al-
gorithm, we provide a brief overview of the non-private
version.

Background on UCB sampling. Recall that in the MAB
problem there are k-arms denoted by the set C, and at
each time step t each arm a ∈ C produces either 0 or 1
from some unknown but fixed distribution on [0, 1] with
mean µa. The objective is to minimize the regret de-
fined in (1). For each arm a, the UCB algorithm records
the number of times it got pulled na(t) and the average
reward ra(t)

na(t) aggregated so far upto time t. Upon initial-
ization, the algorithm pulls each arm exactly once. Later,
the algorithm picks the arm with the highest upper con-

fidence bound, i.e.,

arg max
a∈C

ra(t)

na(t)
+

√
2 log t

na(t)
. (2)

Theorem 2 (Regret for non-private UCB Sampling [(Auer
et al., 2002)). Let µ∗ = max

a∈C
µa. For each arm a ∈ C, let

∆a = µ∗ − µa. The expected regret of UCB sampling algo-
rithm is as follows:

E [RegretUCB(T )] = O

( ∑
a∈C:µa<µ∗

log T

∆a
+ ∆a

)
.

The expectation is over the randomness of the data.

3.1. Private UCB Sampling: Algorithm and Analysis

In Algorithm 1 we modify the UCB sampling algorithm
to obtain an ε-differentially private variant. Notice that
for each arm a ∈ C the average reward ra(t), is the
only term that depends directly on the data set whose
privacy we want to protect. So, if we can ensure that this
sequence {ra(t), t ∈ [T ]} is ε/k-differentially private
for each arm a, then immediately we have ε-differential
privacy for the complete algorithm. We invoke the tree
based aggregation algorithm from Section 2.1 to make
these sequences private. Additionally, to counter the
noise added to the empirical mean, we loosen the con-
fidence interval for the means of each arm.

Algorithm 1 Differentially Private UCB Sampling
Input: Time horizon: T , arms: C = {a1, · · · , ak}, pri-

vacy parameter: ε, failure probability: γ.
1: Create an empty tree Treeai with T -leaves for each

arm ai. Set ε0 ← ε/k.
2: for t← 1 to k do
3: Pull arm at and observe reward ft(at).
4: Insert ft(at) into Treeat via tree based aggrega-

tion (Section 2.1) with privacy parameter ε0.
5: Number of pulls: nat = 1.
6: end for
7: Confidence relaxation:

Γ← k log2 T log((kT log T )/γ)
ε .

8: for t← k + 1 to T do
9: Total reward: ra(t) ← Total reward computed

using Treea, for all a ∈ C.

10: Pull arm a∗ = arg max
a∈C

(
ra(t)
na

+
√

2 log t
na

+ Γ
na

)
and observe ft(a∗).

11: Number of pulls: na∗ ← na∗ + 1.
12: Insert ft(a∗) into Treea∗ using tree based aggre-

gation and privacy parameter ε0.
13: end for

Theorem 3 (Privacy guarantee). Algorithm 1 is ε-
differentially private.
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We defer the proof of the privacy guarantee to the full
version.

Regret analysis. The expected regret of the algorithm is
given by E[

∑
a∈C:µa<µa∗

∆ana(T )]. Hence, if our algo-

rithm limits the pulls of the bad arms, we are done. Our
regret analysis proceeds as follows, first we bound the
amount of noise that can be present in any of the total
rewards ra(t). And later using this bound, we show that
the number of times the suboptimal arms get pulled is
small. We split the analysis of the each of the suboptimal
arms into the exploration and the exploitation phase. We
argue that in case of any bad arm, after getting pulled
for O

(
k log2 T log(kT )

ε∆2
a

)
rounds the arm is not selected

again with high probability. The main arguments in this
analysis follow the general sequence of arguments in the
analysis for non-private UCB sampling. (See (Chaud-
huri, 2011) for a comparison.) Although our algorithm
assumes that we know the time horizon T , it can be eas-
ily extended to unknown horizon using the standard dou-
bling trick. Thus, we obtain the following utility guaran-
tee.
Theorem 4 (Utility guarantee). Let {µa : a ∈ C} be the
means of the k-arms in the set C. Let µ∗ = max

a∈C
µa and

for each arm a ∈ C, ∆a = µ∗ − µa. With probability at
least 1 − γ (over the randomness of the algorithm), the
expected regret (over the randomness of the data) is as
follows:

E
[
RegretPriv−UCB(T )

]
= O

( ∑
a∈C:µa<µ∗

k log2 T log(kT/γ)

ε∆a
+ ∆a

)
.

4. Private Contextual Bandits and Linear
UCB

In the contextual setting, at each time step t, the learner
receives a context vector za(t) for each arm a ∈ C. For
a given arm â pulled by the algorithm, the expectation of
the reward ft(â) (given the context vector zâ(t)) equals
E[ft(â)|zâ(t)] = 〈zâ(t), θ∗â〉. Here θ∗a is a hidden param-
eter vector corresponding to each arm a ∈ C.

The private contextual UCB algorithm is adapted from
the LinUCB algorithm in (Li et al., 2010) and is similar to
the basic UCB sampling algorithm, as it computes the ex-
pected reward of each arm and then chooses the arm with
the highest upper confidence bound. The expected re-
ward for each arm a is computed by 〈za(t), θa(t)〉, where
θa(t) is estimated using ridge regression and the confi-
dence bound is estimated by

√
za(t)TAtza(t), which is

the Mahalanobis distance of the context vector with co-
variance matrix At =

∑t
τ=1 za(τ)za(τ)T . The exten-

Algorithm 2 Private Contextual UCB Sampling
Input: Time horizon: T , arms: C = {a1, · · · , ak},

privacy parameter: ε, expore/exploit parameter: α,
Context vector length: d.

1: Initialize: A = Id (Identity matrix of size-d), µ = 0d
(Vector of length-d with all 0 entries), b = 0d.

2: Create empty trees TreeAi,j
∀i ≤ j ≤ d and

Treebi∀i ≤ d with (T )-leaves. Set ε0 ← 2ε
(d2+3d) .

3: for t← 1 to T do
4: Receive Arm context: za(t)∀a ∈ C.
5: Receive Ãi,j ← from TreeAi,j , set Ãi,j = Ãj,i

and Receive b̃i ← from Treebi .
6: if Ã is positive definite then
7: Pull arm a∗ = arg max

a∈C
(za(t)T Ã−1b̃ +

α
√
za(t)T Ãza(t)), observe reward ft(a∗) .

8: else
9: Pull arm a∗ = arg max

a∈C
(za(t)T b̃ +

α
√
za(t)T za(t)), observe reward ft(a∗).

10: end if
11: Insert za∗(i)za∗(j) into TreeAi,j

∀i ≤ j ≤ d and
12: za∗(i)ft(a

∗) into Treebi ∀i ≤ d, using tree based
aggregation and privacy parameter ε0.

13: end for

sion of this algorithm to private variant is fairly immedi-
ate. The idea is to restrict our access to the parameters
which aggregate over the time steps, and use tree based
aggregation scheme to retrieve those parameters while
preserving differential privacy. The details of the algo-
rithm is given in Algorithm 2. An interesting direction
for future work is to give have powerful theoretical guar-
antee for the private contextual bandit.

5. Experimental Evaluation
In this section, we support the theoretical regret bounds
for our algorithms (Algorithms 1 and 2) with empirical
results, first on a simulated data and then on a real world
data (Yahoo! webscope front page news article recom-
mendation). The experimental results show that there is
a smooth tradeoff between privacy and accuracy. As we
increase our privacy parameter ε, the regret improves.
We also perform experiments to investigate the effect
of delayed feedback. In this context, delayed feedback
means that the parameters are updated after some time
lag, rather than immediately after each observation. We
observe that our private algorithms are reasonably stable
w.r.t. delayed feedback (see Section 5.2).
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(a)

(b)

Figure 1. Results for our differentially private algorithms UCB
sampling (Algorithm 1) with number of arms k ∈ {5, 10} and
∆ = 0.5.

5.1. Experiments on Simulated Data set

We perform the simulation experiments on for stochastic
multi-arm bandits, with rewards in {0, 1}. The k-arm
private UCB sampling algorithm is described in Section
3. We perform the experiments for k ∈ {5, 10}. The true
underlying distribution of the arms are chosen as follows.
The bias for the best arm is 0.9 and the other arms have
biases of 0.9−∆ each, where ∆ = 0.5.

Conclusions drawn from simulations.We observe in the
plots that the regret for the private algorithms saturates
after certain time, similar to that of their non-private
counterparts (see Figure 1). Similar to the non-private
counter parts, the error is accumulated mainly in the ex-
ploration phase. Once the exploration phase is over the
regret remains fairly stable.

5.2. Yahoo! Front Page Data set

In this section, we describe our results on Yahoo! front
page news article recommendation data set. The data set
contains 45,811,883 user visits to the Today module dur-
ing first 10 days in May 2009. Each user click on a news
article shown corresponds to a reward of one for that ar-
ticle. This data set has also been used by (Li et al., 2010),
(Chu et al., 2009) for bandit experiments. One property

Figure 2. Comparison of different differentially private and
non-private multi-armed bandit algorithms (Algorithm 2) on
Yahoo! front page News article recommender system. The
click-through rates for each epsilon is normalized with respect
a random algorithm. The delay is with respect to the number of
rows skipped before updating parameters.

of this data set is that the displayed article is chosen uni-
formly at random from the candidate article pool allow-
ing us to use an unbiased offline evaluation method (Li
et al., 2010; 2011). The pool of articles is small (around
20 articles), but it is dynamic which means that the arti-
cles may be added or removed from this pool. For each
visit, both the user and each of the candidate articles are
associated with a feature vector of dimension six. The
feature vector acts as a context for the news article rec-
ommender and based on this context the most suited ar-
ticle can be chosen using a bandit algorithm. This is the
contextual bandit setting. In this setting, in each of T
rounds, a learner is presented with the context vector:
za ∈ Rd for each arm a ∈ C and based on his previ-
ous observations and this new context vector, the learner
needs to select one out of k actions. The learner’s aim is
to learn the relation between the reward and the context
vector in an online fashion.

Conclusions on experiments with Yahoo! front page
data set. The results for this experiment are summarized
in Figure 2. We find that the private algorithm does not
perform much worse than the non-private algorithm. We
set ε0 = 0.1 and since d = 6, we obtain that the privacy
parameter ε = 2.7. (See Algorithm 2) We also inves-
tigate the performance of the algorithm with respect to
delays. It basically means that for a delay of τ ∈ N
steps, the parameter update at time t considers previous
t − (t mod (τ + 1) + 1) observations. We have con-
sidered the delay values in {0, 100, 1000}. When the in-
put data does not have any delay in the feedback, the
private algorithm perform slightly worse than the non-
private counter parts and as the delay increases the per-
formance of the non-private algorithm is hurt more than
the private algorithms.
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Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine learn-
ing, 47(2-3):235–256, 2002.
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