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Abstract

The problem of secure friend discovery on a so-
cial network has long been proposed and stud-
ied. The requirement is that a pair of nodes can
make befriending decisions with minimum infor-
mation exposed to the other party. In this paper,
we propose to use community detection to tackle
the problem of secure friend discovery. We for-
mulate the first privacy-preserving and decentral-
ized community detection problem as a multi-
objective optimization. We design the first proto-
col to solve this problem, which transforms com-
munity detection to a series of Private Set In-
tersection (PSI) instances using Truncated Ran-
dom Walk (TRW). Preliminary theoretical results
show that our protocol can uncover communities
with overwhelming probability and preserve pri-
vacy. We also discuss future works, potential ex-
tensions and variations.

1 Introduction

One important function provided by social network is
friend discovery. The problem of finding people of the
same attribute/ interest/ community has long been studied
in the context of social network. For example, profile-based
friend discovery can recommend people who have similar
attributes/ interests; topology-based friend discovery can
recommend people from the same community.

One special requirement of algorithms operating on social
network is that it must be privacy-preserving. For exam-
ple, social network nodes may be willing to share their
attributes/ interests with people having similar profile; Or
they may be willing to share their raw connections with
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people in the same community. However, it is unfavourable
to leak those private data to arbitrary strangers. Towards
this end, the friend discovery routine should only expose
minimal necessary information to involved parties.

In the current model of large-scale OSNs, service providers
like Facebook play a role of Trusted-Third-Party (TTP).
The friend discovery is accomplished as follows: 1) Ev-
ery node (user) give his/her profile and friend list to TTP;
2) TTP runs any sophisticated social network mining algo-
rithm (e.g. link prediction, community detection) and re-
turns the friend recommendations to only related users. The
mining algorithm can be a complex one involving node-
level attributes, netweork topology, or both. Since TTP has
all the data, the result can be very accurate. This model
is commercially viable and successfully deployed in large-
scale. However, recent arise of privacy concern motivates
both researchers and developers to pursue other solutions.
Decentralized Social Network (DSN) like Diaspora1 has re-
cently been proposed and implemented. Since it is very dif-
ficult to design, implement and deploy a DSN (Datta et al.,
2010), much research attention was focused on system is-
sues. We envision that the DSN movement will gradually
grow with user’s increasing awareness of privacy. In fact,
Diaspora, the largest DSN up-to-date, has already accumu-
lated 1 million users. With the decentralized infrastruc-
ture established, next question is: can we support accurate
friend discovery under the constraint that each node only
observes partial information of the whole social network?
Note that the whole motivation of DSN is that single ser-
vice provider can not be fully trusted, so the TTP approach
can not be re-used. Towards this end, the computation pro-
cedure must be decentralized.

One common approach in literature to achieve decentral-
ized and privacy-preserving friend discovery is to trans-
form it into a set matching problem. For the first type, it
is natural to represent one’s attributes/ interests/ social ac-
tivities in form of a set (Zhang et al., 2012). For the second

1https://joindiaspora.com

https://joindiaspora.com
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type, one straightforward way is to represent one’s friend
(neighbour) list in form of a set (Nagy et al., 2013). In this
way, both profile matching and common friend detection
become a set intersection problem. There exists one use-
ful crypto primitive called Private Set Intersection (PSI).
Briefly and roughly speaking, given two sets W1 and W2

held by two node v1 and v2, PSI protocol can compute
|W1∩W2|without letting either v1 or v2 know other party’s
raw input. Resaerchers have proposed PSI schemes based
on commutative encryption (Agrawal et al., 2003), oblivi-
ous polynomial evaluation (Freedman et al., 2004) oblivi-
ous psudorandom function (Freedman et al., 2005), index-
hiding message encoding (Manulis et al., 2010), hardware
(Hazay & Lindell, 2008) or generic construction (Huang
et al., 2012) using garbled circuit (Yao, 1982). The afore-
mentioned privacy-preserving profile matching/ common
friend detection protocols are variants of PSI protocols in
terms of output, adversary model, security requirement and
efficiency.

One major drawback of all the above works is that they can
not fully utilize the topology of a social network. Firstly,
profile is just node-level information and not always avail-
able on every social network. On the contrary, topology
(connections/ friendship relations) is the fundamental data
available on social networks. Secondly, common friend
is just one topology-based approach and it only works
for nodes within 2-hops. In fact, our previous investiga-
tion showed that common friend heuristic has a moder-
ate precision and low recall for discovering community-
based friendship (Hu & Lau, 2013). This result is un-
surprising because a community can easily span multiple
hops. Towards this end, we focus on extending tradi-
tional secure friend discovery beyond 2-hops via commu-
nity detection. Note that topology-only community detec-
tion (Clauset et al., 2004) (Blondel et al., 2008) (Raghavan
et al., 2007) (Leung et al., 2009) (Agarwal & Kempe, 2008)
(Coscia et al., 2012) (Soundarajan & Hopcroft, 2013) is
a classical problem under centralized and non privacy-
preserving setting, i.e. a single-party possesses the com-
plete social graph and does arbitrary computation. Al-
though one can translate those algorithms into a privacy-
preserving and decentralized protocol using generic gar-
bled circuit construction (Yao, 1982), the computation and
communication cost renders it impractical in the real world.
To design an efficient scheme, we need to consider com-
munity detection accuracy and privacy preservation as a
whole. A tradeoff among accuracy, privacy and efficiency
can also be made when necessary.

To summarize, this paper made the following contributions:

• We proposed and formulated the first privacy-preserving
and decentralized community detection problem, which
largely improves the recall of topology-based friend dis-

covery on Decentralized Social Networks.
• We designed the first protocol to solve this problem. The

protocol transforms the community detection problem to a
series of Private Set Intersection (PSI) instances via Trun-
cated Random Walk (TRW). Preliminary results show that
the protocol can uncover communities with overwhelming
probability and preserve privacy.

• We propose open problems and discuss future works, ex-
tensions and variations in the end.

2 Related Work

First type of related work is Private Set Intersection (PSI)
as they are already widely used for secure friend discovery.
Second type of related work is topology-based graph min-
ing. Although our problem is termed “community detec-
tion”, the most closely related works are actually topology-
based Sybil defense. This is because previous community
detection problems are mainly considered under the cen-
tralized scenario. On the contrary, Sybil defense scheme
sees wide application in P2P system, so one of the root con-
cern is decentralized execution. Note, there exist some dis-
tributed community detection works but they can not be di-
rectly used because nodes exchange too much information.
For example (Hui et al., 2007) allow nodes to exchange
adjacency lists and intermediate community detection re-
sults, which directly breaks the privacy constraint that we
will formulate in following sections. Due to space limit,
a detailed survey of related work is omitted. Interested
readers can see community detection surveys (Fortunato,
2010)(Xie et al., 2013) and Sybil detection surveys (Yu,
2011)(Alvisi et al., 2013).

3 Problem Formulation

The notion of community is that intra-community is dense
and inter-community linkage is sparse. In this section, we
first review classical community detection formulations un-
der centralized scenario and our previous formulation un-
der decentralized scenario. Then we formulate the privacy-
preserving version. To make the problem amenable to theo-
retical analysis, we consider a Community-Based Random
Graph (CBRG) model in the last part.

3.1 Previous Community Detection Formulations

Classical community detection is formulated as a cluster-
ing problem. That is, given the full graph G = (V,E),
partition the vertex set into K subsets S1, S2. . ., SK (a par-
titioning), such that ∩Ki=1Si = ∅ and ∪Ki=1Si = V . A
quality metric Q({S1, . . . , SK}) is defined over the parti-
tions and a community detection algorithm will try to find a
partitioning that maximize or minimize Q depending on its
nature. This is for non-overlapping community detection
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and one can simply remove the constraint ∩Ki=1Si = ∅ to
get the overlapping version. Note thatQ is only an artificial
surrogate to the axiomatic notion of community. The max-
imum Q does not necessarily corresponds to the best com-
munity. However, the community detection problem be-
comes tractable via well-studied optimization frameworks
by assuming a form of Q e.g. Modularity, Conductance.
Most classical works are along this line mainly due to the
lack of ground-truth data at early years.

Now consider the decentralized scenario. One node (ob-
server) is limited to its local view of the whole graph. It
is unreasonable to ask for a global partitioning in terms of
sets of nodes. The tractable question to ask is: whether one
node is in the same community as the observer or not? This
gives a binary classification formulation of community de-
tection (Hu & Lau, 2013). The result of community detec-
tion with respect to a single observer can be represented as
a length-|V | vector. Stacking all those vectors together, we
can get a community encoding matrix (Zhong et al., 2014):

Mi,j =

{
1 ∃Sk, s.t.vi ∈ Sk, vj ∈ Sk
0 else

This matrix representation is subsumed by partitioning rep-
resentation in general case. If restricted to non-overlapping
case, the two representations are equivalent. Since M en-
codes all pair-wise outcome, it is immediately useful for
friend discovery application. In what follows, we will de-
fine accuracy and privacy in terms of how well M can be
learned by nodes or adversary.

3.2 Privacy-Preserving Community Detection

In this initial study, we focus on non collusive passive ad-
versary. That is, DSN nodes all execute our protocol faith-
fully but they are curious to infer further information from
observed protocol sequence. We use a single non-collusive
sniff-only adversary to capture this notion. The system
components are as follows:

• Graph: G = (V,E). The connection matrix is denoted as
C, where Ci,j = 1 if (vi, vj) ∈ E; otherwise, Ci,j = 0.
The ground-truth community encoding matrix is denoted
as Mg , which is unknown to all parties at the beginning.
For simplicity of discussion, we assume the nodes identi-
fiers, i.e. V , is public information.

• Nodes: v1, . . . , v|V | ∈ V . A node’s initial knowledge is
its own direct connections, i.e. N(vi) = {vj |(vj , vi) ∈
E}. Nodes are fully honest. Their objective is to max-
imize the accuracy of detecting M . Eventually, a node
vi can get full row (column) in M denoted by Mi,: (M:,i).
Depending on the protocol choice, relevant cells inM can
be made available immediately or on-demand.

• Adversary: A. It can passively sniff on one node va ∈ V .
A will observe all protocol sequence related with a, in-

cluding initial knowledge N(va) and the community de-
tection result Ma,:. A’s objective is to maximize success-
ful rate in guessing Mg and C, using any Probabilistic
Polynomial Algorithms (PPA). Note, the full separation
of Nodes and Adversary is for ease of discussion. In
real DSN, this passive attacker can be a curious user who
wants to infer more information of the network.

As protocol designer, our objectives are:

• Accurately detect community after execution of the pro-
tocol, i.e. making M and Mg as close as possible.

• Limit the successful rate of adversary’s guessing of Mg

and C, under the condition that A gets the protocol se-
quence on node va and makes best guess via PPA.

One can see that our problem is multi-objective in nature.
The accuracy part is a maximization problem and the pri-
vacy part is a is min-max problem. Formal definition is
given in Eq. 1.

In this formulation, “Protocol” is an abstract notation of the
protocol specification, not protocol execution sequence. Ia
is the information observed by adversary, which is depen-
dent on Protocol. Succ(B1, B2, R) is the measure of suc-
cessful rate with symbols defined as follows:

• B1, B2 ∈ {0, 1}|V |×|V | are two {0, 1}matrix in the same
size as M and C.

• R ⊆ V × V is the challenge relations.
• To measure how close are the two matrix over the chal-

lenge set, we use the successful rate:

Succ(B1, B2, R) = Pr
{
B1
i,j = B2

i,j |(vi, vj)
$←− R

}
That is, how likely a randomly selected pair of nodes from
R will have the same value in B1 and B2.

For the accuracy part, we define the challenge relation as
V × V because we want the result to be accurate for all
nodes. For the privacy part, we define the challenge rela-
tion as RCa = RMa = (V − U(a)) × (V − U(a)), where
U(a) denotes the set of nodes in the same community as
a. The reason to exclude nodes from the same community
is obvious. Since adversary will get Ma, : after protocol
execution, it already knows the community membership of
U(a). Given the knowledge of community, one can make
more intelligent guess of the connections. This is made
clear in later discussions.

3.3 Community-Based Random Graph (CBRG)
Generation Model

Before proceed, we remark that the problem defined in Eq.
1 is hard even without the privacy-preserving objective. In
other words, the community detection problem (accuracy)
has not been fully solved even under the TTP scenario.
To improve the accuracy, researchers have already used
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max
FindProtocol,
M = Protocol(G)


Succ(M,Mg, V × V ),

−

max Algo ∈ PPA,

a
$←− V,

CA,MA ← Algo(Protocol, Ia)

(
Succ(CA, C,RCa ),
Succ(MA,Mg, RMa )

)

 (1)

Mg =


1
1 1
0 0 1
0 0 1 1

 ,E[C] =

p
p p
q q p
q q p p


Figure 1. Illustration of community-based random graph genera-
tion. K = 2, c = 2

heavy mathematical programming tools, try to incorporate
more side information, develop problem-specific heuris-
tics, or perform heavy-duty parameter tuning. To make
our problem amenable to theoretical analysis, we consider
a Community-Based Random Graph (CBRG) model in this
paper. Let Mg be the ground-truth community encoding
matrix. We generate the random connection matrix as fol-
lows: 1) Pr{Ci,j = 1} = p if Mg

i,j = 1 (vi and vj are in
the same community); Pr{Ci,j = 1} = q otherwise. There
are K communities and each of size c, so the total number
of vertices is |V | = Kc. We denote such a random graph
as CBRG(K, c, p, q). One example ground-truth commu-
nity encoding matrix and the expected connection matrix
are illustrated in Fig. 1.

4 Proposed Scheme

In this section, we present our protocol and main results.

4.1 Protocol Design

Our protocol involves the two stages:

• Pre-processing is done via Truncated Random Walk. Ev-
ery node send outW random walkers, wvi1 , . . . , w

vi
W , with

time-to-live (TTL) values lvi1 , . . . , l
vi
W initially set to L.

Upon receiving a Random Walker (RW) w, the node
records the ID of w, deducts its TTL l, and sends it to a
random neighbour if l > 0. At the end of this stage, each
node vi accumulated a set of random walker IDsWi. With
proper parameters W and L, the truncated random walker
issued by vi will more likely reach other nodes in the same
community as vi. So by inspecting the intersection size of
Wi and Wj , we can answer whether vi and vj are in the
same community. This essentially transforms the commu-
nity detection problem to a set intersection problem.

• To uncover the relevant cells in pairwise community en-
coding matrix M , we only need to perform Privacy Set
Intersection (PSI) on two sets. PSI schemes differ in their
flavours: 1) reveal intersection set (PSI-Set); 2) reveal in-
tersection size (PSI-Cardinality); 3) reveal whether inter-

section size is greater than a threshold (PSI-Threshold).
We use the 3rd type PSI in our construction, which can
be implemented by adapting (Zhang et al., 2012). In what
follows, we just assume existence of such a crypto primi-
tive: it computes I[|Wi ∩Wj | > T ] without leaking extra
information.

One can see that the scheme is decentralized by design. We
only need to argue its community detection accuracy and
the privacy-preserving property.

4.2 Summary of Theoretical Guarantees

The intuition of our proof is as follows:

• Truncated Random Walk will be mostly limited to one
community, if the axiomatic notion of “community”
holds. More precisely, as long as p is enough larger than
β1 = (K − 1)q, there will be enough difference in inter-
section size for nodes coming from the same and different
communities. In this case, we can set proper threshold to
ensure low error rate.

• Observe two facts about privacy objective: 1) most pro-
tocol sequence the adversary observed comes from its
own community; 2) we exclude A’s community from
challenge relations. In order to make better-than-priori
guesses,A at least need to observe some other nodes from
protocol sequence. The number of nodes from V − U(a)
can be observed is limited. Even if we assume adversary
can make good use of the information (captured by coef-
ficient γM , γC ∈ [0, 1]), this small advantage is averaged
out over a large challenge relation set.

The detailed proof is omitted and the main results are sum-
marized in the following theorem.

Theorem 1 Our protocol guarantees:

• False Positive Rate:

Pr{|Wi ∩Wj | > T1|Mg
i,j = 0} 6 φWL(L+ 1)2

2(K − 1)T1

• False Negative Rate: (µ = cWP )

Pr{|Wi ∩Wj | 6 T2|Mg
i,j = 1} 6 e−µ(1−T2/µ)

2/2

• Adversary’s advantage:

Adv(MA,Mg, RMa ) 6 γM
4W (L+ 1)

(K − 1)c

Adv(CA, Cg, RCa ) 6 γC
4W (L+ 1)

(K − 1)c
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In the theorem, Adv(B1, B2, R) = Succ(B1, B2, R) −
Prior(B1, B2, R). Prior(B1, B2, R) denotes the probabil-
ity to make successful guess based on mere prior informa-
tion of B2. For example, suppose B2 contains 1 as ma-

jority, i.e. Pr
{
B2
i,j = 1|i, j $←− R

}
= P > 0.5. The best

guess is to let B1
i,j = 1,∀i, j ∈ R. One can show that

the success probability is P and this strategy is optimal if
no other information is available. Due to the specifics of
our problem, adversary can make more intelligent guesses
than random {0, 1} bit. Towards this end, the advantage is
defined with respsect to successful rate of this priori-based
strategy.

4.3 One Instantiation

Due to the specifics of the problem, both accuracy and pri-
vacy guarantees are parameterized. To give an intuitive
view of what can be achieved, consider one instantiation of
CBRG: K = 100 (# of communities), c = 500 (# of nodes
in one community), p = 0.5 (intra-community edge gen-
eration probability), β1 = q(K − 1) = 0.05, q = 0.0005
(inter-community edge generation probability).

We can set protocol parameters as follows: W = 100 (# of
RWs issued by one node), L = 3 (length of RW) and T =
61 (threshold of intersection size). This gives us following
accuracy and privacy guarantees:

• False Negative Rate: 6 1.9× 10−22

• False Positive Rate: 6 0.066
• Advantage for guessing M : 6 0.032× γM
• Advantage for guessing C: 6 0.032× γC

One can see that our proposed protocol can accurately de-
tect community and preserve privacy given proper param-
eters. Note first that above W and L are casually selected
by heuristics, which have not been jointly optimized. Note
second that the FPR and FNR can be exponentially reduced
by repeated experiments, which only maps to a linear in-
crease in W . The example in this section is only to demon-
strate the effectiveness of our protocol and a full explo-
ration of design space is left for future work.

5 Conclusion, Discussion and Future Work

We formulated the privacy-preserving community detec-
tion problem in this paper as a multi-objective optimiza-
tion. We proposed a protocol based on Truncated Ran-
dom Walk (TRW) and Private Set Intersection (PSI). We
have proven that our protocol detects community with over-
whelming probability and preserves privacy. Exploration
of the design space and thorough experimentation on syn-
thesized/ real graphs are left for future work. In following
parts of this early report, we discuss several simpler can-
didate protocols and how they fail to meet our objective.

This help to demonstrate the rationale of our formulation
and protocol design.

5.1 Simpler But Weaker Protocols

Suppose we change the protocol such that vi and vj first
exchange Wi and Wj and then run any intersection algo-
rithm separately. After uncovering all related cells in M ,
adversary knowsWi,∀i = 1, . . . , |V |. A can directly cal-
culate |Wi ∩ Wj |,∀i, j. This allows adversary to guess
M perfectly. From the community membership, A can
further infer links because intra-community edge genera-
tion probability and inter-community generation probabil-
ity are different. This already allows better guess than using
global prior of C. Furthermore, inferring links from mea-
surements is a classical well-studied topic called Network
Tomography. A can actually re-organizeWi’s into a list of
size-L sets, each representing the nodes traversed by a RW.
Researchers have shown that links can be inferred from this
co-occurrence data with good accuracy, e.g. NICO (Rabbat
et al., 2008).

Another natural thought to protect non-common set ele-
ments is via hashing. Suppose there exists a cryptographic
hash h(·). We define Hi = {h(w)|w ∈ Wi}. Now, two
nodes just compare Hi and Hj in the community uncover
stage. This can protect true identities of the RWs if their ID
space is large enough. However, it does not prevent adver-
sary from intelligent guess of M and C. Methods noted in
previous paragraph can also be used in this case.

In our protocol, we used the PSI-Threshold version. That
is, givenWi andWj , the two parties know nothing except
for the indicator I[|Wi∩Wj | > T ]. Two weaker and widely
studied variations are: PSI-Cardinality and PSI-Set. Con-
sider PSI-Set. The adversary now only knows elements in
the intersection. Based on his own Wa and PSI-Set pro-
tocol sequence, he can get Wi ∩ Wj ∩ Wa,∀i, j. A can
calculate the probability that a RW w tranverses both vi
and vj conditioned on w tranverses va. Based on this in-
formation, A can adjust threshold T1 and T2 to accurately
detect communities. The derivation is similar to our pro-
tocol in this paper but more technically involved, which is
also left as future work. The bottom line is that PSI-Set
leaks enough information for more intelligent guesses. As
for PSI-Cardinality, we are not sure at present what an ad-
versary can do with |Wi ∩Wa|,∀i. Since the two variants
leak more information and might be potentially exploited,
we use PSI-Threshold in our protocol.

5.2 Open Problems

Following are some open problems of privacy-preserving
community detection:

• If we allow a small fraction of nodes to collude, how to de-
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fine a reasonable security game? What privacy-preserving
result can we achieve?

• Current scheme requires all nodes to re-run the protocol,
if there is any change in the topology, e.g. new node joins
or new friendship (connection) is formed. Is it possible
to find a privacy-preserving community detection scheme
that can be incrementally updated?

• The privacy preservation of our proposed protocol is de-
pendent on graph size. One root cause is that we only
leveraged crypto primitives in the Private Set Intersection
(PSI) part. The simulation of Truncated Random Walk
(TRW) is done in a normal way. Since random walk is a
basic construct in many graph algorithms, it is of interest
know how (whether or not) nodes can simulate Random
Walk in a decentralized and privacy preserving fashion.
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