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Abstract

This thesis deals with differential privacy in Bayesian inference, probabilistic
graphical models and information-theoretic settings. It also studies the expansion
property and enumeration problems of certain subgraphs of networks.

The contributions of this thesis fall into three main categories:

(i) We establish results for Bayesian inference, providing a posterior sampling
algorithm preserving differential privacy by placing natural conditions on the pri-
ors. We prove bounds on the sensitivity of the posterior to training data, which
delivers a measure of robustness, from which differential privacy follows within a
decision-theoretic framework. We provide bounds on the mechanism’s utility and
on the distinguishability of datasets. These bounds are complemented by a novel
application of Le Cam’s method to obtain lower bounds. We also explore inference
on probabilistic graphical models specifically, in terms of graph structure. We show
how the posterior sampling mechanism lifts to probabilistic graphical models and
bound KL-divergence when releasing an empirical posterior based on a modified
prior. We develop an alternate approach that uses the Laplace mechanism to per-
turb posterior parameterisations, and we apply techniques for released marginal
tables that maintain consistency in addition to privacy, by adding Laplace noise
in the Fourier domain. We also propose a maximum a posteriori estimator that
leverages the exponential mechanism.

(ii) We generalize a prior work that considered differential privacy as a trade-off
between information leakage and utility in noisy channels. By assuming certain
symmetric properties of the graphs induced by the Hamming-1 adjacency relation
on datasets, the authors showed the relation between utility and differential privacy.
We prove the utility results still hold without any assumption on the structure of
induced graphs. Our analysis applies to the graph of datasets induced by any sym-
metric relation, therefore is applicable to generalized notions of differential privacy.

(iii) In a different direction in graph analysis within statistical mechanics, we
discover the relation between graph energy per vertex of a regular lattice and that
of its clique-inserted lattice using spectral techniques. We obtain the asymptotic
energy per vertex of 3-12-12 and 3-6-24 lattices. We derive the formulae expressing
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the number of spanning trees and dimer covering of the k-th iterated clique-inserted
lattices in terms of those of the original one. We show that new families of expander
networks can be constructed from the known ones by clique-insertion. We modify
the transfer matrix method and use it to obtain upper and lower bound for the
entropy of number independent sets on the 4-8-8 lattice. We show that the boundary
conditions have no effect on the entropy constant. We also introduce a random graph
model, where we study the annealed entropy of independent set per vertex. We show
that the annealed entropy can be computed in terms of the largest eigenvalue (in
modulus) of corresponding expected transfer matrix. Experiments suggest that this
annealed entropy is highly correlated to the corresponding Shannon entropy.



vii

Declaration
This is to certify that:

(1) Unless otherwise stated, this thesis comprises only my original work towards
the PhD;

(2) Due acknowledgement has been made to all other material used; and

(3) The thesis is less than 100,000 words in length.

— Zuhe Zhang



viii

Preface
This thesis reports on the body of work completed throughout the author’s PhD

research programme. Some of this research has been published with co-authors as
follows:

A paper based on Chapter 3 has been accepted by Journal of Machine Learn-
ing Research (2017) under the title “Differential Privacy for Bayesian Inference
through Posterior Sampling" with Christos Dimitrakakis, Blaine Nelson, Aikaterini
Mitrokotsa and Benjamin I. P. Rubinstein.

A paper based on Chapter 4 has been published in Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI’2016) under the title “On the
Differential Privacy of Bayesian Inference" with Benjamin I. P. Rubinstein and
Christos Dimitrakakis.

A paper based on Chapter 5 is being prepared for publication under the working
title “Differential Privacy and Information Leakage" with Benjamin I. P. Rubinstein
and Sanming Zhou.

A paper based on Chapter 6 has been published in Journal of Statistical Mechan-
ics: Theory and Experiment (2013) under the title “Some Physical and Chemical
Indices of Clique-inserted Lattices".

A paper based on Chapter 7 has been published in Journal of Statistical Physics
(2014) under the title “Merrifield-Simmons Index and Its Entropy of the 4-8-8 Lat-
tice".

A paper based on Chapter 8 is being prepared for publication under the title
“The Number of Independent Sets in Randomly Triangulated Grid Graphs" with
Yin Chen.



ix

Acknowledgements
I will be forever grateful to my supervisors Benjamin I. P. Rubinstein and San-

ming Zhou for their guidance, assistance and support through my PhD study. With-
out their support this thesis would not have been possible.

I would like to thank my co-authors: Christos Dimitrakakis, Xiaogang Liu,
Blaine Nelson, Aikaterini Mitrokotsa and Yin Chen for the collaborations, special
thanks go to Christos for all the help with research.

Thanks to Brendan McKay for suggesting the randomly triangulated grid graph.
Without that, Chapters 8 would not have been possible.

My gratitude is also given to Zhibo Chen and Nicholas Witte for the suggestions
in writing research papers.

I would also like to thank Richard Brak and Peter Forrester for their time and
efforts in serving as members of my advisory panel.

My thanks go to Maggie as well for her support, company and proofreading of
the thesis.

Lastly, I would dedicate this thesis to my parents for their unconditional love
and support.



x



Contents

Abstract v

Declaration vii

Preface viii

Acknowledgements ix

1 Introduction 1
1.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Statistics of Certain Types of Subgraphs on Networks . . . . 5

1.2 Thesis Outline and Main Contributions . . . . . . . . . . . . . . . . 7

2 Introduction to Differential Privacy 11
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Laplace and Exponential Mechanisms . . . . . . . . . . . . . . . . . 13
2.3 Composition Property . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Differential Privacy and Bayesian Inference 17
3.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Background and Setting . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Our Main Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Sufficient Statistics as a Necessary Condition . . . . . . . . . 26

xi



xii CONTENTS

3.3.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Robustness of the Posterior Distribution . . . . . . . . . . . . . . . 27

3.4.1 Alternative Analysis . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Privacy and Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Differential Privacy of Posterior Distributions . . . . . . . . 34
3.5.2 Posterior Sampling Mechanism . . . . . . . . . . . . . . . . 36
3.5.3 Distinguishability of Datasets . . . . . . . . . . . . . . . . . 38
3.5.4 Trading off Utility and Privacy . . . . . . . . . . . . . . . . 41
3.5.5 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Examples Satisfying our Assumptions . . . . . . . . . . . . . . . . . 45
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Differential Privacy in Bayesian Networks 55
4.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Probabilistic Graphical Models . . . . . . . . . . . . . . . . 57
4.2 Privacy by Posterior Perturbation . . . . . . . . . . . . . . . . . . . 57

4.2.1 Laplace Mechanism on Posterior Updates . . . . . . . . . . . 58
4.2.2 Laplace Mechanism in the Fourier Domain . . . . . . . . . . 63

4.3 Privacy by Posterior Sampling . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 (Stochastic) Lipschitz Smoothness of Networks . . . . . . . . 66
4.3.2 MAP by the Exponential Mechanism . . . . . . . . . . . . . 69

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Bayesian Discrete Naïve Bayes . . . . . . . . . . . . . . . . . 71
4.4.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Bayesian Linear Regression . . . . . . . . . . . . . . . . . . 74

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Differential Privacy and Information Leakage 79
5.1 Information Leakage and Utility Model . . . . . . . . . . . . . . . . 79
5.2 Induced Graphs and Their Automorphism Groups . . . . . . . . . . 80
5.3 Improvement of the Utility Results . . . . . . . . . . . . . . . . . . 81

6 Some Statistical Properties of Clique-inserted Lattices 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



CONTENTS xiii

6.2 Asymptotic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.1 3-12-12 lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 3-6-24 lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Spanning Trees and Dimer Coverings . . . . . . . . . . . . . . . . . 93
6.3.1 Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Dimer Coverings . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Expansion Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Enumeration of Independent Sets on the 4-8-8 Lattice 99
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Transfer Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Independent Sets on the Randomly Triangulated Grid Graphs 113
8.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 113
8.2 The Random Triangulation . . . . . . . . . . . . . . . . . . . . . . 114
8.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9 Future Research Directions 121

Bibliography 123



xiv CONTENTS



List of Tables

4.1 Summary of the privacy/utility guarantees for this chapter’s mecha-
nisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 The numerical results of Merrifield-Simmons index of the 4-8-8 lattice
Gm,n with free boundary condition . . . . . . . . . . . . . . . . . . . 108

7.2 The numerical results of Merrifield-Simmons index of the 4-8-8 lattice
Hm,n with cylindrical boundary condition . . . . . . . . . . . . . . . 109

7.3 The numerical results of Merrifield-Simmons index of the 4-8-8 lattice
S m,n with toroidal boundary condition . . . . . . . . . . . . . . . . . 110

8.1 The eigenvalue approximation . . . . . . . . . . . . . . . . . . . . . 119
8.2 The annealed entropy approximation . . . . . . . . . . . . . . . . . 119

xv



xvi LIST OF TABLES



List of Figures

4.1 Effect on Bayesian naïve Bayes predictive-posterior accuracy of vary-
ing the privacy level. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Effect on linear regression of varying prior concentration. Bands
indicate standard error over repeats. . . . . . . . . . . . . . . . . . 75

6.1 Ht(n,m) with toroidal boundary condition . . . . . . . . . . . . . . 90
6.2 The 3-12-12 lattice T t(n,m) (left), T c(n,m) (middle), and T f (n,m). . 90
6.3 The 3-6-24 lattice S t(n,m) (left), S c(n,m) (middle), and S f (n,m) . . 92

7.1 Grid graph Gm,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 An independent set of G3,4. . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3 The 4-8-8 lattice Gm,n with free boundary condition . . . . . . . . . . . 103

8.1 α-type with probability p and β-type with probability 1 − p. . . . . 114
8.2 Sample space of random graph G2,1(p) . . . . . . . . . . . . . . . . 115
8.3 Sample space of random graph G3,1(p) . . . . . . . . . . . . . . . . 115
8.4 Relation between the annealed entropy and the Shannon entropy . . 120

xvii



xviii LIST OF FIGURES



Chapter 1
Introduction

1.1 Background and Related Work

Network structures underlie a broad range of physical phenomena and informa-
tion concepts, and the global properties of such structures play critical roles in their
influence. This thesis explores networks from different viewpoints, using a range of
mathematical tools of analysis. Building on the formal foundations of differential
privacy, we explore how the independence structure of joint random variable models
- encompassed as the graph structure of Bayesian networks - influence privacy and
utility of inference mechanisms. The algebraic structure of graph relations enable us
to prove links between differential privacy and information leakage in noisy-channel
settings. In the area of statistical mechanics we demonstrate how to use mathemat-
ical tools in algebra and combinatorics to solve the enumeration problem of certain
type of substructures on lattices or random networks which arise in physics and
chemistry.

1.1.1 Differential Privacy

In an era of big data analysis and personal computing, collecting individual
information is increasingly central to decision making across different domains.
Meanwhile, the increase of privacy concerns prevents researchers from making full
use of data. Past privacy breach reports by Fung et al. [2010], Narayanan and

1



2 Chapter 1. Introduction

Shmatikov [2008] have shown that various ad-hoc approaches failed to anonymize
public records “linkage attacks" (to identify personal records by linking different
databases). Therefore the concept of differential privacy, which was proposed by
Dwork et al. [2006], quickly drew the attention of the theoretical computer sci-
ence community by providing semantic guarantees of performing computation and
releasing information about a sensitive dataset without revealing personal informa-
tion about any individual.

The concept of differential privacy formalizes the idea that a “private” mechanism
should not reveal whether any individual is included in the input or not, much
less what their data are. It quantifies the privacy “cost” of an algorithm such that
researchers can develop mechanisms which achieve a good trade-off between privacy
and utility. Such requirements of privacy are of growing interest in the computer
science and statistics communities due to the impact on individual privacy by real-
world data analytics.

Dwork et al. [2006] proposed the first differentially-private mechanism, the
Laplace mechanism, that is based on output perturbation through adding noise.
The immediate follow-up work focused on the constructions of differential privacy
preserving methods which have good utility by reducing the amount of noise in-
jected [Nissim et al., 2007]. McSherry and Talwar [2007] proposed the exponen-
tial mechanism that releases a response with probability exponential in a utility
function describing the usefulness of each response, with the best response having
maximal utility. Other generic privatising mechanisms include Gaussian Dwork
and Roth [2014], Bernstein Aldà and Rubinstein [2017] and more. Chaudhuri and
Monteleoni [2008], Chaudhuri et al. [2011] proposed an approach that can be em-
ployed for privatising regularised empirical-risk minimization by adding a random
term to the primal objectives. Rubinstein et al. [2012] proposed a set of privacy
preserving classification methods using support vector machines with an output
perturbation approach. Other learning algorithms including principal component
analysis [Chaudhuri et al., 2012], the functional mechanism [Zhang et al., 2012]
and trees [Jagannathan et al., 2009] have also been adapted to maintain differ-
ential privacy. Kifer and Machanavajjhala [2011] proved a no-free-lunch theorem,
which defines non-privacy as a game, to argue that it is not possible to provide
privacy and utility without making assumptions about how the data are generated.
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They also proposed the Pufferfish framework that can be used to generate new
private definitions that are customized to the requirements of a given application
[Kifer and Machanavajjhala, 2012]. Inspired by the Pufferfish framework He et al.
[2014] presented a class of privacy definition, called Blowfish privacy, that allows
the data publisher to use a policy to specify the information that must be kept
secret and the constraints that may be known about the data. Let us also mention
that Kasiviswanathan and Smith [2008] defined the semantic privacy that provides
the differential privacy guarantees in terms of the inferences drawn by a Bayesian
adversary.

In statistics, Dwork and Lei [2009] made the first connection between (frequen-
tist) robust statistics and differential privacy, developing mechanisms for the in-
terquartile, median and B-robust regression. Wasserman and Zhou [2010] intro-
duced the concept of privacy as hypothesis testing where an adversary wishes to
distinguish two datasets. Hall et al. [2013] studied differential privacy on Func-
tional data. Dwork et al. [2015] studied how to guarantee the validity of statistical
inference in adaptive data analysis.

Other areas where researchers have shown interesting relations with differential
privacy include mechanism design from algorithmic game theory [Nissim et al.,
2012], geometry [Hardt and Talwar, 2010] and information theory [Mir, 2012, Alvim
et al., 2011a]. This is far from an exhaustive list. We refer the reader to the
monograph on differential privacy [Dwork and Roth, 2014] and the reference therein
for more details.

Our vision for differentially private mechanism for Bayesian inference is that
they could be incorporated into probabilistic programming framework using sys-
tems techniques. Several systems have been developed to ease implementation of
differentially-private mechanisms, with Barthe et al. [2016] providing an overview
of contributions from Programming Languages. Dynamic approaches track privacy
budget expended at runtime, typically through basic operations on data with known
privacy loss, with the PINQ [McSherry, 2009, McSherry and Mahajan, 2010] and
Airavat [Roy et al., 2010] systems being examples. These create a C# LINQ-like
interface and a framework for bringing differential privacy to MapReduce, respec-
tively. To complement PINQ and Airavat, Haeberlen et al. [2011] presented a design
that is effective against covert channels. Haeberlen et al. [2011] presented GUPT
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that is secure against side-channel attacks. Fuzz [Reed and Pierce, 2010, Palamidessi
and Stronati, 2012] offers a higher-order functional language whose static type sys-
tem tracks sensitivity based on linear logic, so that differential privacy is guaranteed
by typechecking.

Beyond academic interest, differentially-private mechanisms have also been ap-
plied in releasing or collecting aggregation information from data in government
and commercial projects, such as the U.S. Census Bureau project called OnTheMap
[Machanavajjhala et al., 2008], the RAPPOR project [Erlingsson et al., 2014] from
Google and the iOS 10 update from Apple [Russell Brandom, 2016].

Privacy in Bayesian Networks Probabilistic graphical models have been used to
preserve privacy. Zhang et al. [2014] learned a graphical model from data, in order
to generate surrogate data for release. Note that their mechanism PrivBayes does
not do Bayesian inference, the Bayesian network approach is to factorize a joint
distribution in the frequentist model. Williams and McSherry [2010] fit a model to
the response of private mechanisms to clean up output and improve accuracy. Xiao
and Xiong [2012] similarly used Bayesian credible intervals to increase the utility of
query responses.

Williams and McSherry [2010] improved the utility of differentially-private re-
leases by calculating posteriors in a noisy measurement model. Beside their work,
though Bayesian networks are widely used in different applications where privacy is
important, there exists little research in private inference under the Bayesian setting
until Dimitrakakis et al. [2014] first established conditions for differentially-private
Bayesian inference. Dimitrakakis et al. (2014; 2017) introduced a differentially-
private mechanism for Bayesian inference based on posterior sampling–a mechanism
on which we build. Zheng [2015] considered further refinements. Wang et al. [2015]
explored Monte Carlo approaches to Bayesian inference using the same mechanism,
while Mir [2012] was the first to establish differential privacy of the Gibbs esti-
mator [McSherry and Talwar, 2007] by minimizing risk bounds. Recently, Foulds
et al. [2016] proposed an alternative to posterior sampling mechanism based on
the Laplace mechanism and showed it is as asymptotically efficient as non-private
posterior inference under general assumptions.

In this thesis, we work towards addressing the following challenges in the study
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of differential privacy under Bayesian inference:

1. How can differential privacy be accomplished in Bayesian statistical learning?

2. Can the existing Bayesian inference machinery provide a level of privacy?

3. Is there a relationship between a joint model’s factorisation (conditional in-
dependence assumptions) and the level of privacy?

The first challenge has been studied in [Dimitrakakis et al., 2014], we extend the
discussion in Chapter 3. The answers to the second and third are positive as
discussed in Chapter 4.

Differential Privacy and Information Leakage From an information-theoretic per-
spective, any mechanism that releases a statistic leaks some information about the
individual participants. Therefore, it is natural to consider the trade-off between
information leakage and utility for privacy-preserving algorithms. Mir [2012] first
formulated differential privacy in an information-theoretic framework. Duchi et al.
[2013] provided information-theoretic bounds on mutual information and Kullback-
Leibler divergence that depend on the privacy guarantees. This direction seeks to
bridge a large community in communications that has formed around information-
theoretic notions of privacy, to differential privacy.

1.1.2 Statistics of Certain Types of Subgraphs on Networks

Networks, lattices and molecule structures in the theory of engineering, com-
puter science, statistical physics and chemistry are considered as graphs realized in
the real world. Some substructures and invariants of graphs play an important role
in these fields and the enumeration of these structures is a useful way to characterize
networks and it is always a great challenge to obtain exact solutions or estimate
related invariants. The reader may refer to the monographs by [Baxter, 1982] and
[Borwein et al., 2013] that summarize such challenge in lattice models.

One of the oldest problem in this field appeared in Kirchoff’s electrical networks
theory, where spanning trees can be used to compute the current in networks Kirch-
hoff [1847]. Since then the enumeration of spanning trees has been widely studied
[Greenhill et al., 2013, Lyons, 2005, Shrock and Wu, 2000, Teufl and Wagner, 2010].
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Solving Lattice models such as Ising model or dimer model is a classical topic
in statistical mechanics. It is sometimes related to the enumeration of certain sub-
graphs of lattices, which is also a topic of interest in chemistry. For instance, the
number of perfect matchings in Pauling’s resonant theory [Pauling, 1939] can be
used to determine the Pauling bond order which is correlated with experimentally
determined bond length of various benzenoid hydrocarbons [Pauling, 1980]. Fowler
and Rushbrooke [1937] considered the same enumeration problem which was in-
troduced as the dimer problem in order to describe the absorption of diatomic
molecules on crystal surface. The diatomic molecules are modelled as rigid dimers
each of which occupies two adjacent sites and no lattice site is covered by more than
one dimer. After more than three decades, Fisher [1961], Kasteleyn [1963], Tem-
perley and Fisherpp [1961] solved the dimer problem on plane quadratics lattices
independently. Subsequently there have been many further developments dealing
with the dimer problem of plane quadratic lattices with different boundary condi-
tions. Cohn et al. [1996] provided a proof for the explicit expression of the number of
perfect matchings on Aztec diamond. Sachs and Zernitz [1994] obtained the entropy
constant of dimers of another type of finite plane quadratic lattices. In chemistry
quite a few results have been published on this topic, especially in the study of
Benzenoid hydrocarbons which are usually modelled as planar honeycomb lattices
with different boundary condition. For details see the book Cyvin and Gutman
[2013] and the references cited therein. Unlike the dimer problem, in the monomer-
dimer problem and lattice gas model, the entropy constants are independent of the
boundary conditions.

In statistical physics the two-dimensional gas model assumes that all of the gas
molecules lie at the grid sites and only interact with their grid-neighbours. The grid
is taken to be rigid and square, so the limit of partition function per vertex is called
the “hard square constant”. Baxter et al. [1980] were first to consider this problem.
The model has also been studied on the triangular and hexagonal lattices Baxter
[1982, 1999], Domb and Green [1972], Finch [1999], Pearce and Seaton [1988]. This
problem has also been studied by mathematicians who are interested in the counting
of independent sets [Neil J Calkin, 1998].

The monomer-dimer problem also originates from crystal physics where it has
been used to model the behavior of systems of diatomic molecules (dimers) and
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single atoms absorbed on the surface of a crystal. This surface is represented as a
lattice and is exposed to a gas consisting of monomers and dimers. The diatomic
molecules are modelled as dimers each of which occupies two adjacent sites and
no lattice site is covered by more than one dimer. The other lattice sites that are
not covered by the dimers are regarded as occupied by monomers. The number of
all possible monomer-dimer arrangements (or monomer-dimer coverings) is equal
to the number of matchings of the lattice. In chemistry, Hosoya [1971] introduced
number of matchings of a molecular graph as a topological index. Many early works
were surveyed in the book by Gutman and Polansky [2012].

Other than enumerating substructures, computing algebraic invariants of the
graphs of networks, lattices and molecule structures is another way to capture their
behavior. Conversely some new algebraic invariants are inspired by concepts from
other fields. One famous example is the introduction of graph energy. As the
linear algebraic approach to approximate the solution of Schrödinger equation of
conjugated hydrocarbons - a class of organic molecule as studied in Huckel molecular
orbital theory [Coulson et al., 1978]. Inspired by Huckel molecular orbital theory,
Gutman [2001] introduced the total π- electron energy of a molecular graph as the
sum of obsolete values of the spectra of its adjacency matrix. This concept has
been extended to general graphs. Today this has become a fruitful topic not only in
mathematical chemistry but also in algebraic graph theory. Li et al. [2012] described
the development of this field.

Another topic we study in this thesis is the expansion property. A network has
a nice expansion property if it is both sparse and highly connected. It is known
that the expansion property of a graph depends on its spectra. For details see the
survey written by Hoory et al. [2006].

1.2 Thesis Outline and Main Contributions

This thesis consists of three main parts:

• Differential privacy on networks;

• Differential privacy and information leakage;
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• Some problems in lattice models.

These three parts cover Chapter 3 through Chapter 8 with this introduction and
concluding chapters in addition.

We study differential privacy in the Bayesian paradigm in Chapters 3 and 4, in
which we wish to release the results of Bayesian inference on privacy-sensitive data.

In Chapter 3, we propose a posterior sampling algorithm that preserves dif-
ferential privacy by placing conditions on the priors. We prove bounds on the
sensitivity of the posterior to the data, which delivers a measure of robustness,
from which differential privacy follows within a decision-theoretic framework. We
provide bounds on the mechanisms utility and on the distinguishability of datasets.
These bounds are complemented by a novel application of Le Cam’s method to ob-
tain lower bounds. We show that with the right choice of prior, Bayesian inference
is both private and robust. Our results demonstrate that robustness and privacy
appear to be deeply linked: not only can the same sufficient conditions achieve
both privacy and robustness, but privacy can also imply robustness, and robustness
implies privacy. This chapter is joint work with Christos Dimitrakakis, Aikaterini
Mitrokotsa, Blaine Nelson and Benjamin Rubinstein [Dimitrakakis et al., 2017], and
a follow up to the preliminary work of [Dimitrakakis et al., 2014]. Co-authors are
responsible for the query model and dataset distinguishability part.

In Chapter 4, we explore inference on probabilistic graphical models in terms of
graph structure. Our main contributions are four different algorithms for private
Bayesian inference on probabilistic graphical models. These include two mechanisms
for adding noise to the Bayesian posterior updates, either directly to the posterior
parameters, or to their Fourier transform so as to preserve update consistency. We
also utilise the posterior sampling mechanism introduced in Chapter 3, for which we
prove bounds for the specific but general case of discrete Bayesian networks, and
we introduce a maximum-a-posteriori private mechanism. Our analysis includes
utility and privacy bounds, with a novel focus on the influence of graph structure on
privacy. Worked examples and experiments with Bayesian naïve Bayes and Bayesian
linear regression illustrate the application of our mechanisms. This chapter is joint
work with Benjamin Rubinstein and Christos Dimitrakakis [Zhang et al., 2016].

Chapter 5 presents a significant generalization on the utility results in Alvim
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et al. [2011b,a], where the authors modelled a query system in terms of an information-
theoretic channel and showed that differential privacy implies a bound on the min-
entropy leakage. They also showed that the parameter of ε-differential privacy
implies a bound on utility. By viewing the possible input databases as a graph
whose nodes correspond to databases and whose adjacency is determined by the
adjacency of the databases, the authors proved the bounds on a special class of
symmetric graphs by manipulating the channel matrices. We show that the as-
sumption on graph symmetry is redundant and these results can be generalized to
arbitrary graphs. Given that the original symmetric assumption is quite restricted,
our generalization can be considered as a significant improvement. This chapter is
joint work with Benjamin Rubinstein and Sanming Zhou.

The second part comprises Chapters 6, 7 and 8, which investigate the statistics
of certain combinatorial objects on both deterministic and random networks.

In Chapter 6, we recall the relationship between the spectra of an r-regular lattice
and that of its clique-inserted lattice, and investigate the graph energy statistics. As
an application, the asymptotic energies per vertex of the 3-12-12 and 3-6-24 lattices
are computed. We also develop formulae expressing the numbers of spanning trees
and dimer coverings of the k-th iterated clique-inserted lattices in terms of that
of the original. Moreover, we show that new families of expander graphs can be
constructed from known expanders by clique-inserting [Zhang, 2013].

In Chapter 7, we investigate the statistics of vertex independent sets on some
(random) networks using the transfer matrix method. In this chapter, we first
propose the concept of transfer multiplicity and the multi-step transfer matrices
methods to study more complicated lattices where the single step transfer matrix
approach as in [Neil J Calkin, 1998] is not compatible. We demonstrate our method
on the 4-8-8 lattice by providing numerical results of the number of independent
sets and a rigorous bound on its entropy. We also show that this entropy constant
of a two dimensional lattice with free boundary condition is the same as the entropy
constants of the corresponding cylindrical and toroidal lattices [Zhang, 2014].

In Chapter 8, we investigate the annealed entropy of independent set per site on
a random graph model suggested by Brendan Mckay. We show that this annealed
entropy is asymptotically equal to the largest eigenvalue (in modulus) of the random
graph’s expected transfer matrix. We provide extensive numerical results and find
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a strong correlation between the annealed entropy and the Shannon entropy of it
corresponding underlying distribution. This chapter is joint work with Yin Chen.



Chapter 2
Differential Privacy

In this chapter, we recall some basic definitions and preliminary results from
the differential privacy literature. Before that, let us first consider an application
scenario of differential privacy. Consider a national Census Bureau such as the U.S.
Census Bureau or the Australian Bureau of Statistics. For such a bureau to con-
duct their legislated business, they must collect very detailed datasets from citizens
and businesses at a broad scale, and then release findings to government through
aggregate statistics so as to facilitate data-driven policy making. However, such
a bureau depends on the trust of the public, in order to collect truthful informa-
tion. An untrusting public may submit false information in order to protect privacy.
Historically such bureaus have been quite forward-thinking, therefore, in adopting
privacy-enhancing technologies e.g., Machanavajjhala et al. [2008]. For example
consider the problem of fitting a regression on demographic features for predicting
annual income. A bureau may have a large dataset with all relevant co-variates, and
wish to release such a model for 3rd parties to make subsequent predictions on test
individuals, while protecting the privacy of the sensitive training data. Differential
privacy provides a framework for verifying that the released model provides this
privacy protection. We revisit this example in Section 4.4.3.

11
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2.1 Definitions

Let X denote a set and x ∈ S = Xn denote a dataset over X of length n. Each row
of the dataset1 represents the data of an individual. x, y are defined as neighbouring
datasets (denoted as x ∼ y) if they differ in a single row, that is, x is at Hamming-1
distance of y. A mechanism takes datasets x ∈ S as input and outputs responses.
The concept of differential privacy [Dwork et al., 2006] states that for any two
neighbouring datasets, the probability of privacy-preserving mechanism producing
any given response is almost the same.

Definition 2.1.1. [Differential Privacy] A randomized mechanism M provides ε-
differential privacy if for all neighbouring input datasets x, y ∈ S and all measurable
R ⊆ Range(M),

Pr[M(x) ∈ R] ≤ eεPr[M(y) ∈ R],

where ε ≥ 0.

Note that, equivalently, differential privacy can also be defined in terms of a
family of probability distribution [McGregor et al., 2010]. We will adopt this view
of a mechanism as conditional probability distribution in the next two chapters. In-
tuitively, differential privacy formalizes the idea that a “private” mechanism should
not reveal whether any individual is included in the input or not. It provides a
strong guarantee that makes it infeasible for an adversary with unbounded compu-
tational resources and knowledge of the mechanism up to randomness, to distin-
guish neighbouring datasets based on the output even if the attacker knows all of
the dataset except for the one entry. In the next chapter, we will generalize the
definition of neighbouring datasets to encode alternative kinds of desired secrecy,
the semantics of which can be understood via the Pufferfish privacy work [Kifer and
Machanavajjhala, 2012].

Dwork et al. [2006] showed the above definition can be weakened by allowing
for a small probability of the privacy protection failing.

Definition 2.1.2. [Approximate Differential Privacy] A randomized mechanism M

provides (ε, δ)-differential privacy if for all neighbouring input datasets x, y ∈ S and
1Convention dictates that datasets are represented as n by d matrices when the space X is Rd.

In that case the rows correspond to elements of the dataset.
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all measurable R ⊆ Range(M),

Pr[M(x) ∈ R] ≤ eεPr[M(y) ∈ R] + δ,

where ε, δ ≥ 0.

If δ = 0, approximate differential privacy collapses to ε-differential privacy. We
can think of this generalization as allowing the mechanism to violate the restriction
of the probability ratio, with probability less than δ.

2.2 Laplace and Exponential Mechanisms

Now let us recall two popular ε differentially-private mechanisms which we will
use as building blocks for some of our algorithms in the next two chapters. One way
to achieve differential privacy is to add random noise to the true response to “blur”
it. Dwork et al. [2006] proposed adding noise from the Laplace distribution as it
is symmetric, exponentially concentrated and matches a convenient form of global
sensitivity below. This Laplace noise method depends on the global sensitivity of a
function, a form of Lipschitz condition:

Definition 2.2.1. [Global sensitivity] The L1 global sensitivity of a function f : S →
Rd is

∆ f = maxx∼x′ || f (x) − f (x′)||1

Theorem 2.2.2. [Laplace Mechanism] Given any function f : x→ Rd, the mechanism
M f (x) = f (x) + Lap(∆ f /ε) provides ε-differential privacy where Lap(∆ f /ε) denotes
the d-vector whose elements are i.i.d. random variables drawn from the Laplace
Distribution with zero mean and scale parameter ∆ f /ε.

Proof. Consider any pair of neighbouring datasets x and y at arbitrary output z,
we have:

Pr( f (x) + Lap(∆ f /ε) = z)
Pr( f (y) + Lap(∆ f /ε) = z)

=
exp

(
−
|z− f (x)|ε

∆ f

)
exp

(
−
|z− f (y)|ε

∆ f

)
= exp

(
ε

∆ f
(|z − f (y)| − |z − f (x)|)

)
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≤ exp
(
ε | f (x) − f (y)|

∆ f

)
≤ exp(ε).

�

In this thesis, we will also use another method of providing ε-differential privacy
called the exponential mechanism, and proposed by McSherry and Talwar [2007].
This mechanism is defined with respect to some utility function u which scores
preference u(x, r) of response r ∈ R given a query x. It assumes a base measure over
the range R. Intuitively, the response that maximizes the utility score is preferred
and the exponential mechanism releases close responses with high probability. The
exponential mechanism is a generalization of the Laplace mechanism.

Theorem 2.2.3 (Exponential Mechanism). The exponential mechanism M outputs
an element r with probability proportional to exp

(
εu(x,r)

2∆u

)
and preserves ε-differential

privacy, where ∆u is the global sensitivity of the utility function, that is:

∆u = max
r

max
x∼y
|u(x, r) − u(y, r)|,

Proof. For any two neighbouring datasets x and y and r ∈ R, we have:

Pr[M(x,R, u, ε) = r]
Pr[M(y,R, u, ε) = r]

=
exp( εu(x,r)

2∆u )

exp( εu(y,r)
2∆u )

∑
r′ exp( εu(y,r′)

2∆u )∑
r′ exp( εu(x,r′)

2∆u )

≤ exp
(
ε(u(x, r) − u(y, r))

2∆u

) ∑
r′ exp( εu(x,r′)+∆u

2∆u )∑
r′ exp( εu(x,r′)

2∆u )

≤ exp(ε/2)

exp(ε/2)
∑

r′ exp( εu(x,r′)
2∆u )∑

r′ exp( εu(x,r′)
2∆u )


= exp(ε)

For a continuous R, the proof still follows by replacing the sums with the integrals.
�

The exponential mechanism is a very general mechanism as it does not require
continuous or even numeric responses. We will discuss its connection to some of the
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mechanisms we propose in the thesis.

2.3 Composition Property

Differential privacy satisfies useful composition properties that assist in building
up complex differentially-private mechanisms from simple privacy-preserving oper-
ations. Dwork et al. [2006] showed that given k independent (εi, δi) mechanisms:
Mi(x), i = 1, · · · , k,

M[k](x) , (M1(x), · · · ,Mk(x))

is (
∑k

i=1 εi,
∑k

i=1 δi) differentially-private. This demonstrates that the privacy level
degrades through composition. For tighter bound of k-fold adaptive composition,
the reader may refer to Dwork and Roth [2014] and the references therein.
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Chapter 3
Differential Privacy and Bayesian
Inference

In this chapter1, we provide two sufficient conditions on the likelihood and prior
to guarantee robustness (low sensitivity to data perturbation) of the posterior distri-
bution in Bayesian Inference. As a result, sampling from the posterior can achieve a
level of privacy and utility, essentially “for free”. To prove this, we consider differen-
tial privacy in a framework of generalized neighbouring datasets, sample spaces and
probability distributions. We also propose PSAQR: a mechanism that responds
to queries that seek to maximise the expected utility under a Bayesian decision-
theoretic framework, and analyze its privacy and utility. We also study how many
samples from the posterior the Adversary need in order to distinguish two input
databases with high probability. A number of examples of simple conjugate-pairs
is provided to demonstrate the results.

3.1 Notation and Definitions

This section displays the notation, definitions and setting that will be used in
the differential privacy and Bayesian inference themes of this thesis.

1Extending the work of [Dimitrakakis et al., 2014], and correcting some of the proofs therein.

17
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Bayesian inference. This and the next chapters focus on the Bayesian inference
setting, where a posterior distribution is formed by the statistician B from a prior
distribution ξ and a training dataset x. We assume that data x ∈ S is drawn from
the distribution Pθ? on S, parameterised by θ?, from a family of distributions FΘ.
B defines a parameter set Θ indexing the family of distributions FΘ on (S,SS),
where SS is a σ-algebra on S

FΘ , { Pθ : θ ∈ Θ } .

We use pθ to denote the corresponding densities2 when necessary. In order to
perform inference in the Bayesian setting, B selects a prior measure ξ on (Θ,SΘ)
that reflects B’s subjective beliefs about which θ is more likely to be true, a priori.
i.e. For any measurable set of B ∈ SΘ, ξ(B) represents B’s prior belief of that
θ? ∈ B. Generally, the posterior distribution after observing x ∈ S is

ξ(B | x) =

∫
B

pθ(x) dξ(θ)

φ(x)
, (3.1)

where φ is the corresponding marginal density given by

φ(x) ,
∫
Θ

pθ(x) dξ(θ) .

Privacy. Recall that Definition 2.1.1 is defined on the neighbouring datasets that
differ in only one individual record, it guarantees privacy in the sense of secrecy of an
individual record even when the attacker may possess knowledge of the remainder
of the database. These semantics are described and generalized in the Blowfish
framework [He et al., 2014]. We generalize the concept of neighbouring datasets
by equipping S with a pseudo-metric3 ρ : S × S → R+, and define neighbourhood
through distance to encode much boarder notions of adversary’s knowledge.

Definition 3.1.1 ((ε, δ)-differential privacy under ρ.). A conditional distribution
P(· | x) on (Θ,SΘ) is (ε, δ) differentially-private under a pseudo-metric ρ : S × S →

2I.e. the Radon-Nikodym derivative of Pθ relative to some dominating measure ν.
3Meaning that ρ(x, y) = 0 does not necessarily imply x = y.
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R+ if, for all B ∈ SΘ and for any x ∈ S,

P(B | x) ≤ eερ(x,y)P(B | y) + δρ(x, y) ∀y ∈ S .

In the definition above, differential privacy is seen as a measure of smooth-
ness, provided that mechanisms are considered as conditional distributions that
correspond to posterior distributions in our Bayesian setting. Note that in Defini-
tion 2.1.1, two neighbouring datasets are defined as datasets in Hamming distance
one.

Remark 3.1.2. If S = Xn and ρ(x, y) =
∑n

i=1 I {xi , yi} is the Hamming distance,
Definition 3.1.1 is analogous to the standard (ε, δ)-differential privacy. When con-
sidering only (ε, 0)- differential privacy or (0, δ)-privacy, it is an equivalent notion.

Proof. For (ε, 0)-DP, let ρ(x, z) = ρ(z, y) = 1, i.e. the data differ in one element.
Then, from the standard DP, we have P(B | x) ≤ eεP(B | z) and so P(B | x) ≤ e2εP(B |
y) = eρ(x,y)εP(B | y). By induction, this holds for any pair of x, y. Similarly, for
(0, δ)-DP, by induction we obtain P(B | x) ≤ P(B | y) + δρ(x, y). �

Let us show that this generalization of differential privacy satisfies the stan-
dard composition property. Composition permits building of complex differentially-
private mechanisms based on simple differentially-private algorithmic building blocks.

Theorem 3.1.3 (Composition). Let conditional distributions P(· | x) on (Θ,SΘ) be
(ε, δ) differentially-private under a pseudo-metric ρ : S × S → R+ and P′(· | x) on
(Θ′,S′Θ′) be (ε′, δ′)-differentially private under the same pseudo-metric. Then the
conditional distribution on the product space (Θ × Θ′,SΘ ⊗S′Θ′) given by

Q(B × B′ | x) = P(B | x)P(B′ | x),∀B × B′ ∈ SΘ ⊗S′Θ′

satisfies (ε + ε′, δ+ δ′) differentially-private under pseudo-metrics ρ. Here SΘ ⊗S′Θ′
is the product σ-algebra on Θ × Θ′.

Proof. By definition of Q and the privacy of P, P′,

Q(B × B′ | x) ≤ [eερ(x,y)P(B | y) + δρ(x, y)]P′(B′ | x)
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≤ eερ(x,y)P(B | y)[eε
′ρ(x,y)P′(B′ | y) + δ′ρ(x, y)] + δρ(x, y)

≤ e(ε+ε′)ρ(x,y)P(B | y)P′(B′ | y) + (δ + δ′)ρ(x, y)

In some cases, this generalization can be made equivalent to the definition of
Pufferfish privacy proposed by Kifer and Machanavajjhala [2012], a privacy concept
with Bayesian semantics. The reader can refer to [Bassily et al., 2013, Chatzikoko-
lakis et al., 2013] for more discussion on generalized neighbouring datasets and the
use of metrics in differential privacy.

3.2 Background and Setting

In statistical decision theory, uncertainty is taken into account with decision
making under the Bayesian framework, which is attractive as it enables the ma-
chinery of probability to be applied in making predictions and modelling. To be
more specific, based on the Bayesian paradigm, the world can be described by using
probabilistic models with some families of likelihood distributions and prior beliefs
on missing likelihood parameters. As more data being observed, a so called posterior
belief can be formed by adjusting prior belief through the calculus of probability.
The posterior belief can then be released to the world for subsequent modelling and
decision makings under uncertainty.

Unfortunately, as the data collected by the statistician is sometimes sensitive,
there can a concern that the sensitive information in the original data may be di-
vulged when any information, in terms of the posterior distribution itself or any
decisions made based on the calculation of the posterior, is released by the statis-
tician. Currently, in order to codify the information leaking, a framework of dif-
ferential privacy and various extensions has been developed. The purpose of this
framework is to measure the amount of input information that can be leaked through
its output. The leakage of input information is bounded provided the algorithm is
differentially-private.

In this chapter, we consider how to build differentially-private algorithms based
on the Bayesian framework. In particular, we aim to determine what choice of prior
enables differential privacy for decisions based on the posterior distribution. Under
a decision-theoretic framework, a unified understanding of privacy and learning in
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adversarial environments is obtained. We show that, under suitable assumptions,
uniformly good utility with a fixed privacy budget in the differential privacy setting
can be achieved through Bayesian inference and posterior sampling. Apart from
that, strong connections between robustness and privacy are illustrated as well.

We show that a base level of data privacy through the posterior distribution is
guaranteed by the Bayesian statistician’s choice of prior distribution that enables
them to respond to external queries safely. A trade-off on privacy leakage and
accurate response to query needs to be made, based on how many samples should
be used in the estimation of Bayesian models from sensitive data. Our proposed
approach is particularly useful in situations where Bayesian inference is already in
use by providing examples in the exponential family. Our setting is however entirely
general and not limited to specific distribution families, or i.i.d. observations. The
general framework is summarised below.

Summary of setting We consider the problem faced by a statistician B who an-
alyzes data and communicates her findings to a third party A . While B wants
to learn as much as possible from the data, she does not want A to learn about
any individual datum. For example, in a case where A is an insurance agency
and the data are medical records, B wants to convey the efficacy of drugs to the
agency while without revealing the specific illnesses of individuals in the population.
There are no assumptions being made on the data x, and the protocol of interaction
between B and A is shown below for non-private inference.

1. B selects a model family (FΘ) and a prior (ξ).

2. B observes data x and forms the posterior ξ(θ|x) but does not reveal it.

3. A is allowed to see FΘ and ξ and is computationally unbounded.
For steps t = 1, 2, . . .

4. A sends his utility function u and a query qt to B.

5. B responds with the rt maximising u that depends on the posterior.

To elaborate, based on this framework, the problem commands the choice of the
model family FΘ, and the prior knowledge of B acts as a determinant on the choice
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of ξ, which also influences the privacy level achieved. Informally speaking, better
privacy can be achieved by more informative priors because the posterior is less
dependent on the data. As publicly available information should be reflected in the
prior, it can be assumed to be public. The posterior distribution ξ(θ | x) remains
private as it summarizes the statistician’s conclusion drawn from the observed data
x.

The interaction with A is indicated in the second part of the process, where
a decision-theoretic viewpoint is adopted to achieve the characters of the optimal
responses to queries. To be more specific, a utility function uθ(qt, rt) that A wants
to maximise is built based on the assumption of the existence of a “true” parameter
θ ∈ Θ. For instance, in the case where a normal distribution has parameters of
θ = (µ, Σ) and an example query qt is “what is the expected value Eθxi = µ of the
distribution?”, the optimal response rt would be a real vector that depends on the
utility function. A possible utility function is the negative squared L2 distance:

uθ(qt = “what is the mean?", rt) = −‖Eθxi − rt‖
2
2.

Even if θ is unknown, B can obtain the information about it through a posterior
distribution, which takes over the expectation of the expected utility Eξ(u | qt, rt, x)
that has been maximised by the optimal response of B under standard decision-
theoretic notions. However this deterministic response cannot be differentially-
private.

In this chapter, the use of posterior sampling to respond to queries is advocated
and the posterior sampling mechanism draws a set of Θ̂ of i.i.d. samples from the
posterior distribution. As a result, all the responses only depend on the posterior
through Θ̂. As only a single sample set of Θ̂ is taken when we define the algorithm,
no more information about the data than what we infer from Θ̂ can be leaked when
further queries by the opponent arrives. This enables us to respond to any number
of queries with a confined privacy budget, and at the same time achieve good utility.

In section 4, we show that differentially-private responses and robustness of
the posterior can be achieved, provided that FΘ and ξ are selected appropriately.4

4To be more specific about robustness, that small changes in the data result in small changes
in the posterior in terms of the KL- divergence.
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Further, upper and lower bounds are proven on distinguishing ε-close datasets.
Lastly, we bound the loss in utility incurred due to privacy. The implication of the
results we obtain is that robustness and privacy are linked via smoothness. The
robustness of Bayesian learning algorithms is attributed to smooth mappings where
their output (e.g., a spam filter) changes little with perturbations to input (e.g.,
similar training corpora): outliers have decreased effect and unknown information
about the data can not be detected by adversaries easily. This suggests robustness
and privacy can be achieved at the same time and they are linked to each other
deeply.

Based on generalized differential privacy to dataset distances, outcome spaces
and distribution families, we provide a uniform mathematical treatment on the
privacy and robustness attributes of Bayesian inference, with distinct contributions
as follows:

• Under certain regularity conditions on the prior distribution ξ or likelihood
family FΘ, the posterior distribution is shown to be robust : small alterations
in the dataset result in small posterior changes.

• We promote a novel posterior sampling mechanism that is private.5 Our ap-
proach is different from other common mechanisms in differential privacy as it
is based on the non-private (Bayesian) learning framework without alteration.

• Necessary and sufficient conditions for differentially-private Bayesian inference
are provided.

• The notion of dataset distinguishability is introduced based on which we pro-
vide finite-sample bounds for our mechanism: the size of Θ̂ needs to be deter-
mined for A to differentiate between two datasets with high probability.

• We also provide examples of conjugate-pair distributions where our assump-
tions hold, to illustrate the application of our results.

5Although previously used e.g., for efficient exploration in reinforcement learning [Thompson,
1974, Osband et al., 2013], posterior sampling has not previously been employed for privacy.
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3.3 Our Main Assumptions

In this section, we introduce two assumptions that one could make on the
smoothness of the family FΘ with respect to some metric d on R+ such that close
datasets x, y ∈ S result in posterior distributions that are close as measured by
KL-divergence. The first assumption states that the likelihood is smooth for all
parameterizations of the family. Firstly, let us define our notion of smoothness. Let
f (x, θ) , ln pθ(x) be the log probability of x under θ. The Lipschitz constant for a
parameter value θ is

`(θ) , inf { u : | f (x, θ) − f (y, θ)| ≤ uρ(x, y)∀x, y ∈ S } . (3.2)

Our first assumption is uniform smoothness for all parameters.

Assumption 1 (Lipschitz continuity). We assume that there exists some L < ∞ such
that

`(θ) ≤ L, ∀θ ∈ Θ. (3.3)

In other words, this assumption says that the log probability is uniformly Lips-
chitz with respect to ρ over all parameter values. But it might be difficult for this
assumption to hold uniformly over Θ generally. This can be seen by the following
counterexample for the Bernoulli family of distributions: when the parameter is
0, then any sequence x = 0, 0, . . . has probability 1, while any sequence containing
a 1 has probability 0. To avoid such problems, we relax the assumption by only
requiring that B’s prior probability ξ is concentrated in the regions of the family
for which the likelihood is smoothest:

Assumption 2 (Stochastic Lipschitz continuity; Norkin, 1986). Firstly, we define the
subset of parameter values

ΘL , { θ ∈ Θ : `(θ) ≤ L } (3.4)

to be those parameters for which Lipschitz continuity holds with Lipschitz constant
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L. Thus there are some constants c, L0 > 0 such that, for all L ≥ L0

ξ(ΘL) ≥ 1 − exp(−c(L − L0)) . (3.5)

This weaker assumption is easier to meet while still generates useful guarantees
by not requiring uniform smoothness. Note that L0 is determined by the nature
of the likelihood distributions. It reflects that certain levels of smoothness are not
achievable for certain likelihood functions. In fact, in Section 3.6, we prove that
this assumption is satisfied by many important example distribution families.

In the next section, we show that verifying our assumptions for a distribution of a
single random variable lifts to a corresponding property for the product distribution
on i.i.d. samples.

Lemma 3.3.1. If FΘ satisfies Assumption 1 (resp. Assumption 2) with respect to
pseudo-metric ρ and constant L (or c and L0), then, for any fixed n ∈ N, the product
family F n

Θ with densities pn
Θ({ xi }) =

∏n
i=1 pΘ(xi) satisfies the same assumption with

respect to
ρn({ xi } , { yi }) =

∑n
i=1 ρ(xi, yi)

and constant L (or c and L0).

Proof. For Assumption 1, the proof follows directly from the definition of the
absolute log-ratio distance, namely

| ln pn
θ({ xi }) − ln pn

θ({ yi })| ≤
∑n

i=1 | ln pθ(xi) − ln pθ(yi)|

≤ L
∑n

i=1 ρ(xi, yi) .

For Assumption 2, consider the sub-family ΘL from Eq. (3.4) for marginal pθ and
pseudo-metric ρ, and define the corresponding sub-family Θn

L in terms of product
distribution pn

θ and pseudo-metric ρn. Then the same argument as above shows that
ΘL ⊆ Θ

n
L. Therefore, the same prior and parameters c and L0 yield the lower bound

of Eq. (3.5), for Θn
L. �



26 Chapter 3. Differential Privacy and Bayesian Inference

3.3.1 Sufficient Statistics as a Necessary Condition

The extent to which our assumptions hold for a particular family of distributions
FΘ is mainly determined by ρ. And the choice of metric is also important for
achieving differential privacy. Now we specifically consider metrics defined in terms
of a difference in statistics

ρ(x, y) , ‖τ(x) − τ(y)‖ , (3.6)

where τ : S → V is a statistic mapping from datasets to a normed vector space.

Necessity for assumptions. In that case, our assumptions imply that f must be a
sufficient statistic, since if τ(x) = τ(y) then ρ(x, y) = 0 and it follows that Pθ(x) =

Pθ(y). More generally, ρ must be such that if the distance between x, y is zero, then
their probabilities should be equal. We will provide some examples of such statistics
for conjugate distributions in the exponential family in Section 3.6. That means a
metric that simply ignores part of the data can not be used, for example.

Necessity for differential privacy. Similarly, the definition of differential privacy
(Definition 3.1.1) implies that f must be a Bayes-sufficient statistic. This means
that for any x, y

f (x) = f (y) ⇒ ξ(B | x) = ξ(B | y).

Note that this is a slightly weaker condition than a sufficient statistic, which is
necessary for our assumptions to hold.

3.3.2 Summary of Results

Given the above assumptions, we show the following results: Firstly, if we
choose an informative prior ξ, then the resulting posterior is robust in terms of
KL-divergence to small changes in the data; Secondly, the posterior distribution is
differentially-private; Thirdly, this implies that sampling from the posterior can be
used as part of a differentially-private mechanism. We complement these with re-
sults on how easily an adversary can distinguish two similar datasets from posterior
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samples; Finally, we characterise the trade-off between utility and privacy, stated
here informally for ease of exposition:

Claim 1. If A prefers to use the prior ξ?, but B uses a prior ξ satisfying Assump-
tion 1, and A ’s utility is bounded in [0, 1], the following is true for the posterior
sampling mechanism with N samples:

• The mechanism is 2NL differentially-private;

• A ’s utility loss is O
(
[1 − ξ?(ΘL)] +

√
1/N

)
w.h.p., where ΘL is the support of

ξ.

The following sections discuss our main results in detail. We begin by proving
that our assumptions result in robust posteriors, in the sense that the KL-divergence
between posteriors arising from similar datasets is small. Then we show that they
also result in differentially-private posterior distributions, and analyze the resulting
posterior sampling mechanism. We conclude with some examples and a discussion
of related work.

3.4 Robustness of the Posterior Distribution

We now show that the above assumptions provide guarantees on the robustness
of the posterior. That is, if the distance between two datasets x, y is small, then so
is the distance between the two resulting posteriors, ξ(· | x) and ξ(· | y). We prove
this result for the case where we measure the distance between the posteriors in
terms of the well-known KL-divergence

D (P ‖ Q) =

∫
S

ln
dP
dQ

dP . (3.7)

The following theorem shows that any distribution family FΘ and prior ξ satisfying
one of our assumptions is robust, in the sense that the posterior does not change
significantly with small changes to the dataset. It is notable that our mechanisms
are simply tuned through the choice of prior.

Theorem 3.4.1. When ξ is a prior distribution on Θ and ξ(· | x) and ξ(· | y) are the
respective posterior distributions for datasets x, y ∈ S, the following results hold
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1. Under a pseudo-metric ρ and L > 0 satisfying Assumption 1,

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y) ; (3.8)

2. Under a pseudo-metric ρ and c > 1 satisfying Assumption 2

D (ξ(· | x) ‖ ξ(· | y)) ≤ CFΘξ
(
1 + 2L0 + c−1

)
ρ(x, y) , (3.9)

where CFΘξ is the ratio between the maximum and marginal likelihoods (3.11).

Proof. Let us now tackle claim 1. First, we can decompose the KL-divergence into
two parts.

D (ξ(· | x) ‖ ξ(· | y)) =

∫
Θ

ln
dξ(θ | x)
dξ(θ | y)

dξ(θ | x)

=

∫
Θ

ln
pθ(x)
pθ(y)

dξ(θ | x) +

∫
Θ

ln
φ(y)
φ(x)

dξ(θ | x)

≤

∫
Θ

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ dξ(θ | x) +

∫
Θ

ln
φ(y)
φ(x)

dξ(θ | x)

≤ Lρ(x, y) +

∣∣∣∣∣ln φ(y)
φ(x)

∣∣∣∣∣ . (3.10)

From Assumption 1, pθ(y) ≤ exp(Lρ(x, y))pθ(x) for all θ so:

φ(y) =

∫
Θ

pθ(y) dξ(θ)

≤ exp(Lρ(x, y))
∫
Θ

pθ(x) dξ(θ) = exp(Lρ(x, y))φ(x) .

Combining this with (3.10) we obtain

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y) .

Claim 2 is dealt with similarly. Once more, we can break down the distance in
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parts. In more detail, we first write:

D (ξ(· | x) ‖ ξ(· | y)) ≤
∫
Θ

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ dξ(θ | x)︸                      ︷︷                      ︸
A

+

∫
Θ

ln
φ(y)
φ(x)

dξ(θ | x)︸                  ︷︷                  ︸
B

,

as before. Now, let us re-write the A term as∫
Θ

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ pθ(x)
φ(x)

dξ(θ) ≤ sup
θ′

pθ′(x)
φ(x)

∫
Θ

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ dξ(θ) ,

so that the left-hand side term is the ratio between the maximal likelihood and
marginal likelihood. Using the same steps, we can bound B in the same manner.

Now, let us define a data-dependent and a data-independent bound:

CFΘξ (x) , sup
θ

pθ(x)
φ(x)

, CFΘξ , sup
x

CFΘξ (x) . (3.11)

Replacing, we obtain:

D (ξ(· | x) ‖ ξ(· | y)) ≤ CFΘξ

∫
Θ

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ dξ(θ)︸                 ︷︷                 ︸
A

+

∫
Θ

ln
φ(y)
φ(x)

dξ(θ | x)︸                  ︷︷                  ︸
B

.

Now, to bound the individual terms, we start from A and note that theorem 3
of [Norkin, 1986] on the Lipschitz property of the expectation of stochastic Lipschitz
functions applies.

Theorem 3.4.2. [Norkin, 1986] If ξ is a probability measure on Θ and f : S×Θ→ R

is a ξ-measurable function, such that for any θ ∈ Θ, f (·, θ) is `(θ)-Lipschitz, then
the function fξ(x) , Eξ f (x, θ) is Lξ-Lipschitz, where Lξ = Eξ`(θ).

Recall that the expectation of a non-negative random variable can be written in
terms of its CDF F as

∫ ∞
0

[1 − F(t)] dt. In our case, `(θ) is a random variable on Θ,
and we can write its cumulative distribution function as

F(t) , ξ ({ θ ∈ Θ : `(θ) ≤ t }) = ξ(Θt) ,

by the definition of Θt. It follows that ln pθ(x) is Lξ-Lipschitz, where through the
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formula for the expectation of positive variables:

Lξ =

∫ ∞

0
[1 − ξ(Θt)] dt ≤ L0ξ(ΘL0) + [1 − ξ(ΘL0)]

∫ ∞

0
e−ct dt ≤ L0 + c−1 . (3.12)

So, term A becomes CFΘξ
(
L0 + c−1

)
ρ(x, y).

Now let us move on to term B. For technical reasons, we start by considering a
pair x, y such that ρ(x, y) ≤ c − 1. This also implies that c > 1, since the distance
cannot be negative.

φ(x)
φ(y)

(a)
=

∫
Θ

pθ(x)
φ(y)

dξ(θ)
(b)
≤

∫
Θ

pθ(y)e`(θ)ρ(x,y)

φ(y)
dξ(θ)

(c)
≤ CFΘξ

∫
Θ

e`(θ)ρ(x,y) dξ(θ) . (3.13)

Note that
{
θ ∈ Θ : e`(θ)ρ(x,y) ≤ t

}
=

{
θ ∈ Θ : `(θ) ≤ ρ(x, y)−1 ln t

}
= Θρ(x,y)−1 ln t. So the

CDF of the random variable e`(θ) is F(t) = ξ(Θρ(x,y)−1 ln t). Then

Eξe`(θ)ρ(x,y) = Eξ[e`(θ)ρ(x,y) | ` ≤ L0]ξ(ΘL0) + Eξ[e`(θ)ρ(x,y) | ` > L0][1 − ξ(ΘL0)]

≤ eL0ρ(x,y) + ρ(x, y)
∫ ∞

t0
tρ(x,y)−1[1 − ξ(Θln t)] dt

≤ eL0ρ(x,y) + ρ(x, y)
∫ ∞

t0
eln t[ρ(x,y)−1]e−c(ln t−L0) dt (where t0 = eL0)

= eL0ρ(x,y) + ρ(x, y)
∫ ∞

t0
eln t[ρ(x,y)−c−1]+cL0 dt

= eL0ρ(x,y) + ρ(x, y)ecL0

∫ ∞

t0
tρ(x,y)−c−1 dt

= eL0ρ(x,y) + ρ(x, y)ecL0
tρ(x,y)−c
0

c − ρ(x, y)

= eL0ρ(x,y) + ρ(x, y)ecL0
eL0(ρ(x,y)−c)

c − ρ(x, y)

≤ eL0ρ(x,y) + ρ(x, y)ecL0eL0(ρ(x,y)−c)

= eL0ρ(x,y) + ρ(x, y)eL0ρ(x,y) = (1 + ρ(x, y))eL0ρ(x,y) ≤ e(1+L0)ρ(x,y).

Consequently, ln φ(x)/φ(y) ≤ CFΘξ (1 + L0)ρ(x, y).

To handle larger distances ρ, we can simply apply the above result repeatedly
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between k data sets z1, . . . , zk, where z1 = x, zk = y and such that ρ(zi, zi+1) < c − 1.
By chaining logarithmic ratios, i.e. using the fact that ln φ(x)/φ(y) = ln φ(x)/φ(z) +

ln φ(z)/φ(y) we can now extend our result to general pairs for term B. Replacing
those terms, we obtain:

D (ξ(· | x) ‖ ξ(· | y)) ≤ CFΘξ
(
1 + 2L0 + c−1

)
ρ(x, y) .

If the intermediate points do not exist under ρ, we can scale it properly, thus
obtaining the final result. �

Note that the second claim bounds the KL-divergence in terms of B’s prior
belief that L is small, which is expressed via the constant c. The larger c is, the
less prior mass is placed in large L and so the more robust inference becomes. On
the other hand, choosing c to be too large may decrease efficiency.

3.4.1 Alternative Analysis

We show an alternative result to Theorem 3.4.1 below.

Theorem 3.4.3. When d : R+×R+ → R+ is the absolute log-ratio distance, ξ is a prior
distribution on Θ and ξ(· | x) and ξ(· | y) are the respective posterior distributions
for datasets x, y ∈ S, the following results hold:

1. Under a metric ρ and L > 0 satisfying Assumption 1,

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y) .

2. Under a metric ρ and c > 0 satisfying Assumption 2 and satisfying ρ(x, y) <
(1 − ε)c uniformly for all x, y for some ε ∈ (0, 1),

D (ξ(· | x) ‖ ξ(· | y)) ≤ M ·max{ρ(x, y), 1} .

where

M =

(
κ

c
+ L0(

1
1 − e−ω

+ 1) + ln CFΘξ + ln
(
e−L0δc(e−ω(1−δ) − e−ω)−1 + eL0(1−δ)c

))
CFΘξ ;
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constants κ = 4.91081 and ω = 1.25643; and CFΘξ defined in (3.11). Note that

M = O
((

1
c

+ ln CFΘξ + L0

)
CFΘξ

)
.

Proof. Using the same steps as in the proof of Theorem 3.4.1, we have

D (ξ(· | x) ‖ ξ(· | y)) ≤ CFΘξ


∫
Θ

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ dξ(θ)︸                 ︷︷                 ︸
A

+

∫
Θ

ln
φ(y)
φ(x)

dξ(θ)︸              ︷︷              ︸
B

 . (3.14)

Now, to bound the individual terms, we start from A and write it as a sum of
integrals that partitions Θ. Let Θ[a,b] , Θb \Θa. Then ξ(Θ[a,b]) = ξ(Θb)−ξ(Θa) ≤ e−ca,
as Θb ⊃ Θa, while ξ(Θb) ≤ 1 and ξ(Θa) ≥ 1 − e−ca from Ass 2. We can thus partition
Θ into disjoint sets corresponding to uniformly sized intervals [L0 + (L−1)α, L0 + Lα)
of size α > 0 indexed by L. We bound the divergence on each partition and sum
over L.∫

Θ

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ dξ(θ) =

∞∑
L=1

∫
Θ[L0+(L−1)α,L0+Lα]

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ dξ(θ) +

∫
Θ[0,L0]

∣∣∣∣∣ln pθ(x)
pθ(y)

∣∣∣∣∣ dξ(θ) (3.15)

(a)
≤ ρ(x, y)

∞∑
L=1

(L0 + Lα)
∫
Θ[L0+(L−1)α,L0+Lα]

dξ(θ) + L0ρ(x, y) (3.16)

(b)
≤ ρ(x, y)[α

∞∑
L=1

Le−cα(L−1) + L0

∞∑
L=0

e−cαL + L0] (3.17)

(c)
= ρ(x, y)

[
α
(
1 − e−cα)−2

+
L0

1 − e−αc + L0

]
, (3.18)

where (a), (b) are from Assumption 1, equation (3.4) and (3.3) respectively, and (c)
is via the geometric series. Now let us move on to term B. Since the logarithmic
term does not depend on θ, this is simply bounded by | ln φ(y)

φ(x) |. We now attempt to
bound this as follows:

φ(y) =

∫
Θ

pθ(y) dξ(θ) =

∞∑
L=1

∫
Θ[L0+(L−1)α,L0+Lα]

pθ(y) dξ(θ) +

∫
Θ[0,L0]

pθ(y) dξ(θ) (3.19)
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≤

∞∑
L=1

e(L0+Lα)ρ(x,y)
∫
Θ[L0+(L−1)α,L0+Lα]

pθ(x) dξ(θ) + pθ(x)eL0ρ(x,y) (3.20)

φ(y)
φ(x)

≤

∞∑
L=1

e(L0+αL)ρ(x,y)
∫
Θ[L0+(L−1)α,L0+Lα]

[pθ(x)/φ(x)] dξ(θ) + eL0ρ(x,y) [pθ(x)/φ(x)] (3.21)

≤ CFΘξ

 ∞∑
L=1

e(L0+αL)ρ(x,y)
∫
Θ[L0+(L−1)α,L0+Lα]

dξ(θ) + eL0ρ(x,y)

 (3.22)

≤ CFΘξ

eαc+L0(ρ(x,y)−c)
∞∑

L=1

eαL(ρ(x,y)−c) + eL0ρ(x,y)

 (3.23)

≤ CFΘξ
[
eL0(ρ(x,y)−c)(e−αρ(x,y) − e−cα)−1 + eL0ρ(x,y)

]
. (3.24)

Note that the series converge only if ρ(x, y) < c. Let us assume that there exists
1 > ε > 0 such that (1 − ε)c ≥ ρ(x, y). Then we have that

D (ξ(· | x) ‖ ξ(· | y)) ≤ CFΘξ ρ(x, y)
(
α(1 − e−cα)−2 +

L0

1 − e−αc + L0

)
(3.25)

+ CFΘξ
(
ln CFΘξ + ln(eL0(ρ(x,y)−c)(e−αρ(x,y) − e−cα)−1 + eL0ρ(x,y))

)
(3.26)

≤ CFΘξ ρ(x, y)

α(1 − e−cα)−2 +
L0

1 − e−αc + L0︸                                ︷︷                                ︸
D

 (3.27)

+ CFΘξ

lnCFΘξ + ln
(
e−L0εc(e−α(1−ε)c − e−cα)−1 + eL0(1−ε)c

)︸                                            ︷︷                                            ︸
E

 (3.28)

≤ CFΘξ (D + lnCFΘξ + E) max(ρ(x, y), 1) (3.29)

but it remains to tune the constant α.

Tuning the bound. Note that L0 depends on the likelihoods, for simplicity let us
pick α based on the case L0 = 0. In such case, we have

D (ξ(· | x) ‖ ξ(· | y)) ≤ CFΘξ

α(1 − e−cα)−2︸          ︷︷          ︸
F

+ ln CFΘξ + αc − ln(ecαε − 1)︸               ︷︷               ︸
G

 (3.30)

This bound holds for any size parameter α > 0 and is convex for α > 0, c > 0. Thus,
there is an optimal choice for α that minimizes this bound. The optimal choice is
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given by the solution of the transcendental equation which is obtained by differen-
tiating w.r.t to α and setting the result to zero. Since there is no analytical solution
to the transcendental equation, we tune this bound by examining the minimum of
F and G separately. Note that for F, we have that the optimal α∗1 = ω

c where ω
is the unique non-zero solution to eω = 2ω + 1. As the ω ≈ 1.25643 is the unique
positive solution to eω = 2ω + 1, we have α∗A = 1.25643/c. For G, the minimum
point is α∗B = 1

cε ln c
c−cε . By mean value theorem there exists a z ∈ (c − cε, c) such

that α∗B = 1/z, that is α∗B ∈ (1/c, 1/(c− cε)). Note that α∗A is in (1/c, 1/(c− cε)) when
ε ≥ 0.21. We can pick α∗ = 1.25643/c here. �

3.5 Privacy and Utility

We next examine the differential privacy of the posterior distribution. We show
in Section 3.5.1 that this can be achieved under either of our assumptions. The result
can also be interpreted as the differential privacy of a posterior sampling mechanism
for responding to queries (described in Section 3.5.2), for which we prove a bound
on the utility depending on the number of samples taken. Section 3.5.3 examines
an alternative notion of privacy, dataset distinguishability, similar to Wasserman
and Zhou [2010]. For this, we prove a bound on privacy, that also depends on the
number of samples taken. Together, these exhibit a trade off between utility and
privacy controlled by choosing the number of samples appropriately, in a manner
described in Section 3.5.4.

3.5.1 Differential Privacy of Posterior Distributions

We consider our generalized notion of differential privacy for posterior distribu-
tions (Definition 3.1.1), and show that the type of differential privacy exhibited by
the posterior depends on which assumption holds.

Theorem 3.5.1. 1. Under Assumption 1, for all x, y ∈ S, B ∈ SΘ:

ξ(B | x) ≤ exp{2Lρ(x, y)}ξ(B | y) ,
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i.e. the posterior ξ is (2L, 0) differentially-private under pseudo-metric ρ.

2. Under a pseudo-metric ρ and c > 1 satisfying Assumption 2, CFΘξ defined
in (3.11), for all x, y ∈ S, B ∈ SΘ:

|ξ(B | x) − ξ(B | y)| ≤

√
CFΘξ

2
(
1 + 2L0 + c−1) ρ(x, y),

i.e. the posterior ξ is
(
0,O(

√
CFΘξ (L0 + 1/c))

)
-differentially private6 under

pseudo-metric √ρ.

Proof. For part 1, we assumed that there is an L > 0 such that ∀x, y ∈ S,
∣∣∣∣log pθ(x)

pθ(y)

∣∣∣∣ ≤
Lρ(x, y), implying pθ(x)

pθ(y) ≤ exp{Lρ(x, y)}. Further, in the proof of Theorem 3.4.1, we
showed that φ(y) ≤ exp{Lρ(x, y)}φ(x) for all x, y ∈ S. From Eq. (3.1), we can then
combine these to bound the posterior of any B ∈ SΘ as follows for all x, y ∈ S:

ξ(B | x) =

∫
B

pθ(x)
pθ(y) pθ(y) dξ(θ)

φ(y)
·
φ(y)
φ(x)

≤ exp{2Lρ(x, y)}ξ(B | y) .

For part 2, note that the KL-divergence of the posteriors under assumption is
bounded by (3.9). Now, recall Pinsker’s inequality [cf. Fedotov et al., 2003]:

D (Q‖P) ≥ ‖Q − P‖2TV , 2 sup
B
|Q(B) − P(B)|2 (3.31)

This yields: |ξ(B | x) − ξ(B | y)| ≤
√

1
2 D (ξ(· | x) ‖ ξ(· | y)) ≤

√
1
2CFΘξ

(
1 + 2L0 + c−1) ρ(x, y).

The difference between the two bounds’ form is due to the fact that the first
claim has a direct proof and the second claim arises from Theorem 3.4.1.

Finally, we show that posterior distributions are also randomly differentially-
private.

Corollary 3.5.2. Under Assumption 2:

P
[
∀B ∈ SΘ : ξ(B | x) ≤ exp {2Lρ(x, y)} ξ (B | y) ,∀x, y ∈ S

]
≥ 1 − exp(−c(L − L0)) .

6This holds, for example, for hamming distance as in the Beta-Binomial example presented in
Lemma 3.6.3.
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That is, the posterior ξ is (2L, 0, exp(−c(L− L0))-randomly differentially-private un-
der pseudo-metric ρ.

This is a conceptually different definition from the original RDP, as the measure
over which the randomness is defined is not the data distribution, but the prior
measure ξ.

This property of the posterior distribution directly leads to the definition of a
posterior sampling mechanism which will be differentially private. This is explained
in the following section.

3.5.2 Posterior Sampling Mechanism

Given that we have a full posterior distribution which is differentially-private,
we can use it to define a private mechanism. We may allow the adversary to submit
an arbitrary set of queries { qt } with each qt ∈ Q. Each query warrants a response rt

in a set of possible responses R. The adversary is allowed to condition the queries
on our previous responses.

We extend the approach of Dimitrakakis et al. [2014] to take some utility function
u into account, which scores preferences of responses given a query. The first step is
to simply draw a number of samples from the posterior, as in the original approach
(Algorithm 3.5.2). After the algorithm calculates the posterior distribution ξ(· | x),
N parameter samples are drawn from it, producing a parameter set Θ̂. Thereafter,
responses depend only on the utility function and the sample Θ̂, and we do not
draw new samples after every query. This allows us to work with a fixed privacy
budget.

Algorithm 3.5.1: BAPS: Bayesian Posterior Sampling
1: input prior ξ, data x ∈ S
2: Calculate posterior ξ(θ | x).
3: for k = 1, . . . ,N do
4: Sample θ(k) ∼ ξ(θ | D).
5: end for
6: return Θ̂ =

{
θ(k) : k = 1, . . . ,N

}
.
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Corollary 3.5.3. Algorithm 3.5.1 is differentially private under the conditions of
Theorem 3.5.1, namely:

1. Under a pseudo-metric ρ and L > 0 satisfying Assumption 1, the algorithm is
(2NL, 0)-differentially private under pseudo-metric ρ; or

2. Under a pseudo-metric ρ and c > 1 satisfying Assumption 2, CFΘξ defined

in (3.11), the algorithm is
(
0,O(N

√
CFΘξ (L0 + 1/c))

)
-differentially private un-

der pseudo-metric √ρ.

Proof. This follows directly from Theorems 3.5.1 and the composition property as
the algorithm samples from the posterior distribution, which is differentially private.
�

Utility and optimal responses. We assume a collection of utility functions U =

{ uθ : θ ∈ Θ }, such that the optimal response for a given parameter θ is the one that
maximises a utility function uθ : Q × R → [0, 1]. If we know the true parameter θ,
then we should respond to any query q with r ∈ arg maxr uθ(q, r). However, since θ
is unknown, we must select a method for conveying the required information. In a
Bayesian setting, there are three main approaches we could employ. The standard
methodology is to maximise expected utility with respect to the posterior. This
corresponds to marginalising out θ, and responding with:

rt ∈ arg max
r

∫
Θ

uθ(qt, r) dξ(θ | x) .

The second is to use the maximum a posteriori value of θ. The final, which we
employ here, is to use sampling; i.e. to reply to each query using parameters
sampled from the posterior. This allows us to reply to arbitrary queries without
compromising privacy, since the most information an adversary could obtain is the
set of sampled parameters. By adjusting the number of samples used, we can easily
trade off between privacy and utility.

After this we respond to a series of queries. For the t-th received query qt, the
algorithm returns the optimal response over the sampled parameter set Θ̂, in the
manner shown in Algorithm 3.5.2. Since we allow arbitrary queries, the third party
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could simply ask for Θ̂ with a suitable choice of the utility function. Then if u is
bounded, it is easy to show that the loss due to sampling is bounded.

Algorithm 3.5.2: PSAQR: Posterior Sample Query Response
1: input Parameter sample Θ̂.
2: for t = 1, . . . do
3: Observe query qt ∈ Q, perhaps depending on r1, . . . , rt−1 and q1, . . . , qt−1.
4: return rt ∈ arg maxr

∑
θ∈Θ̂ uθ(qt, r)

5: end for

Lemma 3.5.4. The returned responses of PSAQR have a utility which is within
O

(√
ln(1/δ)/N

)
of the optimal value with probability at least 1 − δ for any δ > 0.

Proof. Sampling N times from the posterior gives us the estimate of the utility
function

ûξ(q, r) =
1
N

∑
θ∈Θ̂

uθ(q, r),

which with probability at least 1 − δ satisfies |ûξ(q, r) − u(q, r)| <
√

ln(2/δ)
2N = ε, ∀r, q,

via Hoeffding’s inequality and the boundedness of u. Consequently, we can be at
most 2ε-away from the optimal. �

Now that we have shown bounds on the utility for the algorithm above, we turn
to the issue of how utility and privacy can be optimally tuned. First, we try to
quantify the amount of samples an adversary needs to distinguish two datasets.

3.5.3 Distinguishability of Datasets

We want to relate the size of the sample Θ̂ and the amount of information
about x that can be obtained by the adversary A . Specifically, how well A can
distinguish x from all alternative datasets y should be bounded. A has to decide
whether B’s posterior is ξ(· | x) or ξ(· | y) within the posterior sampling query
model but he can only do so within some neighbourhood ε of the original data.
Here, we bound the error A made in determining the posterior in terms of the
number of samples used. This is similar to the dataset-size bounds on queries
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in interactive models of differential privacy [Dwork et al., 2006] and the privacy
as hypothesis testing [Kairouz et al., 2015, Wasserman and Zhou, 2010] where an
adversary wants to distinguish the dataset from two alternatives.

For this section, a utility function with an optimal response of Θ̂ is considered
and this corresponds to the most powerful query possible based on the model shown
in Algorithm 3.5.2. Then the adversary can approximate the posterior up to some
sample errors by forming the empirical distribution. As a result, his power measured
by the number of samples needed to distinguish between x and y is governed by the
bounds on the KL-divergence between the empirical and actual distributions.

We first need a finite sample bound on the quality of the empirical distribution
due to the sampling model. By constructing the empirical distribution on any
sub-algebra S, the adversary could try to differentiate different posteriors.

Lemma 3.5.5. For any δ ∈ (0, 1), let M be a finite partition of the sample space S,
of size m ≤ log2

√
1/δ, generating the σ-algebra S = σ(M ). Let x1, . . . , xn ∼ P be

i.i.d. samples from a probability measure P on S, let P|S be the restriction of P on
S and let P̂n

|S
be the empirical measure on S. Then, with probability at least 1− δ,

∥∥∥P̂n
|S − P|S

∥∥∥
1
≤

√
3
n

ln
1
δ
. (3.32)

Proof. (Note that in this proof, ε, δ do not refer to the privacy parameters.) We use
the inequality due to Weissman et al. [2003] on the `1 norm, which states that for
any multinomial distribution P with m outcomes, the `1 deviation of the empirical
distribution P̂n after n draws from the multinomial satisfies

P
(∥∥∥P̂n − P

∥∥∥
1
≥ ε

)
≤ (2m − 2)e−

1
2 nε2

, ∀ε > 0 .

The right hand side is bounded by em ln 2− 1
2 nε2 . Substituting ε =

√
3
n ln 1

δ
, we obtain

P

∥∥∥P̂n − P
∥∥∥

1
≥

√
3
n

ln
1
δ

 ≤ em ln 2− 3
2 ln 1

δ

≤ elog2

√
1
δ ln 2− 3

2 ln 1
δ = e

1
2 ln 1

δ−
3
2 ln 1

δ = δ ,
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where the second inequality follows from m ≤ log2

√
1/δ. �

We can combine this bound on the adversary’s estimation error with the bound
in Theorem 3.4.1 on the KL-divergence between posteriors resulting from similar
data to obtain a measure of how fine a distinction between datasets the adversary
can make after a finite number of draws from the posterior.

Theorem 3.5.6. Under Assumption 1, the adversary can distinguish between data
x, y with probability 1 − δ if

ρ(x, y) ≥
3

4Ln
ln

1
δ
.

Under Assumption 2, this becomes

ρ(x, y) ≥
3

2n
(
CFΘξ + 2L0 + c−1

) ln
1
δ
.

Proof. Recall that the data processing inequality states that, for any sub-algebra
S, ∥∥∥Q|S − P|S

∥∥∥
1
≤ ‖Q − P‖1 .

Using this and Pinsker’s inequality (3.31) we get

2Lρ(x, y) ≥ D (ξ(· | x)‖ξ(· | y))

≥
1
2
‖ξ(· | x) − ξ(· | y)‖21

≥
1
2

∥∥∥ξ|S(· | x) − ξ|S(· | y)
∥∥∥2

1
.

On the other hand, due to (3.32) the adversary’s `1 error in the posterior distribution

is bounded by
√

3
n ln 1

δ
with probability 1 − δ. In order for him to be able to

distinguish the two different posteriors, it must hold that

∥∥∥ξ|S(· | x) − ξ|S(· | y)
∥∥∥

1
≥

√
3
n

ln
1
δ
.

Using the above inequalities, we can bound the error in terms of the distinguisha-
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bility of the real dataset x from an arbitrary set y as

4Lρ(x, y) ≥
3
n

ln
1
δ
.

Rearranging, we obtain the required result. The second case is treated similarly to
obtain (

CFΘξ + 2L0 + c−1
)
ρ(x, y) ≥

1
2

∥∥∥ξ|S(· | x) − ξ|S(· | y)
∥∥∥2

1
≥

3
2n

ln
1
δ
.

Consequently, either smoother likelihoods (i.e. decreasing L), or a larger con-
centration on smoother likelihoods (i.e. increasing c), increases the effort required
by the adversary and reduces the sensitivity of the posterior. Note that, unlike the
results obtained for differential privacy of the posterior sampling mechanism, these
results have the same algebraic form under both assumptions.

3.5.4 Trading off Utility and Privacy

By construction, in our setting there are three ways to tune privacy. The first
is the choice of family; the second is the choice of prior; and the third is how many
samples N to draw. The choice of family is usually fixed due to other considerations.
However, we have the choice of either tuning the prior, so that we can satisfy our
assumptions with some suitable constants L or c, or by tuning the number of samples
N in the posterior sampling framework.

The following lemma bounds the regret we suffer in terms of utility when the
private posterior used is ξ, in the case where the posterior we would like to use
(assuming no privacy constraints) was ξ?.

Lemma 3.5.7. If our utility is bounded in [0, 1], the private posterior we use is ξ,
while the ideal posterior is ξ?, then the regret suffered is bounded by 2‖ξ − ξ?‖1.

Proof. Let r, r? be the optimal responses under ξ, ξ? respectively. For notational
convenience, let uξ =

∫
Θ

uθ dξ(θ) denote the expected utility under a belief ξ. Then
our regret is

uξ(q, r) − uξ(q, r?) = uξ(q, r) − uξ?(q, r)

+ uξ?(q, r) − uξ?(q, r?)
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+ uξ?(q, r?) − uξ(q, r?)

≤ 2
∥∥∥ξ − ξ?∥∥∥

1
.

This follows from the fact that

uξ(q, r) − uξ?(q, r) =

∫
Θ

uθ(q, r) d[ξ − ξ?](θ)

≤ ‖u‖∞‖ξ − ξ?‖1

and the boundedness of u. The third term is dealt with identically. Note that for
the second term: uξ?(q, r) − uξ?(q, r?) ≤ 0 since r? maximises uξ? . �

Lastly, consider the case where B, being a true Bayesian, is convinced that ξ? is
the correct prior distribution to use, but needs to use the prior ξ in order to achieve
privacy. The following theorem bounds the expected KL-divergence between the
two resulting posteriors.

Lemma 3.5.8. If ∀θ ∈ Θ, | ln ξ?(θ)/ξ(θ)| ≤ η, then the expected KL-divergence is

Ex∼φ?D(ξ?(· | x)‖ξ(· | x)) ≤ 2η ,

where φ? is the ξ? marginal distribution.

Proof. Let φ?(x) =
∫
Θ

pθ(x) dξ?(x) be the prior marginal distribution. Then the
ξ?-expected KL-divergence between the two posteriors is

∑
x

∫
Θ

ln
dξ?(θ | x)
dξ(θ | x)

dξ?(θ | x)φ?(x)

≤
∑

x

∫
Θ

(∣∣∣∣∣ln dξ?(θ)
dξ(θ)

∣∣∣∣∣ +

∣∣∣∣∣ln φ(x)
φ?(x)

∣∣∣∣∣) dξ?(θ | x)φ?(x)

≤ 2η .

The first term
∣∣∣∣ln dξ?(θ)

dξ(θ)

∣∣∣∣ is bounded by η by assumption. From the same assumption,
it follows that φ(x) =

∫
Θ

pθ(x) dξ(θ) ≤
∫
Θ

pθ(x)eη dξ?(θ) = eηφ?(x), and so the second
term is also bounded by η. �
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We can now combine Lemmas 3.5.4 and 3.5.7 with Lemma 3.5.8, to obtain the
following result:

Corollary 3.5.9. If A has a preferred prior ξ?, while the private prior used by B is
ξ and it satisfies the conditions of Lemma 3.5.8, then the loss of A in terms of the
ξ?-expected utility is O

(
η +
√

ln(1/δ)/N
)
, with probability at least 1 − δ.

Consequently, if A believes the correct prior should be ξ?, he can use the private
posterior sample to make decisions, incurring a small loss. Finally, we already
showed that A cannot distinguish between data that are closer than O (1/N) with
high probability. Hence, in this setting we can tune N to trade off utility and
privacy.

The following theorem characterises the link between the choice of prior, the
number of samples, privacy and utility directly. This connects several of our results
in one place.

Theorem 3.5.10. If, instead of using a non-private prior ξ?, we use a prior ξ re-
stricted on ΘL (such that it satisfies Assumption 1 with constant L) and generate N

samples from the posterior, then

(a) the sample is 2LN differentially-private;

(b) the loss of A in terms of the ξ?-expected utility is O
(
[1 − ξ?(ΘL)] +

√
ln(1/δ)/N

)
,

with probability at least 1 − δ for any δ > 0.

Proof. For (a), due to composition, N repetitions give 2LN differential privacy. For
(b), let ΘL be the support of ξ. Since ξ is the restriction of ξ? on ΘL, it holds that∥∥∥ξ − ξ?∥∥∥

1
= ξ(ΘL) − ξ?(ΘL) + ξ?(Θ \ ΘL) − ξ(Θ \ ΘL)

= 2[1 − ξ?(ΘL)] .

We now just need to couple this with Lemmas 3.5.7 and 3.5.4 to directly obtain the
stated bound on the utility. �

In practice, our choice of ξ gives us a base amount of privacy that depends only
on L. By keeping ξ fixed and increasing N, we can easily trade off privacy and
utility.
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Finally, we should note that the adversary could choose any arbitrary estimator
ψ to guess x. Section 3.5.5 below describes how to apply Le Cam’s method to obtain
matching lower bounds in this case, by defining dataset estimators as a model for
the adversary.

3.5.5 Lower Bounds

It is possible to apply standard minimax theory to obtain lower bounds on the
rate of convergence of the adversary’s estimate to the true data. In order to do so,
we can for example apply the method due to Le Cam [1973], which places lower
bounds on the expected distance between an estimator and the true parameter. In
order to apply it in our case, we simply replace the the role parameter space with
the dataset space.

Le Cam’s method assumes the existence of a family of probability measures
indexed by some parameters, with the parameter space being equipped with a
pseudo-metric. In our setting, we use Le Cam’s method in a slightly unorthodox
but very natural manner. Define the family of probability measures on Θ to be

Ξ , { ξ(· | x) : x ∈ S } ,

the family of posterior measures in the parameter space, for a specific prior ξ.
Consequently, now S plays the role of the parameter space, while ρ is used as the
pseudo-metric. The original family FΘ plays no further role in this construction,
other than a way to specify the posterior distributions from the prior.

Now let ψ be an arbitrary estimator of the unknown data x. As in [Le Cam,
1973], we extend ρ to subsets of S via

ρ(A, B) , inf { ρ(x, y) : x ∈ A, y ∈ B } , A, B ⊂ S .

Now we can re-state the following well-known lemma for our specific setting.

Lemma 3.5.11 (Le Cam’s method). Let ψ be an estimator of x on Ξ taking values
in the metric space (S, ρ). Suppose that there are well-separated subsets S1,S2 such
that ρ(S1,S2) ≥ 2δ. Suppose also that Ξ1, Ξ2 are subsets of Ξ such that x ∈ Si for



3.6. Examples Satisfying our Assumptions 45

ξ(· | x) ∈ Ξi. Then

sup
x∈S

Eξ(ρ(ψ, x) | x) ≥ δ sup
ξi∈co(Ξi)

‖ξ1 ∧ ξ2‖ .

This lemma has an interesting interpretation in our case. The quantity

Eξ(ρ(ψ, x) | x) =

∫
Θ

ρ(ψ(θ), x) dξ(θ | x)

is the expected distance between the real data x and the guessed data ψ(θ) when θ
is drawn from the posterior distribution. Consequently, it is possible to apply this
method directly to obtain results for specific families of posteriors. These would be
dependent on the family, the prior and the metric. While we shall not engage in
this exercise, we point the interested reader to [Yu et al., 1997], which provides two
simple examples with minimax rates of O(n−4/9) and O(n−4/5).

3.6 Examples Satisfying our Assumptions

In what follows we study, for different choices of likelihood and corresponding
conjugate prior, what constraints can be placed on the prior’s concentration to
guarantee a desired level of privacy. These case studies closely follow the pattern
in differential privacy research where the main theorem for a new mechanism are
sufficient conditions on (e.g., Laplace) noise levels to be introduced to a response
in order to guarantee a level ε of ε-differential privacy.

For exponential families, we have the canonical form

pθ(x) = h(x) exp
{
η>θ τ(x) − A(ηθ)

}
,

where h(x) is the base measure, ηθ is the distribution’s natural parameter corre-
sponding to θ, τ(x) is the distribution’s sufficient statistic, and A(ηθ) is its log-
partition function. For distributions in this family, under the absolute log-ratio
distance, the family of parameters ΘL of Assumption 2 must satisfy, for all x, y ∈ S,∣∣∣∣∣ln h(x)

h(y)
+ η>θ (τ(x) − τ(y))

∣∣∣∣∣ ≤ Lρ(x, y).
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If the left-hand side has an amenable form, then we can quantify the set ΘL for which
this requirement holds. Particularly, for distributions where h(x) is constant and
τ(x) is scalar (e.g., Bernoulli, exponential, and Laplace), this requirement simplifies
to |τ(x)−τ(y)|

ρ(x,y) ≤
L
ηθ
. One can then find the supremum of the left-hand side independent

from θ, yielding a simple formula for the feasible L for any θ. In the following
examples, we are making the conventional assumption in machine learning that
data are bounded (||x|| ≤ B). Also we use ξ(θ)1[c1,c2] to denote the trimmed density
function that densities of ξ(θ) outside [c1, c2] is projected to c1 or c2.

Lemma 3.6.1 (Exponential-Exponential conjugate prior). The exponential distribu-
tion Exp(x; θ) with a trimmed exponential conjugate prior θ ∼ Exp(θ; λ)1[c1,c2], λ > 0,
satisfies Assumption 2 with parameter c = λ, L0 = c1, CFΘξ = c2/min

{
c1e−c1B, c2e−c2B

}
and metric ρ(x, y) = |x − y|.

Consequently, the trimmed-exponential prior results in a posterior sampling
mechanism that is (0, δ)-DP under ρ, with δ =

√
1
2CFΘξ (1 + 2c1 + 1/λ). It is also

(0, δ)-DP under the classical definition if x, y ∈ [0, 1].
Proof. Since Exp(x; θ) is monotonic decreasing in x and concave as a function of
θ, we have inf{||x||≤B,θ∈[c1,c2]} Exp(x; θ) = min

{
c1e−c1B, c2e−c2B

}
≤ φ(x). Then we have

CFΘξ = c2/min
{
c1e−c1B, c2e−c2B

}
.

Next we compute the absolute log-ratio distance for any x1 and x2 according to
the exponential likelihood function:

| ln pθ(x1) − ln pθ(x2)| = θ|x1 − x2| .

Thus, for θ ∈ [c1, c2], under Assumption 2, using ρ(x, y) = |x − y|, the set of feasible
parameters for any L > c1 is ΘL = (c1, L). Note the density of the renormalized
exponential prior on [c1, c2] is given by Kλe−λθ, where K = (e−λc1 − e−λc2)−1. Thus
the CDF at L of this density is K

(
e−λc1 − e−λL

)
for L ∈ [c1, c2] and 1 for L ≥ c2. It is

natural to choose L0 to be c1. Then we need to find c such that

ξ(ΘL) =

∫ L

c1

Kλe−λθdθ = K(e−λc1 − e−λL) ≥ 1 − e−c(L−c1)
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for L ∈ (c1, c2). By plugging K into the inequality, we have

e−c(L−c1) ≥
e−λ(L−c2) − 1
e−λ(c1−c2) − 1

.

Since e−λ(L−c2) ≤ e−λ(c1−c2), it is sufficiency to find c such that e−c(L−c1) ≥ e−λ(L−c1).
Therefore we can have c = λ. �

Lemma 3.6.2 (Laplace-Exponential conjugate prior). The distribution Laplace(x; s, µ)
with a trimmed exponential conjugate prior 1/s = θ ∼ Exp(θ; λ)1[c1,c2], µ ∈ R,
s ≥ 1/L, λ > 0 satisfies Assumption 2 with parameters c = λ, L0 = c1,

CFΘξ =


c2

2 min
{

1
2c2

, 1
2c1

exp
(
−B−µ

c1

)} , x < µ

c2

2 min
{

1
2c2

, 1
2c1

exp
(
µ−B
c1

)} , x ≥ µ
,

and metric ρ(x, y) = |x − y|.

Proof. Note that Laplace(x; s, µ) is monotonic decreasing in x if x < µ, and in-
creasing in x if x ≥ µ. Since Laplace(x; s, µ) is concave as a function of s, we have
φ(t) ≥ min

{
1

2c2
, 1

2c1
exp

(
−B−µ

c1

)}
if x < µ and φ(t) ≥ min

{
1

2c2
, 1

2c1
exp

(
µ−B
c1

)}
if x ≥ µ.

Thus, we can take

CFΘξ =


c2

2 min
{

1
2c2

, 1
2c1

exp
(
−B−µ

c1

)} , x < µ

c2

2 min
{

1
2c2

, 1
2c1

exp
(
µ−B
c1

)} , x ≥ µ
.

For any x1 and x2, the absolute log-ratio distance for this distribution can be
bounded as

| ln pµ,s(x1) − ln pµ,s(x2)|

=1
s |‖x1 − µ‖ − ‖x2 − µ‖| ≤

1
s ‖x1 − x2‖ ,

where the inequality follows from the triangle inequality on ‖ · ‖. Thus, if we use
ρ(x, y) = ‖x − y‖, the set of feasible parameters for Assumption 2 is µ ∈ R and
1
s = θ ≤ L. Again we can use the trimmed exponential prior with rate parameter
λ > 0 for the inverse scale, 1

s , and similar to the previous example, Assumption 2 is
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satisfied with c = λ and L0 = c1. �

Lemma 3.6.3 (Beta-Binomial conjugate prior). The Binomial distribution Binom(θ, n),
with prior θ ∼ Beta(α, β), α = β > 1 satisfies Assumption 2 for L0 = ln n, c =

2−2α+1/B(α), where B(α) denotes the beta function with parameters α = β,

CFΘξ = B(α)/B
(
n + 2α − 1

2
,

n + 2α + 1
2

)
and metric ρ(x, y) = ‖x − y‖1, where x, y ∈ {0, 1}n.

Proof. Here, we consider data drawn from a Binomial distribution with a beta
prior on its proportion parameter, θ. Thus, the likelihood and prior functions are

pθ,n(X = k) =
(

n
k

)
θk(1 − θ)n−k

ξ0(θ) = 1
B(a,b)θ

a−1(1 − θ)b−1 ,

where k ∈ {0, 1, 2, . . . , n}, a, b ∈ R+ and B(a, b) is the beta function. The resulting
posterior is a Beta-Binomial distribution. Again we consider the application of As-
sumption 2 to this Beta-Binomial distribution. For this purpose, we must quantify
the parameter sets ΘL for a given L > 0 according to a distance function. The
absolute log-ratio distance between the Binomial likelihood function for any pair of
arguments, k1 and k2, is

| ln pθ,n(k1) − ln pθ,n(k2)| =
∣∣∣∆n(k1, k2) + (k1 − k2) ln θ

1−θ

∣∣∣
where ∆n(k1, k2) , ln

(
n
k1

)
− ln

(
n
k2

)
. By substituting this distance into the supremum of

Eq. (3.4), we seek feasible values of L > 0 for which the supremum is non-negative;
here, we explore the case where ρ((n, k1), (n, k2)) , |k1−k2|. Without loss of generality,
we assume k1 > k2, and thus require that

sup
k1>k2

∣∣∣∣∆n(k1,k2)
k1−k2

+ ln θ
1−θ

∣∣∣∣ ≤ L . (3.33)

However, by the definition of ∆n(k1, k2), the ratio ∆n(k1,k2)
k1−k2

is in fact the slope of the
chord from k2 to k1 on the function ln

(
n
k

)
. Since the function ln

(
n
k

)
is concave in
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k, this slope achieves its maximum and minimum at its boundary values; i.e. it is
maximised for k1 = 1 and k2 = 0 and minimised for k1 = n and k2 = n − 1. Thus,
the ratio attains a maximum value of ln n and a minimum of − ln n for which the
above supremum is simply ln n +

∣∣∣ln θ
1−θ

∣∣∣. From Eq. (3.33), we therefore have, for all
L ≥ ln n:

ΘL =

[(
1 + eL

n

)−1
,
(
1 + n

eL

)−1
]
.

We want to bound ξ(ΘL). We know that: ξ(ΘL) = 1 − ξ
(
Θ{L

)
where Θ{L is the

complement of ΘL. So ξ(Θ{L ) is composed of two symmetric intervals:
[
0,

(
1 + eL

n

)−1
)

and
((

1 + n
eL

)−1
, 1

]
. We selected α = β, therefore the mass must concentrate at 1/2,

as we have α > 1.
Due to symmetry, the mass outside of ΘL is two times that is the first interval.

This is:
2

B(α, α)

∫ p
1+p

0
xα−1(1 − x)α−1 dx .

where p denotes ne−L ∈ [0, 1], Therefore c is upper bounded by

ln
(

2A(p)
B(α, α)

)
/(L0 − L) = ln

(
2A(p)
B(α, α)

)
/ ln p,

where A(p) denotes the incomplete Beta function
∫ p

1+p

0
xα−1(1 − x)α−1dx. Note that

we have
A′(p) =

pα−1

(1 + p)2α ,

A′′(p) =
pα−2[(α − 1)(1 + p) − 2αp]

(1 + p)2α+1 .

Claim 2. H(p) = αA(p) − pα

(1−p)(1+p)2α−1 ≤ 0 for all p ∈ (0, 1).

Proof. Calculating derivatives and simplifying

H′(p)

= αA′(p) −
αpα−1(1 − p)(1 + p)2α−1 − pα

[
(2α − 1)(1 − p)(1 + p)2α−2 − (1 + p)2α−1

]
[(1 − p)(1 + p)2α−1]2
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=
αpα−1

(1 + p)2α −
αpα−1(1 − p)(1 + p) − pα[(2α − 1)(1 − p) − (1 + p)]

(1 − p)2(1 + p)2α

=
pα−1

(1 + p)2α

(
α −

α(1 − p2) − 2p(α − 1 − pα)
(1 − p)2

)
=

pα−1

(1 + p)2α(1 − p)2

(
α(1 − 2p + p2) − α(1 − p2) + 2p(α − 1 − αp)

)
=

−2pα

(1 + p)2α(1 − p)2 < 0 .

Therefore H(p) is strictly decreasing. Then combined with H(0) = 0, we claim
follows. �

Claim 3. G(p) = p A′(p)
A(p) ln p − ln 2A(p)

B(α,α) < 0 for all p ∈ (0, 1).

Proof. Again taking derivatives

G′(p) =
A′(p)
A(p)

(1 + ln p) + p ln p
A′′(p)A(p) − A′(p)2

A(p)2 −
A′(p)
A(p)

=
ln p

A(p)2 (A(p)A′(p) + pA′′(p)A(p) − pA′(p)2)

=
ln p

A(p)2

[
pα−1

(1 + p)2α A(p)
(
1 +

(α − 1)(1 + p) − 2αp
1 + p

)
−

p2α−1

(1 + p)4α

]
=

ln p
A(p)2

pα−1

(1 + p)2α+1

[
α(1 − p)A(p) −

pα

(1 + p)2α−1

]
=

pα−1

(p + 1)2α+1A(p)2 H(p) ln p(1 − p) > 0 .

So G(p) is strictly increasing. Combined with limp→1 G(p) = 0, the claim follows. �

Claim 4. F(p) = ln
(
2I p

1+p
(α)

)
/ ln p is decreasing in p ∈ (0, 1), where the incomplete

Beta function I p
1+p

(α) = A(p)/B(α, α).

Proof. Taking derivatives

F′(p) =
1

ln2 p

(
A′(p)
A(p)

ln p −
1
p

ln
2A(p)
B(α, α)

)
=

1
p ln2 p

(
A′(p)
A(p)

p ln p − ln
2A(p)
B(α, α)

)
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=
1

p ln2 p
G(p) < 0 .

Therefore ln
(
2I p

1+p
(α)

)
/ ln p is monotonic decreasing in p. Thus the minimum

value of F(p) is 1
B(α)22α−1 as p→ 1, which we can take as our c in this example.

Let us consider CFΘξ for this example. We have

pθ(x)
φ(x)

=
B(α, β)θx(1 − θ)n−x

B(α + x, n + β − x)
,

where θ ∈ [0, 1] and x ∈ [0, 1, . . . , n]. Note that

B(α + x + 1, n + β − x − 1)
B(α + x, n + β − x)

=
Γ(α + x + 1)Γ(n + β − x − 1)

Γ(α + x)Γ(n + β + 1)
=

α + x
n + β − x − 1

.

So B(α+ x+1, n+β− x−1) ≤ B(α+ x, n+β− x) if x ≤ n+β−α−1
2 ; B(α+ x+1, n+β− x−1) >

B(α + x, n + β − x) otherwise. Thus

B(α + x, n + β − x) ≥ B
(
n + α + β − 1

2
,

n + α + β + 1
2

)
.

Hence we can take CFΘξ = B(α, β)/B
(

n+α+β−1
2 , n+α+β+1

2

)
. �

We next present two results on normal distributions.

Lemma 3.6.4 (Normal distribution with known mean and unknown variance). The
normal distribution N(x; µ, σ2) with a trimmed exponential prior 1/σ2 = θ ∼ Exp(θ; λ)1[c1,c2]

satisfies Assumption 2 with parameter c = 2λ
max{ |µ|,1 } , L0 =

c1 max{ |µ|,1 }
2 ,

CFΘξ = min
{√

c2/c1 exp
(
c1c2

2

2

)
, exp

(
c3

2

2

)}
and metric ρ(x, y) =

∣∣∣x2 − y2
∣∣∣ + 2 |x − y|.

Proof. Since N(x; µ, θ) is decreasing in x2 and concave as a function of θ. We have

φ(t) ≥ inf{x|||x||≤B},θ∈[c1,c2] N(x; µ, θ) = min
{√

c1
2πe

−c1c2
2

2 ,
√

c2
2πe

−c3
2

2

}
. Then we can take

CFΘξ = min
{√

c2/c1e
c1c2

2
2 , e

c3
2
2

}
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For the normal distribution, (3.4) requires: 2Lρ(x, y)σ2 ≥ |2µ − x − y| |x − y|. Taking
the absolute log ratio of the Gaussian densities we have

1
2σ2

∣∣∣∣((x − µ)2 − (y − µ)2
)∣∣∣∣

≤
max { |µ|, 1 }

2σ2

(∣∣∣x2 − y2
∣∣∣ + 2 |x − y|

)
.

Consequently, we can set ρ(x, y) =
∣∣∣x2 − y2

∣∣∣ + 2 |x − y| and L(µ, σ) =
max{ |µ|,1 }

2σ2 . Again,
the trimmed exponential prior is given by Kλe−λθ, where K = (e−λc1 − e−λc2)−1. Thus
the CDF at L of this density is K

(
e−λc1 − e−λL

)
for L ∈ [ c1 max{ |µ|,1 }

2 , c2 max{ |µ|,1 }
2 ] and

1 for L ≥ c2 max{ |µ|,1 }
2 . Thus the CDF at L of this density is K

(
e−λc1 − e

−2λL
max{ |µ|,1 }

)
. We

choose L0 to be c1 max{ |µ|,1 }
2 . Then we need to find c such that

ξ(ΘL) =

∫ L

c1

Kλe−λθdθ = K(e−λc1 − e−λL) ≥ 1 − e−c
(
L− c1 max{ |µ|,1 }

2

)
.

By plugging K into the inequality, we have

e−c
(
L− c1 max{ |µ|,1 }

2

)
≥

e
−2λL

max{ |µ|,1 }+λc2 − 1
e−λ(c1−c2) − 1

.

Since e−λ
(

2λL
max{ |µ|,1 }−c2

)
≤ e−λ(c1−c2), it is sufficiency to find c such that

e−c
(
L− c1 max{ |µ|,1 }

2

)
≥ e−λ

(
2L

max{ |µ|,1 }−c1
)
.

This is equivalent to have c satisfying

c
(
L −

c1 max { |µ|, 1 }
2

)
≤ λ

(
2L

max { |µ|, 1 }
− c1

)
.

Then we can take c = 2λ
max{ |µ|,1 } to satisfy the above inequality. �

Unbounded observation spaces are generally a problem for privacy, even for
finite parameter spaces, generally because likelihoods become vanishingly small,
thus making log likelihood ratios arbitrarily large. However, the following two
examples circumvent this problem. In the first example, we consider a general
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multivariate extension of Lemma 3.6.4.

Lemma 3.6.5 (Multivariate normal distribution). The multivariate normal distribu-
tion N(x; µ, A−1) satisfies our Assumption 1 with L = 1

2 (
∑n

i=1 λ
2
i )

1
2 max{1, ||µ||2} under

metric ρ(x, y) = ||xx>− yy>||F + 2||x− y||2. When µ = 0, Assumption 1 is satisfied with
L = 1

2 (
∑n

i=1 λ
2
i )

1
2 under metric ρ(x, y) = ||(xx> − yy>)||F.

Proof. Consider the likelihood log-ratio distance of multivariate normal distribu-
tions with precision matrix A:

1
2
|x>Ax − y>Ay| ,

where A is positive definite with eigenvalues λ1 ≥ . . . ≥ λn > 0). For simplicity,
assume the mean to be a zero vector then

|x>Ax − y>Ay| =

∣∣∣∣∣∣∣∑i, j

xix jAi, j −
∑

i, j

yiy jAi, j

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∑i, j

Ai, j(xix j − yiy j)

∣∣∣∣∣∣∣
= |Tr(A(xx> − yy>)′)|

≤ [Tr(A2)Tr((xx> − yy>)(xx> − yy>)′)]
1
2

=

 n∑
i=1

λ2
i


1
2

||(xx> − yy>)||F .

For mean equal to µ, we have

1
2
|(x> − µ)A(x − µ) − (y> − µ)A(y − µ)| .

By the above analysis we have the difference being bounded by

1
2

 n∑
i=1

λ2
i


1
2

||(x − µ)(x − µ)′ − (y − µ)(y − µ)′)||F .
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Note that

||(x − µ)(x − µ)′ − (y − µ)(y − µ)′)||F =||xx> − µ(x> − y>) − (x − y)µ′ − yy>||F

≤||xx> − yy>||F + 2||µ(x − y)′||F

=||xx> − yy>||F + 2||µ||2||(x − y)′||2

≤max{1, ||µ||2}(||xx> − yy>||F + 2||x − y||2) .

The above examples demonstrate that our assumptions are reasonable. In fact,
for several of them we recover standard choices of prior distributions.

3.7 Discussion

We have demonstrated a unified framework for private and secure inference
under a Bayesian setting where the inference can be both robust and private under
concentration conditions on the prior. Firstly, we prove that posterior distributions
with small KL-divergence can be achieved by similar datasets. Secondly, we show
that the posterior is differentially-private, which makes it possible for us to use a
general posterior sampling mechanism to reply to queries. And at the same time,
the desired trade-off between privacy and utility can be achieved easily by adjusting
the quantity of samples used.

This framework might serve as a basic building block to enable further sophis-
ticated and private Bayesian inference provided by the fact that there is no extra
machinery being required. As an additional step toward this goal, we have shown
how to derive analytical expressions for well-known distribution families and dis-
crete Bayesian networks by using our framework. Finally, the amount of effort that
an attacker requires to breach privacy when observing samples from posterior is
bounded. This provides a principled guide for determining the appropriate level of
access granted to query the posterior while ensuring privacy.



Chapter 4
Differential Privacy in Bayesian Networks

In this section, we extend our discussion on differential privacy in our Bayesian
setting to probabilistic graphical models (PGM), which are popular as a tool for
modelling conditional dependence assumptions. We develop the first set of mecha-
nisms for Bayesian inference on the flexible probabilistic graphical model framework
(cf. Table 4.1). Our mechanisms consider graph structure and include a purely
Bayesian approach that only places conditions on the prior. To apply the posterior
sampling mechanism on probabilistic graphical models, we show Assumption 1 (As-
sumption 2) of the previous chapter lift to graphs of random variables, and bound
KL-divergence when releasing an empirical posterior based on a modified prior. We
develop an alternate approach that uses the Laplace mechanism to perturb posterior
parameterisations, and we apply techniques due to Barak et al. [2007], who released
marginal tables that maintain consistency in addition to privacy, by adding Laplace
noise to posterior updates in the Fourier domain. Our motivation is novel: we wish
to guarantee privacy against omniscient attackers and stealth against unsuspecting
third parties. We complement our study with a maximum a posteriori estima-
tor that leverages the exponential mechanismdue to McSherry and Talwar [2007].
Our utility and privacy bounds connect privacy and graph/dependency structure,
and are complemented by illustrative experiments with Bayesian naïve Bayes and
Bayesian linear regression. Our mechanisms and theoretical bounds are the first to
establish such a link between the graph structure of probabilistic graphical models
and privacy.

55
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DBN only Privacy Utility type Utility bound
Laplace 3 (ε, 0) closeness of posterior O (mn ln n)

[
1 − exp

(
− nε

2|I|

)]
+
√
−O (mn ln n) ln δ

Fourier 3 (ε, 0) close posterior params 4|NI |

ε

(
2|πi | log |NI |

δ
+ t|NI|

)
Sampler 7 (2L, 0) if Lipschitz; or

(0,
√

M/2) stochastic Lips-
chitz

expected utility func-
tional wrt posterior

O
(
η +
√

ln(1/δ)/N
)
Dimitrakakis et al. [2017]

MAP 7 (ε, 0) closeness of MAP P(S c
2t) ≤ exp(−εt)/ξ (S t)

Table 4.1: Summary of the privacy/utility guarantees for this chapter’s mechanisms.

4.1 Problem Setting

Let us extend our setting in Chapter 3 to Bayesian networks and repeat the
game for convenience. We assume that B is using Bayesian inference to draw
conclusions from observations of a system of random variables by updating a prior
distribution on parameters (i.e. latent variables) to a posterior. Still, our goal is to
release an approximation to the posterior that preserves differential privacy.

Remark 4.1.1. In Chapter 3, we use x to denote a dataset since the material is
more abstract on random variables of a conjugate pair. In this chapter, we use D

to denote a dataset as it refers to the observations on a system random variables.

Consider a Bayesian statistician B estimating the parameters θ of some family
of distributions FΘ = { pθ : θ ∈ Θ } on a system of r.v.’s X = { Xi : i ∈ I }, where I is
an index set, with observations denoted xi ∈ Xi, where Xi is the sample space of Xi.
B has a prior distribution1 ξ on Θ reflecting her prior belief, which she updates on
an observation x to obtain posterior

ξ(B | x) =

∫
B

pθ (x) dξ (θ)

φ(x)
, ∀B ∈ SΘ

where φ(x) ,
∫
Θ

pθ (x) dξ (θ). Posterior updates are iterated over an i.i.d.dataset
D ∈ D = (

∏
iXi)n to ξ(· | D).

B’s goal is to communicate her posterior distribution to a third party A , while
limiting the information revealed about the original data. From the point of view of
the data provider, B is a trusted party.2 However, she may still inadvertently reveal

1Precisely, a probability measure on a σ-algebra (Θi,SΘi ).
2Cryptographic tools for untrusted B do not prevent information leakage to A cf. e.g., Pagnin

et al. [2014].
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information. We assume that A is computationally unbounded, and has knowledge
of the prior ξ and the family FΘ. To guarantee that A can gain little additional
information about D from their communication, B uses Bayesian inference to learn
from the data, and a differentially-private posterior to ensure disclosure to A is
carefully controlled.

4.1.1 Probabilistic Graphical Models

Our main results focus on PGMs which model conditional independence as-
sumptions with joint factorisation

pθ(x) =
∏
i∈I

pθ
(
xi | xπi

)
, xπi =

{
x j : j ∈ πi

}
,

where πi denote the parents of the i-th variable in a Bayesian network—a directed
acyclic graph with r.v.’s as nodes.

Example 1. For concreteness, we illustrate some of our mechanisms on systems of
Bernoulli r.v.’s Xi ∈ {0, 1}. In that case, we represent the conditional distribution of
Xi given its parents as Bernoulli with parameters θi, j ∈ [0, 1] :

(Xi | Xπi = j) ∼ Bernoulli (θi, j) .

The choice of conjugate prior ξ(θ) =
∏

i, j ξi, j(θi, j) has Beta marginals with parameters
αi, j, βi, j, so that:

(θi, j | αi, j = α, βi, j = β) ∼ Beta(α, β) .

Given observation x, the updated posterior Beta parameters are αi, j := αi, j + xi and
βi, j := βi, j + (1 − xi) if xπi = j.

4.2 Privacy by Posterior Perturbation

One approach to differential privacy is to use additive Laplace noise [Dwork
et al., 2006]. Previous work has focused on the addition of noise directly to the
outputs of a non-private mechanism. We are the first to apply Laplace noise to the
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posterior parameter updates. Note that the notion of differential privacy in this
section is the standard ε-differential privacy.

4.2.1 Laplace Mechanism on Posterior Updates

Under the setting of Example 1, we can add Laplace noise to the posterior pa-
rameters. Algorithm 4.2.1 releases perturbed parameter updates for the Beta pos-
teriors, calculated simply by counting. It then adds zero-mean Laplace-distributed

Algorithm 4.2.1: Laplace Mechanism on Posterior Updates
1: Input data D; graph I, {πi | i ∈ I}; parameter ε > 0;
2: calculate posterior updates: ∆αi, j, ∆βi, j for all

i ∈ I, j ∈ {0, 1}|πi |;
3: perturb updates: ∆α′i, j , ∆αi, j + Lap

(
2|I|
ε

)
,

∆β′i, j , ∆βi, j + Lap
(

2|I|
ε

)
;

4: truncate: Z(1)
i, j , 1[0,n](∆α′i, j),Z

(2)
i, j , n − Z(2)

i, j , where 1[0,n] denotes the indicator
function on [0, n];

5: output Zi, j = (Z(1)
i, j ,Z

(2)
i, j ).

noise to the updates ∆ω = (· · · , ∆αi, j, ∆βi, j, · · · ). This is the final dependence on D.
Finally, the perturbed updates ∆ω′ are truncated at zero to rule out invalid Beta
parameters and are upper truncated at n. This yields an upper bound on the raw
updates and facilitates an upper bound on the utility loss of KL-divergence.Note
that this truncation only improves utility (relative to the utility pre-truncation),
and does not affect privacy.

Privacy. To establish differential privacy of our mechanism, we must calculate a
Lipschitz condition for the vector ∆ω, the global sensitivity Dwork et al. [2006].

Lemma 4.2.1. For any neighbouring datasets D, D̃, the corresponding updates ∆ω, ∆ω̃
satisfy ‖∆ω − ∆ω̃‖1 ≤ 2|I|.

Proof. By changing the observations of one datum, at most two counts associated
with each Xi can change by 1.

Corollary 4.2.2. Algorithm 4.2.1 preserves ε-differential privacy.



4.2. Privacy by Posterior Perturbation 59

Proof. Based on Lemma 4.2.1, the intermediate ∆ω′ preserve ε-differential privacy
by Dwork et al. [2006]. Since truncation depends only on ∆ω′, the Z preserves the
same privacy.

Utility on Updates. Before bounding the effect on the posterior of the Laplace
mechanism, we demonstrate a utility bound on the posterior update counts.

Proposition 4.2.3. With probability at least 1 − δ, for δ ∈ (0, 1), the update counts
computed by Algorithm 4.2.1 are close to the non-private counts

‖∆ω − ∆ω′‖∞ ≤
2|I|
ε

ln
(
2m
δ

)
,

where m =
∑

i∈I 2|πi |.

Proof. Let us denote the event of a Laplace sample exceeding z > 0 in absolute
value as Ak, k ∈ 1, · · · , 2m. Consider the probability of an event that none of the
2m i.i.d.Laplace noise we add to each count exceed z > 0 in absolute value:

1 − P[∪2m
k=1{Ak}] ≥ 1 −

2m∑
k=1

P[Ai]

= 1 − 2m exp(−zε/2|I|)).

To make sure this probability is no smaller than 1 − δ, we need z to be at most
to 2|I|

ε
ln( 2m

δ
). This bound states that w.h.p., none of the updates can be perturbed

beyond O(|I|2/ε). This implies the same bound on the deviation between ∆ω and
the revealed truncated Z.

Utility on Posterior. We derive our main utility bounds for Algorithm 4.2.1 in
terms of posteriors. We abuse notation, and use ξ to refer to the prior density; its
meaning will be apparent from context. Given priors ξi, j(θi, j) = Beta

(
αi, j, βi, j

)
, the

posteriors on n observations are

ξi, j(θi, j|D) = Beta(αi, j + ∆αi, j, βi, j + ∆βi, j) .



60 Chapter 4. Differential Privacy in Bayesian Networks

The privacy-preserving posterior parametrised by the output of Algorithm 4.2.1 is

ξ′i, j(θi, j|D) = Beta
(
αi, j + Z(1)

i, j , βi, j + Z(2)
i, j

)
.

It is natural to measure utility by the KL-divergence between the joint product
posteriors ξ(θ|D) and ξ′(θ|D), which is the sum of the component-wise divergences,
with each having known closed form. In our analysis, the divergence is a random
quantity, expressible as the sum

∑m
i, j fi, j(Zi, j), where the randomness is due to the

added noise. The following result based on concentration inequality (McDiarmid)
is reported in [Zhang et al., 2016] to show that this sum of random variable is not
too large with high probability.

Theorem 4.2.4. Let m =
∑

i∈I 2|πi |. Assume that Zi, j are independent and f is a
mapping from Zm to R: f (· · · , zi, j, · · · ) ,

∑
i, j fi, j(zi, j). Given δ > 0, we have

P

 f (Z) ≥ E( f (Z)) +

−1
2

∑
i, j

ci, j ln δ


1
2
 ≤ δ

where ci, j ≤ (2n + 1) ln[(αi, j + n + 1) + (βi, j + n + 1)) and E( fi, j(Zi, j)] ≤ n ln((αi, j +

∆αi, j)(βi, j + ∆βi, j)) = U.
Moreover, when n ≥ b = 2|I|

ε
, the bound for expectation can be refined as the following

ln[(αi, j + n + 1)(βi, j + n + 1)]
(
n
2

exp
(
−

nε
2|I|

))
.

The loss of utility measured by KL-divergence is no more than

O (mn ln n)
[
1 − exp

(
−

nε
2|I|

)]
+

√
−O (mn ln n) ln δ

with probability at least 1 − δ.

However, we will prove a bound of the total utility loss in Theorem 4.2.7 that
surpasses the above result. As in [Zhang et al., 2016], we need to assume that αi, j

and βi, j are larger than the only turning point of the Γ function which is between
1 and 2; αi, j, βi, j ≥ 2 is sufficient.3 For simplicity, we consider a related mechanism

3To cover more priors, we could assume that αi, j is bounded away from zero, and that Γ at this
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that truncates the perturbed αi, j update, then forms the βi, j update via n − Z(1)
i, j .

The resulted bound is the same for the present mechanism in O notation and the
analysis is very similar. Before we bound this random variable, let us prove the
following lemmas.

Lemma 4.2.5. For constants a and t ≥ 0, (a + t) ln(a + t) − a ln a ≤ t ln(a + t) + t.

Proof. This follows from applying the Mean Value Theorem to the function x ln(x)
on the interval [a, a + t].

Lemma 4.2.6. For positive integers x, y, z ≥ 2, the log-ratio of Gamma functions:
ln

(
Γ(x+z)
Γ(y)

)
≤ min{y ln(x + y), (x + y + 1) ln(x + y + 1) − x ln(x) − y + 1}.

Proof.

ln
(
Γ(x + y)
Γ(x)

)
= ln

(
Γ(x)

∏y
r=1(x + r)
Γ(x)

)
=

y∑
r=1

ln(x + r)

≤

∫ y+1

0
ln(x + t)dt

=(x + y + 1) ln(x + y + 1) − x ln(x) − y + 1

Alternatively, we can simply argue that

ln
(
Γ(x + y)
Γ(x)

)
=

y∑
r=1

ln(x + r) ≤ y ln(x + y),

but this bound is worse when y is much larger than x. �

Theorem 4.2.7. Let m =
∑

i∈I 2|πi |. Assume that Zi, j are independent and f is a
mapping from Zm to R: f (· · · , zi, j, · · · ) ,

∑
i, j fi, j(zi, j). Given δ > 0, the loss of utility

measured by KL-divergence
∑m

i, j fi, j(Zi, j) is no more than O
(
|I|
ε

ln m
δ

ln
(
|I|
ε

ln m
δ

))
with

probability 1 − δ.

parameter is maximum below 2 and proceed from there for the second case.
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Proof. First we show the component-wise divergence fi, j(Zi, j) is bounded. It is
known that the absolute value of Laplace noise with zero mean and scale ε is
bounded by 1/ε ln(1/δ) with probability 1 − δ. So, with probability 1 − δ, the noise
injected to fi, j(Zi, j) is bounded by 2|I|

ε
ln(1/δ).

Since B(x, y) = Γ(x)Γ(y)/Γ(x + y) and ∆αi, j + ∆βi, j = Z(1)
i, j + Z(2)

i, j , we have

B(α′i, j, β
′
i, j)

B(αi, j + ∆αi, j, βi, j + ∆βi, j)
=

Γ(α′i, j)

Γ(αi, j + ∆αi, j)
+

Γ(β′i, j)

Γ(βi, j + ∆βi, j)
.

Thus we have the following bound by applying Lemma 4.2.6 and using the
inequalities of digamma function ln(x − 1) ≤ φ(x) ≤ ln(x),

| fi, j(Zi, j)| ≤ ln
Γ(α′i, j)

Γ(αi, j)
+ ln

Γ(β′i, j)

Γ(βi, j)
+ (αi, j − α

′
i, j)φ(αi, j)

+(βi, j − β
′
i, j)φ(βi, j) + (α′i, j + β′i, j − αi, j − βi, j)φ(αi, j + βi, j)

≤ ln
Γ

(⌈
αi, j + 2|I|/ε ln(1/δ)

⌉)
Γ

(⌊
αi, j

⌋) + ln
Γ

(⌈
βi, j + 2|I|/ε ln(1/δ)

⌉)
Γ

(⌊
βi, j

⌋)
+

4|I|
ε

ln(1/δ) ln(αi, j + βi, j)

≤ d2|I|/ε ln(1/δ)e ln
(⌈
αi, j + 2|I|/ε ln[(1/δ)

⌉ ⌈
βi, j + 2|I|/ε ln(1/δ)

⌉)
+4|I|/ε ln(1/δ) ln(αi, j + βi, j)

≤ d6|I|/ε ln(1/δ)e ln
(⌈
αi, j + 2|I|/ε ln[(1/δ)

⌉ ⌈
βi, j + 2|I|/ε ln(1/δ)

⌉)
holding with high probability at least 1 − δ, starting at the second inequality. This
inequality follows from the concentration of Laplace, monotonicity of Γ and that Γ
coincides with factorial on the integers. Let us denote |I|/ε ln(1/δ)) as q. Then the
component-wise divergence f (Zi, j) is bounded by O (q ln q) with probability 1 − δ.

P

 m∑
i=1

| f (Zi, j)| ≥ mO (q ln q)


≤P

 m⋃
i=1

{| f (Zi, j)| ≥ O (q ln q)
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≤

m∑
i=1

P
(
(| f (Zi, j) ≥ O (q ln q)

)
≤mδ.

Let δ′ = mδ, we have δ = δ′/m = exp(−qε
|I| ). Then q = |I|

ε
ln m

δ′
, we have

P

 m∑
i=1

| f (Zi, j)| ≥ O
(
|I|
ε

ln
m
δ′

ln
(
|I|
ε

ln
m
δ′

)) ≤ δ′.
�

Note that m depends on the structure of the network: bounds are better for net-
works with an underlying graph having smaller average in-degree; more conditional
independence improves privacy.

4.2.2 Laplace Mechanism in the Fourier Domain

Algorithm 4.2.1 follows Kerckhoffs’s Principle [Kerckhoffs, 1883] of “no secu-
rity through obscurity”: differential privacy defends against a mechanism-aware
attacker. However additional stealth may be required in certain circumstances. An
oblivious observer will be tipped off to our privacy-preserving activities by our in-
dependent perturbations, which are likely inconsistent with one-another (e.g., noisy
counts for X1, X2 and X2, X3 will say different things about X2). To achieve differen-
tial privacy and stealth, we turn to Barak et al. [2007]’s study of consistent marginal
contingency table release. This section presents a particularly natural application
to Bayesian posterior updates.

Denote by h ∈ R{0,1}
|I| the contingency table over r.v.’s Iinduced by D: i.e. for each

combination of variables j ∈ {0, 1}|I|, component or cell h j is a non-negative count of
the observations in D with characteristic j. Geometrically h is a real-valued function
over the |I|-dimensional Boolean hypercube. Then the parameter delta’s of our first
mechanism correspond to cells of (|πi| + 1)-way marginal contingency tables Cπi(h)
where vector πi , πi + ei and the projection/marginalisation operator is defined as(

C j(h)
)
γ
,

∑
η:〈η, j〉=γ

hη . (4.1)
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We wish to release these statistics as before, however we will not represent them
under their Euclidean coordinates but instead in the Fourier basis { f j : j ∈ {0, 1}|I|}
where

f j
γ , (−1)〈γ, j〉2−|I|/2 .

Due to this basis structure and linearity of the projection operator, any marginal
contingency table must lie in the span of few projections of Fourier basis vec-
tors [Barak et al., 2007]:

Theorem 4.2.8. For any table h ∈ R{0,1}
|I| and set of variables j ∈ {0, 1}|I|, the marginal

table on j satisfies C j(h) =
∑
γ� j 〈 f γ, h〉C j( f γ).

This states that marginal j lies in the span of only those (projected) basis vectors
f γ with γ contained in j. The number of values needed to update Xi is then 2|πi |+1,
potentially far less than suggested by (4.1). To release updates for two r.v.’s i, j ∈ I
there may well be significant overlap 〈πi, π j〉; we need to release once, coefficients
〈 f γ, h〉 for γ in the downward closure of variable neighbourhoods:

NI ,
⋃
i∈I

⋃
j�πi

j .

Privacy. By [Barak et al., 2007, Theorem 6] we can apply Laplace additive noise
to release these Fourier coefficients.

Corollary 4.2.9. For any ε > 0, releasing for each γ ∈ NI the Fourier coefficient
〈 f γ, h〉 + Lap

(
2|NI|ε

−12−|I|/2
)
(and Algorithm 4.2.2) preserves ε-differential privacy.

Remark 4.2.10. Since |NI| ≤ |I|21+maxi∈I indeg(i), at worst we have noise scale
|I|22+maxi indeg(i)−|I|/2/ε. This compares favourably with Algorithm 4.2.1’s noise scale
provided no r.v. is child to more than half the graph. Moreover the denser the
graph—the more overlap between nodes’ parents and the less conditional indepen-
dence assumed—the greater the reduction in scale. This is intuitively appealing.

Consistency. What is gained by passing to the Fourier domain, is that the per-
turbed marginal tables of Corollary 4.2.9 are consistent: anything in the span of
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projected Fourier basis vectors correspond to some valid contingency table on I with
(possibly negative) real-valued cells [Barak et al., 2007].

Algorithm 4.2.2: Laplace Mechanism in the Fourier Domain
1: Input data D; graph I, {πi | i ∈ I}; prior parameters α,β � 0; parameters t, ε > 0
2: define contingency table h ∈ R{0,1}

|I| on D
3: define downward closure NI =

⋃
i∈I

⋃
j�πi

j
4: for γ ∈ NI do
5: Fourier coefficient zγ = 〈 f γ, h〉 + Lap

(
2|NI |

ε2|I|/2

)
6: end for
7: increment first coefficient z0 ← z0 + 4t|NI |

2

ε2|I|/2

8: for i ∈ I do
9: project marginal for Xi as hi =

∑
γ�πi

zγCπi( f γ)
10: for j � πi do
11: output posterior param

(
αi j + hi

ei+ j, βi j + hi
j

)
12: end for
13: end for

Non-negativity. So far we have described the first stage of Algorithm 4.2.2. The
remainder yields stealth by guaranteeing releases that are non-negative w.h.p. We
adapt an idea of Barak et al. [2007] to increase the coefficient of Fourier basis vector
f 0, affecting a small increment to each cell of the contingency table. While there is
an exact minimal amount that would guarantee non-negativity, it is data dependent.
Thus our efficient O (|NI|)-time approach is randomised.

Corollary 4.2.11. For t > 0, adding 4t|NI|
2ε−12−k/2 to f 0’s coefficient induces a non-

negative table w.p. ≥ 1 − exp(−t).

Parameter t trades off between the probability of non-negativity and the result-
ing (minor) loss to utility. In the rare event of negativity, re-running Algorithm 4.2.2
affords another chance of stealth at the cost of privacy budget ε. We could alter-
natively truncate to achieve validity, sacrificing stealth but not privacy.

Utility. Analogous to Proposition 4.2.3, each perturbed marginal is close to its
unperturbed version w.h.p.
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Theorem 4.2.12. For each i ∈ I and δ ∈ (0, 1), the perturbed tables in Algorithm 4.2.2
satisfy with probability at least 1 − δ:

∥∥∥Cπi(h) − hi
∥∥∥

1
≤

4|NI|

ε

(
2|πi | log

|NI|

δ
+ t|NI|

)
.

Proof. We follow the proof of [Barak et al., 2007, Theorem 7]. If X ∼ Lap (b) then
by the CDF of the Laplace P (|X| > R) = exp(−R/b) where R > 0. By the union bound
for {X j} j∈NI

i.i.d.
∼ Lap (b), we have w.h.p. none is large P

(
∀ j ∈ NI, |X j| ≤ b log(|NI|/δ)

)
≥

1 − δ for δ ∈ (0, 1). Since ‖ f j‖1 = 2k/2 for each j ⊆ I it follows with probability at
least 1 − δ, that ∀ j ∈ NI\{∅},

∥∥∥z j f j − 〈 f j, h〉 f j
∥∥∥

1
≤

2|NI |

ε
log |NI |

δ
. For f 0 the additional

increment comes at an additional cost of 4t|NI|
2/ε. Putting everything together, we

note that 2|πi |+1 Fourier coefficients represent hi including f 0. �

Note that the scaling of this bound is reasonable since the table hi involves 2|πi |+1

cells.

4.3 Privacy by Posterior Sampling

For general Bayesian networks, B can release samples from the posterior instead
of perturbed samples of the posterior’s parametrisation. We now develop a calculus
of building up (stochastic) Lipschitz properties of systems of r.v.’s that are locally
(stochastic) Lipschitz. Given smoothness of the entire network, differential privacy
and utility of posterior sampling follow by the results of the previous chapter.

4.3.1 (Stochastic) Lipschitz Smoothness of Networks

The distribution family {pθ : θ ∈ Θ} on outcome space S, equipped with pseudo
metric4 ρ, is Lipschitz continuous if

Assumption 3 (Lipschitz Continuity). Let d(·, ·) be a metric on R. There exists L > 0
such that, for any θ ∈ Θ:

d(pθ(x), pθ(y)) ≤ Lρ(x, y),∀x, y ∈ S.
4Meaning that ρ(x, y) = 0 does not necessarily imply x = y.
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We fix the distance function d to be the absolute log-ratio (cf. differential
privacy). Consider a general Bayesian network. The following lemma shows that
the individual Lipschitz continuity of the conditional likelihood at every i ∈ I implies
the global Lipschitz continuity of the network.

Lemma 4.3.1. If there exists L = (L1, · · · , L|I|) ≥ 0 such that ∀i ∈ I, ∀x, y ∈ X =∏|I|
i=1Xi we have d(pθ(xi|xπi), pθ(yi|yπi)) ≤ Liρi(xi, yi), then d(pθ(x), pθ(y)) ≤ ‖L‖∞ρ(x, y)

where ρ(x, y) =
∑|I|

i=1 ρi(xi, yi).

Proof.

d(pθ(x), pθ(y)) =

∣∣∣∣∣∣∣log
|I|∏

i=1

pθ(xi|xπi)
pθ(yi|yπi)

∣∣∣∣∣∣∣
≤

|I|∑
i=1

∣∣∣∣∣∣log
pθ(xi|xπi)
pθ(yi|yπi)

∣∣∣∣∣∣
=

|I|∑
i=1

d(pθ(xi|xπi), pθ(yi|yπi))

≤

|I|∑
i=1

Liρi(xi, yi)

≤ ‖L‖∞‖ρ(x, y)‖1.

Note that while Lipschitz continuity holds uniformly for some families e.g., the
exponential distribution, this is not so for many useful distributions such as the
Bernoulli. In such cases a relaxed assumption requires that the prior be concentrated
on smooth regions.

Assumption 4 (Stochastic Lipschitz Continuity). Let the set of L-Lipschitz θ be

ΘL ,

θ ∈ Θ : sup
x,y∈S
{d(pθ(x), pθ(y)) − Lρ(x, y)} ≤ 0


Then there exists constants c, L0 > 0 such that, ∀L ≥ L0: ξ(ΘL) ≥ 1 − e−cL.

Lemma 4.3.2. For the conditional likelihood at each node i ∈ I, define the set Θi,L

of parameters for which Lipschitz continuity holds with Lipschitz constant L. If
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∃c = (c1, · · · , c|I|) such that ∀i, L ≥ L0, ξ(Θi,L) ≥ 1−e−ciL, then ξ(ΘL) ≥ 1−e−c′L, where
c′ = mini∈I ci − ln |I|/L0 when |I| ≤ eL0 mini∈I ci.

Proof. Define

Θi,L =

{
θ ∈ Θ : sup

x,y∈X
{d(pθ(xi|xπi), pθ(yi|yπi)) − Lρi(xi, yi)} ≤ 0

}
.

By taking ρ(x, y) =
∑

i ρi(xi, yi), we have

|I|⋂
i=1

Θ̃i,L =

{
θ ∈ Θ : sup

xi,yi∈Xi

{d(pθ(xi|xπi), pθ(yi|yπi)) ≤ Lρi(xi, yi)},∀i ∈ I
}

⊆

θ ∈ Θ : sup
xi,yi∈Xi

 |I|∑
i=1

d(pθ(xi|xπi), pθ(yi|yπi)) ≤ L
|I|∑

i=1

ρi(xi, yi)




⊆
{
θ ∈ Θ : sup{d(pθ(x), pθ(y)) − Lρ(x, y)} ≤ 0

}
=ΘL

Therefore, we have that the set of θ ∈ Θ satisfying the Stochastic Lipschitz
continuity for conditional likelihood of every i ∈ I in the Bayesian network is a
subset of the set of θ satisfying the global Stochastic Lipschitz continuity for same
L.

Note that (
⋂|I|

i=1 Θi,L)c =
⋃|I|

i=1(Θi,L)c and ξ((Θi,L)c) = 1 − ξ(Θi,L) ≤ e−ciL. Then we
have

ξ[(∩|I|i=1Θi,L)c] ≤
|I|∑

i=1

ξ(Θi,L)c) ≤
|I|∑

i=1

e−ciL.

Therefore, we have

ξ(ΘL) ≥ ξ(∩|I|i=1Θi,L) ≥ 1 −
|I|∑

i=1

e−ciL ≥ 1 − Ne−mini ciL.

Take c′ = min{ci}i=1 − ln |I|/L0, we have ξ(ΘL) ≥ 1 − e−c′L. �

Therefore, 4.3.3 asserts differential privacy of the Bayesian network’s posterior.

Theorem 4.3.3. Differential privacy is satisfied using the log-ratio distance, for all
B ∈ SΘ and x, y ∈ X:
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1. Under the conditions in Lemma 4.3.1

ξ(B | x) ≤ exp{2Lρ(x, y)}ξ(B | y),

i.e. the posterior ξ is (2‖L‖∞, 0)-differentially private under pseudo-metric
ρ(x, y).

2. Under the conditions in Lemma 4.3.2, if ρ(x, y) ≤ (1 − δ)c uniformly for all
x, y for some δ ∈ (0, 1),

|ξ(B | x) − ξ(B | y)| ≤

√
M
2
·max{ρ(x, y), 1},

where M =
(
κ
c + L0( 1

1−e−ω + 1) + ln C + ln
(
e−L0δc(e−ω(1−δ) − e−ω)−1 + eL0(1−δ)c

))
C;

constants κ = 4.91081 and ω = 1.25643; C =
∏|I|

i Ci; and

Ci = sup
x∈X

pθ?i,MLE
(xi | xπi)∫

Θi
pθi(xi | xπi)dξ(θi)

,

the ratio between the maximum and marginal likelihoods of each likelihood
function. Note that M = O

((
1
c + ln C + L0

)
C
)
i.e. the posterior ξ is

(
0,

√
M
2

)
-

differentially private under pseudo-metric
√
ρ for ρ(x, y) ≥ 1.

4.3.2 MAP by the Exponential Mechanism

As an application of the posterior sampler, we now turn to releasing MAP
point estimates via the exponential mechanism due to McSherry and Talwar [2007],
which samples responses from a likelihood exponential in some score function. By
selecting a utility function that is maximised by a target non-private mechanism,
the exponential mechanism can be used to privately approximate that target with
high utility. It is natural then to select as our utility u the posterior likelihood
ξ (·|D). This u is maximised by the MAP estimate.

Formally, Algorithm 4.3.1, under the assumptions of Theorem 4.3.3, outputs
response θ with probability proportional to exp(εu(D, θ)/2∆) times a base measure
µ(θ). Here ∆ is a Lipschitz coefficient for u with sup-norm on responses and pseudo-
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Algorithm 4.3.1: Mechanism for MAP Point Estimates
1: Input data D; prior ξ (·); appropriate smoothness parameters c, L,M > 0;

parameters distance r > 0, privacy ε > 0
2: calculate posterior ξ (θ|D)

3: set ∆ =


√

Lr , if Lipschitz continuous
√

0.5M , if stochastic Lipschitz
4: output θ̂ sampled ∝ exp

(
εξ(θ|D)

2∆

)
ξ (θ)

metric ρ on datasets as in the previous section. Providing the base measure is non-
trivial in general, but for discrete finite outcome spaces can be uniform [McSherry
and Talwar, 2007]. For our mechanism to be broadly applicable, we can safely take
µ(θ) as ξ (θ).5

Corollary 4.3.4. Algorithm 4.3.1 preserves ε-differential privacy wrt pseudo-metric
ρ up to distance r > 0.

Proof. The sensitivity of the posterior score function corresponds to the computed
∆ under either Lipschitz assumptions. The result then follows from [McSherry and
Talwar, 2007, Theorem 6].

Utility for Algorithm 4.3.1 follows from McSherry and Talwar [2007], and states
that the posterior likelihood of responses is likely to be close to that of the MAP.

Lemma 4.3.5. Let θ? = maxθ ξ (θ|D) with maximizer the MAP estimate, and let
S t = {θ ∈ Θ : ξ (θ|D) > θ? − t} for t > 0. Then P(S c

2t) ≤ exp(−εt)/ξ (S t).

4.4 Experiments

Having proposed a number of mechanisms for approximating exact Bayesian in-
ference in the general framework of probabilistic graphical models, we now demon-
strate our approaches on two simple, well-known PGMs: the (generative) naïve
Bayes classifier, and (discriminative) linear regression. This section, illustrates how
our approaches are applied, and supports our extensive theoretical results with

5In particular the base measure guarantees we have a proper density function: if u(D, θ) is
bounded by M, then we have normalising constant

∫
θ

exp(εu(D, θ))µ(θ)dθ ≤ exp(Mε) < ∞.
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experimental observation. We focus on the trade-off between privacy and utility
(accuracy and MSE respectively), which involves the (private) posterior via a pre-
dictive posterior distribution in both case studies.

4.4.1 Bayesian Discrete Naïve Bayes

We review the derivation of the naïve Bayes predictive posterior for two cases
applied in our experiments.

Recall that when the random variables in the network are all Bernoulli’s with
Beta conjugate priors:

P(Y = y|X = x) ∝
∫
Θ

pθ (y)
d∏

i=1

pθ (xi|y) ξ (θ) dθ.

The integral decouples into the product of (where α, β refer to the y posterior)∫
Θ

pθ (y) ξ (θ) dθ

=

∫ 1

0

θα+y−1(1 − θ)β+(1−y)−1

B(α, β)
dθ

=
B(α + y, β + 1 − y)

B(α, β)
×

∫ 1

0

θα+y−1(1 − θ)β+(1−y)−1

B(α + y, β + 1 − y)
dθ

=
B(α + y, β + 1 − y)

B(α, β)

=
Γ(α + y)Γ(β + 1 − y)

Γ(α + β + 1)
Γ(α + β)
Γ(α)Γ(β)

=
αyβ1−y

α + β
.

and terms (where α, β refer to the xi | y posterior)∫ 1

0

θα+xi−1(1 − θ)β+(1−xi)−1

B(α, β)
dθ =

αxiβ1−xi

α + β
,

computed in the same way.
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4.4.2 Sampling

Given an empirical CDF sampled from our posterior sampling mechanism, we
can approximate by posterior sampling:

• Repeat many times for both y = 0, y = 1:

– Sample θ̂y, θ̂x1,y, . . . , θ̂xd ,y

– Plug-in the sampled parameters and fixed r.v.’s into the product of den-
sities to obtain an unnormalised probability estimate

• Average the obtained estimates, for each y = 0, y = 1

• Normalise

We modify the above slightly so that we sample from a truncated posterior.
This allows us to assume a minimal probability ω assigned to any sub-event in the
naïve Bayes network, so that the joint distribution satisfies Assumption 1. Triv-
ially in particular this yields a differential privacy level given by ε = 2 log(1/ω).
Given a desired privacy budget ε we can therefore select ω = exp(−ε/2). We then
simply rejection sample when sampling above, to obtain samples from the trun-
cated posterior. This is the posterior sampler algorithm used in the naïve Bayes
experiments.

An illustrative example for our mechanisms is a Bayesian naïve Bayes model on
Bernoulli class Y and attribute variables Xi, with full conjugate Beta priors. This
PGM directly specialises the running Example 1. We synthesised data generated
from a naïve Bayes model, with 16 features and 1000 examples. Of these we trained
our mechanisms on only 50 examples, with uniform Beta priors. We formed pre-
dictive posteriors for Y |X from which we thresholded at 0.5 to make classification
predictions on the remaining, unseen test data so as to evaluate classification ac-
curacy. The results are reported in Figure 4.1, where average performance is taken
over 100 repeats to account for randomness in train/test split, and randomised
mechanisms.

The small size of this data represents a challenge in our setting, since privacy is
more difficult to preserve under smaller samples Dwork et al. [2006]. As expected,
privacy incurs a sacrifice to accuracy for all private mechanisms.
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Fig. 4.1: Effect on Bayesian naïve Bayes predictive-posterior accuracy of varying
the privacy level.

For both Laplace mechanisms that perturb posterior updates, note that the d

Boolean attributes and class label (being sole parent to each) yields nodes |I| = d +1
and downward closure size |NI| = 2d + 2. Following our generic mechanisms, the
noise added to sufficient statistics is independent on training set size, and is similar
in scale. The parameter t, that trades off between the probability of non-negativity
and the resulting loss to utility, was set for the Fourier approach, so that stealth
was achieved 90% of the time—those times that contributed to the plot. Due to the
small increments to cell counts for Fourier, necessary to achieve its additional stealth
property, we expect a small decrease to utility which is borne out in Figure 4.1.

For the posterior sampler mechanism, while we can apply Assumption 2 to a
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Bernoulli-Beta pair to obtain a generalized form of (ε, δ)-differential privacy, we
wish to compare with our ε-differentially-private mechanisms and so choose a route
which satisfies Assumption 1. We trim the posterior before sampling, so that prob-
abilities are lower-bounded. Figure 4.1 demonstrates that for small ε, the minimal
probability at which to trim is relatively large resulting in a poor approximate pos-
terior. But past a certain threshold, the posterior sampler eventually outperforms
the other private mechanisms.

4.4.3 Bayesian Linear Regression

We next explore a system of continuous r.v.’s in Bayesian linear regression, for
which our posterior sampler is most appropriate. We model label Y as i.i.d.Gaussian
with known-variance and mean a linear function of features, and the linear weights
endowed with multivariate Gaussian prior with zero mean and spherical covari-
ance. To satisfy Assumption 1 we conservatively truncate the Gaussian prior and
sample from the resulting truncated posterior; form a predictive posterior; then
compute mean squared error. To evaluate our approach we used the U.S. census
records dataset from the Integrated Public Use Microdata Series Minnesota Popu-
lation Center [2009] with 370k records and 14 demographic features.

To predict Annual Income, we train on 10% data with the remainder for testing.
Figure 4.2 displays MSE under varying prior precision b (inverse of covariance) and
weights with bounded norm 10/

√
b (chosen conservatively). As expected, more

concentrated prior (larger b) leads to worse MSE for both mechanisms, as stronger
priors reduce data influence. Compared with linear regression, private regression
suffers only slightly worse MSE. At the same time the posterior sampler enjoys
increasing privacy (that is proportional to the bounded norm). Let us denote a set
of observations D = {(x1, y1), . . . , (xn, yn)} where

xi = (x(1)
i , . . . , x(d)

i ) ∈ Rd, yi ∈ R.

In the model we assume that Yi are independent given xw. Recall that a normal
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Fig. 4.2: Effect on linear regression of varying prior concentration. Bands indicate
standard error over repeats.

linear regression model with i.i.d Gaussian noise is given as follows,

yi =

d∑
j=1

x( j)
i w( j) + εi, εi ∼ N(0, σ2).

The normal likelihood function, as a product of likelihoods for each of the individual
components of y = (y1, . . . , yn), is given by

pw(y|x,w;σ2) =
1

(2πσ2)n/2 e−
1

2σ2 (y−xw)T (y−xw).

Given observations D, we are interested in computing the sensitivity (in terms of
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data/observation) of this likelihood, that is supw,D,D′ | ln
pw(D)
pw(D′) |. Note that ln pw(D)

pw(D′) =

ln
∏

i pw(xi,yi)∏
i pw(x′i ,y

′
i )

=
∑

i ln pw(xi,yi)
pw(x′i ,y

′
i )
.

For simplicity, assume that the precision of Y is 1. Let fw(D) denote the log-
likelihood, we have

| fw(D) − fw(D′)| ≤
∑

i

| fw(xi, yi) − fw(x′i , y
′
i).|

Note that by Mean Value Theorem, we have

fw(xi, yi) − fw(x′i , y
′
i)

= ∇ fw((1 − c)(x(1)
i , . . . , x(d)

i , yi)

+c(x′(1)
i , . . . , x′(d)

i , y′i)) · (x(1)
i − x′(1)

i , . . . , x(d)
i − x′(d)

i , yi − y′i)

Therefore by the Cauchy-Schwarz inequality we have:

∆ fw(xi, yi) ≤ ||∇ fw||2||(∆xi, ∆yi)||2

∆ fw(D,D′) ≤
n∑

i=1

∆ fw(xi, yi)

≤ ||∇ fw||2

n∑
i=1

||(∆xi, ∆yi)||2

Note that
d fw(xi, yi)/dx( j)

i =
1

2σ2 (x( j)
i wT w − yiw( j))

d fw(xi, yi)/dyi =
1

2σ2 (yi − wT xT
i )

Recall that in linear regression, it is common to assume that every tuple (xi, yi)
in the database satisfies ||xi||2 ≤ 1 and ||yi||2 ≤ 1, we have

||∇ fw||2 ≤
1

2σ2

n∑
i=1

yi − wT xT
i +

d∑
j=1

(
x( j)

i ||w||2 − yiw( j)
)

≤
n

2σ2 (1 + 2||w||1 + d||w||2)

≤
n

2σ2 (1 + (d + 2)||w||1)
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Hence the log-likelihood of normal regression satisfies Assumption 1 for ρ(D,D′) =∑n
i=1 ||(∆xi, ∆yi)||2 under the condition that w is bounded.
For normal linear regression with bounded w, it is natural to choose a prior of

w with truncated normal density, that is

p(w) ∝ N(0, Λ−1)1{||w||2 ≤ 1}

(In experiments we vary the norm bound for truncation with Λ. Our argument
extends immediately.) As we show below, this truncated normal prior is still a
conjugate prior for Gaussian likelihood.

Lemma 4.4.1. The truncated Gaussian prior and the Gaussian likelihood of linear
regression is a conjugate pair and the resulted posterior is a truncated Gaussian
distribution.

Proof. By Bayes’s rule,

p(w|D) ∝ p(D|w)p(w)

∝ N(w|µn, Σn)1{||w||2 ≤ 1}

where µn = (XT X + σ2Λ)−1XT y and Σn = σ2(XT X + σ2Λ)−1.
Therefore the posterior BAPS (Bayesian Posterior Sampling) on p(w|D) is 2L(w)-

differentially private, where L(w) = n
2σ2 (1 + 2||w||1 + d||w||2). �

4.5 Discussion

We have presented a suite of mechanisms for differentially-private inference in
graphical models, in a Bayesian framework. The first two perturb posterior param-
eters to achieve privacy. This can be achieved either by performing perturbations in
the original parameter domain, or in the frequency domain via a Fourier transform.
Our third mechanism relies on the choice of a prior, in combination with posterior
sampling. We complement our mechanisms for releasing the posterior, with private
MAP point estimators. Throughout we have proved utility and privacy bounds for
our mechanisms, which in most cases depend on the graph structure of the Bayesian
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network: naturally, conditional independence affects privacy. We support our new
mechanisms and analysis with applications to two concrete models, with experi-
ments exploring the privacy-utility trade-off.



Chapter 5
Differential Privacy and Information
Leakage

In this chapter, we extend the prior work [Alvim et al., 2011a,b], which study
differential privacy in an information-theoretic framework using Rényi min-entropy.
By assuming certain symmetric properties of the graphs induced by the adja-
cency relation (Hamming-1 neighbouring) on datasets, they showed that differ-
ential privacy implies a bound on utility and provide an method that builds an
optimal differentially-private mechanism. However, as we will show in this chap-
ter, the above results actually hold without any assumption on the structure of
induced graphs. Our result does not only break the limitation (in Alvim et al.
[2011a,b]) of input datasets, it also allows us to consider differential privacy in this
information-theoretic framework without any restriction on how we define “neigh-
bouring datasets”.

5.1 Information Leakage and Utility Model

As a generalization of the Shannon entropy, the Rényi entropy of order α (where
α > 0, α , 1) of a random variable X is defined as

Hα(X) =
1

1 − α
log2

∑
x∈X

p(x)α.

79
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In particular, we are interested in the so called min-entropy that is the limit of
Hα(X) as α approaches infinity. It is known that H∞(X) = − log2 maxx∈X p(x). For
conditional entropy, we adopt the definition proposed in Dodis et al. [2004]:

H∞(X|Y) = − log2

∑
y∈Y

p(y) max
x∈X

p(x|y)

The min-entropy leakage is defined as I∞(X; Y) = H∞(X)−H∞(X|Y). Braun et al.
[2009] proved the worse-case leakage is obtained at the uniform input distribu-
tion, and it is equal to the sum of maxima of each column in the channel matrix:∑

y∈Ymaxx∈X p(y|x). Taking X as the input and Y as the output of a channel ma-
trix, this min-entropy leakage is a natural measurement of the information that the
attacker can learn about the database by observing the reported answers.

Alvim et al. [2011a] also use the converse of the Bayes risk to measure the utility
of the channel matrix. Assume that Y is the true answer of the query function and
Z is the perturbed output of the channel matrix. The author use the binary utility
function to derive that the expected utility is given by

U(Y,Z) =
∑

z

max
y

p(y, z).

This utility is closely relation to the min-entropy and mini-entropy leakage:

H∞(Y |Z) = − log2 U(Y,Z) I∞(Y; Z) = H∞(X) + log2 U(Y,Z).

5.2 Induced Graphs and Their Automorphism Groups

We adopt the notation in Alvim et al. [2011a] and view mechanisms as channel
matrices. More precisely, we assume that A and B are random variables with do-
mainsA and B. Let M be a channel matrix with input A and output B. The matrix
M represents the conditional probability pB|A(·|·). Since B is determined by A and M,
we use B(M, A) to represent the dependency. For simplicity, we use HM

∞ (A) to denote
the conditional min-entropy H∞(A|B(M, A)) and IM

∞ (A) to denote I∞(A; B(M, A)). As
in the proofs of Alvim et al. [2011a], we use i, h, l ranging over rows and j, k ranging
over columns of M. We use max j M to denote the maximum value of column j over
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all rows i, i.e. max j M = maxi Mi, j.
In this channel model, we fix a finite set of individuals participating in the input

datasets. Two datasets are adjacent if and only if they differ for the value of exactly
one individual. Note that the adjacency of two datasets is a symmetric relation.
Therefore, a graph structure can be obtained on the datasets. For instance, (A,∼)
denotes the underlying graph resulted by the adjacency relation on all datasets in
A. In other words, (A,∼) is the graph with all datasets in A as the vertices such
that two datasets are adjacent if and only if they differ at exactly one coordinate
(i.e. with Hamming distance one).

Let us introduce some standard definitions in group theory and symmetric
graphs.

Definition 5.2.1. Let G be a group acting on A. The action of G on A is called
transitive if for any x, y ∈ A, there exists g ∈ G such that g(x) = y.

Definition 5.2.2. Let G be a group acting on a set A and a ∈ A. The G − orbit on
A containing a is defined as Ga = {g(a)|g ∈ G}.

Definition 5.2.3. An automorphism g of a graph (A,∼) is a permutation of A such
that {h, k} is an edge of (A,∼) if and only if {g(h), g(k)} is an edge of (A,∼).

The set of automorphisms of (A,∼) equipped with the usual composition of
permutations is a group, called the automorphism group of (A,∼) and denoted by
Aut(A,∼). Any subgroup of Aut(A,∼) is called an automorphism group of (A,∼).

Definition 5.2.4. The distance between two vertices of the graph (A,∼) is length of a
shortest path between the two vertices. Given an integer d ≥ 0 , we define Borderd(a)
to denote the set of vertices at distance d from a in the graph.

5.3 Improvement of the Utility Results

In this section, we show that Lemma 5 in [Alvim et al., 2011a] (as shown below)
can be improved by dropping the condition on the induced graph (A,∼).

Lemma 5.3.1. Let M be the matrix of a channel with the same input and output
alphabet A and ∼ a symmetric relation on A such that (A,∼) has an automorphism
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with a single orbit. Assume that the maximum value of each column of M is on the
diagonal, that is Mi,i = maxi M for all i ∈ A. If M provides ε-differential privacy,
then we can construct a new channel matrix M′ such that:

1. M′ provides ε-differential privacy;

2. M′
i,i = M′

h,h for all i, h ∈ A;

3. M′
i,i = maxi M for all i ∈ A;

4. HM
∞ (A) = HM′

∞ (A).

This lemma plays a central role in proving the utility results in [Alvim et al.,
2011a,b]. By saying that (A,∼) has an automorphism with a single orbit, the
authors mean that the orbits of the cyclic group are generated by the automorphism.
Note that Hamming graphs generally have no automorphism such that the cyclic
group generated by it is transitive on the vertex set. Hence the symmetric condition
of induced graphs here is very restrictive. Our results show that the above lemma
and the theorems implied by it can be proven without any assumption on the
structure of (A,∼).

Lemma 5.3.2. Let M be the matrix of a channel with the same input and output
alphabet A and ∼ a symmetric relation on A. Assume that the maximum value
of each column of M is on the diagonal, that is Mi,i = maxi M for all i ∈ A. If M
provides ε-differential privacy, then we can construct a new channel matrix M′ such
that:

1. M′ provides ε-differential privacy;

2. M′
i,i = M′

h,h for all i, h ∈ A;

3. M′
i,i = maxi M for all i ∈ A;

4. HM
∞ (A) = HM′

∞ (A).

Proof. Let G denote a subgroup of the automorphism group Aut(A,∼) of the graph
(A,∼). For each pair h, k ∈ A, define

M′
h,k = (1/|G|)

∑
g∈G

Mg(h),g(k). (5.1)
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First we prove that M′ provides ε-differential privacy. Since for each h ∼ l and
g ∈ G, we have g(h) ∼ g(l). For each pair h ∼ l, we have g(h) ∼ g(l) and therefore for
every k

M′
h,k = (1/|G|)

∑
g∈G

Mg(h),g(k) ≤ (1/|G|)
∑
g∈G

eεMg(l),g(k) = eεM′
l,k. (5.2)

We then prove that for every h, M′
h is a probability distribution

|A|∑
k=1

M′
h,k =

|A|∑
k=1

(1/|G|)
∑
g∈G

Mg(h),g(k) = (1/|G|)
∑
g∈G

|A|∑
k=1

Mg(h),g(k) = 1. (5.3)

We claim that the diagonal contains the maximal value of each column, because

M′
k,k = (1/|G|)

∑
g∈G

Mg(k),g(k) ≥ (1/|G|)
∑
g∈G

Mg(h),g(k) = M′
h,k. (5.4)

Finally, we show that HM
∞ (A) = HM′

∞ (A). Suppose G has r orbits onA, say,A1, . . . ,Ar

with sizes a1, . . . , ar, respectively. Then {A1, . . . ,Ar} is a partition of A. Fix a
vertex ki ∈ Ai and let Gki , {g ∈ G : g(ki) = ki} denote the stabilizer of ki in G

for each i. Then g(ki) = g′(ki) if and only if g′Gki = gGki . Since G is transitive
on Ai, by the Orbit-Stabilizer Lemma, ai = |Ai| = |G|/|Gki |. Let {gi1, . . . , giai} be
a set of representatives of [G : Gki] (the set of left cosets of Gki in G). Then
Ai = {gi1(ki), . . . , giai(ki)}.

Since G is transitive on Ai, by the Orbit-Stabilizer Lemma we have |G| =

|Gk||A| = |Gk|n for any k ∈ A, where Gk , {g ∈ G : g(k) = k} is the stabilizer of
k under the action of G. Note that Gk is a subgroup of G. Moreover, g(k) = g′(k) if
and only if g′ ∈ gGk. Let {g0, g1, . . . , gn−1} be a set of representatives of [G : Gk] (the
set of left cosets of Gk in G). Then

∑
g∈G Mg(k),g(k) = |Gk|

∑n−1
i=0 Mgi(k),gi(k) = |Gk|HM

∞ (A).
Therefore, we have

HM′
∞ (A) = (1/|G|)

n−1∑
k=0

(
|Gk|HM

∞ (A)
)

= (1/n)
n−1∑
k=0

HM
∞ (A) = HM

∞ (A). (5.5)

This completes the proof. �

By applying this new lemma, we immediately improve Theorem 3 in [Alvim
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et al., 2011a] as follows.

Theorem 5.3.3. Let H be a randomization mechanism for the randomized function
K and query function f , and assume that K provides ε-differential privacy. For an
element a of A (the input alphabet of Y), let n denote the maximum distance from
a in A and c = min1≤d≤n |Borderd(a)|. Then

U(Y,Z) ≤
(eε)n(1 − eε)

(eε)n(1 − eε) + c(1 − (eε)n)
. (5.6)

Since c is ranging from 1 to n, c must be non-zero, so this bound does tell
us something. This upper bound would decrease as c and n increase. Given the
premise of this chapter, the underlying graph is vertex-transitive and so no matter
what vertex we choose the bound is the same. While for a general graph, we need
to find the vertex such that c and n are large in order to get a good bound.

Similarly, Theorem 4 in [Alvim et al., 2011a] also follows without assuming that
the induced graph has an automorphism with a single orbit.

The utility results in [Alvim et al., 2011a,b] hold for any matrix M′ defined
by M′

h,k = (1/|G|)
∑

g∈G Mg(h),g(k) for any subgroup G of Aut(A,∼). No symmetric
assumption of Aut(A,∼) need to be made at all. Our improvement extends the
original results to a much broader class of database structures.



Chapter 6
Some Statistical Properties of
Clique-inserted Lattices

We now turn to study other network statistics that are also related to graph
structure. In this and the next two chapters, we will investigate the statistics of
certain combinatorial objects on certain networks. In statistical mechanics, crystals
are modelled by lattices whose atoms and bonds are represented by lattice vertices
and edges respectively. Solving the enumeration problem of particular types of
subgraphs on special types of lattices is an important area which is related to
physical properties of materials in the real world. For instance, the dimer problem
is related to the absorption of diatomic molecules on crystal surface. The Ising
model is a mathematical model of ferromagnetism and the simplest statistical model
of phase transition [Baxter, 1982, Gallavotti, 2013]. The enumeration of spanning
trees and independent sets were also discussed in [Shrock and Wu, 2000]. Graph
operations such as subdivision-vertex joins, subdivision-edge joins [Liu and Zhang,
2017] and clique-insertion [Zhang et al., 2009], preserve nice spectral properties. In
this chapter, we recall the relationship between the spectra of an r-regular lattice
and that of its clique-inserted lattice, and investigate the graph energy statistics. As
an application, the asymptotic energy per vertex of the 3-12-12 and 3-6-24 lattices
are computed. We also develop formulae expressing the numbers of spanning trees
and dimer coverings of the k-th iterated clique-inserted lattices in terms of that
of the original. Moreover, we show that new families of expander graphs can be

85
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constructed from known expanders by clique-inserting.
The operation of replacing every vertex of an r-regular lattice H by a complete

graph of order r is called clique-insertion, and the resulting lattice is called the
clique-inserted lattice of H. For any given r-regular lattice, applying this operation
iteratively, an infinite family of r-regular lattices is generated. Some interesting
lattices including the 3-12-12 lattice can be constructed this way.

6.1 Introduction

In the study of lattice statistical mechanics, one family of 2-dimensional lat-
tices that have received much attention are constructed by replacing each vertex
of r-regular lattices with a complete graph of order r such that each of the r new
vertices corresponds to one of the incident edges. (To avoid triviality, we assume
r ≥ 3 throughout this thesis.) Such lattices include the martini [Scullard, 2006,
Teufl and Wagner, 2010, Wu, 2006b], the 3-12-12 [Shrock and Wu, 2000, Teufl and
Wagner, 2010, Wu, 2006b], the 3-6-24 [Guo et al., 2004] and the modified bath room
lattices [Teufl and Wagner, 2010]. Following [Zhang et al., 2009], this operation of
transforming each vertex of an r-regular graph to an r-clique (complete graph of
order r) is called clique-insertion, and the graph obtained this way is called the
clique-inserted graph of the original graph. From a given r-regular lattice H, the
operation of clique-insertion can also be performed, and the resulting lattice C(H)
is called the clique-inserted lattice of the original lattice.

Throughout the rest of the thesis, we always assume that G denotes an undi-
rected simple graph. Note that in the language of graph theory, the clique-insertion
operation on a graph G can be described as taking the line graph of the subdivision
graph of G. For any given regular lattice H, by iterating this operation, a set of hi-
erarchical regular lattices, namely, iterated clique-inserted lattices can be obtained.
Denote by {Ck(H)}k≥0 the sequence of clique-inserted lattices with C0(H) ≡ H and
Ck+1(H) = C(Ck(H)). Start with the hexagonal lattice, the 3-12-12, 3-6-24 and 3-
6-12-48 lattices (refer to [Guo et al., 2004] for definitions of these lattices) can be
generated by clique-insertion. In this case, the clique-insertion operation on a lattice
is equivalent to the fundamental “Y-Delta" transformation (also known as the star-
triangle transformation) on the subdivision graph of the original lattice. By this
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observation we obtained the relations between some physical and chemical indices
of r-regular lattices and their k-th clique-inserted lattices. With such relations, we
can compute some indices of certain complex lattices easily based on the results of
well-studied lattices such as the square and hexagonal lattices.

In this chapter, we consider the lattices produced by the operation of clique-
insertion on regular lattices with free, cylindrical and toroidal boundary conditions.
We will discuss the energy per vertex, average resistance (the Kirchhoff index over
the number of pairs of vertices) and the entropy of spanning-tree and dimer models
of such lattices. We will also use the operation of clique-insertion to construct new
families of expander graphs from known ones.

The dimer problem, the study of absorption diatomic molecules on crystal sur-
face and phase transition in the Ising model, have attracted the attention of many
physicists as well as mathematicians. For some classical works, we refer to [Fisher,
1961, Teufl and Wagner, 2010, Wu, 2006b]. Cayley [1889] and Kirchhoff [1847] pre-
sented the problem of enumeration of spanning trees of graphs, and further work
in statistical physics has appeared in both the physics and mathematics literature.
For a good survey, the reader is referred to [Shrock and Wu, 2000]. In the 1930s,
Hückel proposed a method for finding approximate solutions of the Schrödinger
equation of a class of organic molecules, the so-called conjugated hydrocarbons. In
the framework of this modelization, the total π-electron energy, can be approxi-
mated by the sum of the absolute values of eigenvalues of the molecular graphs
under certain chemical-based conditions. Gutman abstracted a mathematical no-
tion from this application-driven analysis on molecular graphs, therefore he defined
graph energy as a graph invariant [Gutman, 1978, 2001]. Since then, graph energy
has been studied extensively by chemists and mathematicians. Yan and Zhang
[2009] proposed the energy per vertex problem for lattice systems and showed that
the energy per vertex of 2-dimensional lattices is independent from the boundary
conditions, in certain settings. For a comprehensive survey of results and common
proof methods obtained on graph energy, see the monograph on graph energy [Li
et al., 2012] and references cited therein. Expander graphs were first defined by
Bassalygo and Pinsker in the early 70’s. These graphs are regular sparse graphs
with strong connectivity properties, measured by vertex, edge or spectral expansion
as described in [Hoory et al., 2006]. For a graph, having such a property has sig-
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nificant implications in various disciplines including complexity theory, computer
networks, statistical mechanics and so on.

The rest of the chapter is organized as follows. The expression of the energy
and Kirchhoff index of k-th iterated clique-inserted lattices of regular lattices are
discussed in Sections 2 and 3, respectively. As an application, we compute the
energy per vertex of the 3-12-12 and 3-6-24 lattices. In Section 4, we show that,
given zH as the entropy of spanning trees of an r-regular lattice H, the entropy of
spanning trees of Ck(H) (the k-th iterated clique-inserted graph of H) is given by
r−k(zH + sk(r) ln r(r + 2)) where sk(r) = (r/2 − 1)(rk − 1)/(r − 1). We will also show
that when H is cubic, the free energy per dimer of Ck(H) is 1

3 ln 2. In Section 5,
inspired by Liu and Zhou’s work [Liu and Zhou, 2014], we show that by applying
the clique-insertion operation iteratively on an expander family, new families of
expander graphs can be obtained. We propose clique-insertion as a modification
to extend the size of computer networks, with their expansion properties being
preserved to a certain degree.

6.2 Asymptotic Energy

Let G = (V(G), E(G)) be a graph with vertex set V(G) = {v1, v2, . . . , vn} and edge
set E(G). The adjacency matrix of G, denoted by A(G), is the n × n symmetric
matrix such that ai j = 1 if vertices vi and v j are adjacent and 0 otherwise. Let dG(vi)
be the degree of vertex vi of G. The Line graph L(G) of G, is the graph such that
each vertex of L(G) represents an edge of G and two vertices of L(G) are adjacent
if and only if their corresponding edges of G share a common end vertex in G. The
subdivision graph S (G) of a graph G is the graph obtained by inserting a new vertex
into every edge of G. It is easy to see that C(G) = L(S (G)). The energy of a graph
G with n vertices, denoted by E(G), is defined by

E(G) =

n∑
i=1

|λi|,

where λi’s are the eigenvalues of the adjacency matrix of G. The asymptotic energy
per vertex of G [Yan and Zhang, 2009] is defined by lim

|V(G)|→∞

E(G)
|V(G)| .
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Lemma 6.2.1. [Yan and Zhang, 2009] Suppose that {Gn} is a sequence of finite simple
graphs with bounded average degree such that lim

n→∞
|V(Gn)| = ∞ and lim

n→∞

E(Gn)
|V(Gn)| = h , 0.

If {G′n} is a sequence of spanning subgraphs of {Gn} such that lim
n→∞

|{v∈V(G′n):dG′n
(v)=dGn (v)}|

|V(Gn)| =

1, then lim
n→∞

E(G′n)
|V(G′n)| = h. That is, Gn and G′n have the same asymptotic energy.

Lemma 6.2.2. [Zhang et al., 2009] Let G be an r-regular graph with n vertices and
m edges. Suppose that the eigenvalues of G are λ1 = r ≥ λ2 ≥ . . . ≥ λn. Then the

eigenvalues of the clique-inserted graph C(G) of G are r−2±
√

r2+4(λi+1)
2 , i = 1, 2, . . . , n,

besides −2 and 0 each with multiplicity m − n.

From Lemma 6.2.2, we immediately obtain the following corollary.

Corollary 6.2.3. Let G be an r-regular (r ≥ 3) graph with n vertices and eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn, the energy of the clique-inserted graph of G is

E(C(G)) =

n∑
i=1

√
r2 + 4(λi + 1) + n.

We will use this result to calculate the asymptotic energy per vertex of the
3-12-12 lattice and its clique-inserted lattice in the rest of this section.

6.2.1 3-12-12 lattice

Our notation for the hexagonal lattices follows [Yan and Zhang, 2009]. The
hexagonal lattices on a n×m torus, denoted by Ht(n,m), are illustrated in Figure 6.1,
where (a1, a∗1), (a2, a∗2), . . . , (am+1, a∗m+1), (b1, b∗1), (b2, b∗2), . . . , (bn+1, b∗n+1) are edges in
Ht(n,m).
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Fig. 6.1: Ht(n,m) with toroidal boundary condition

By the definition of a clique-inserted lattice, it is easy to see that each 3-12-12 lat-
tice on the same geometry is a clique-inserted-graph of Ht(n,m), denoted as T t(n,m)
(see Figure 6.2). Note that (a1, a∗1), (a2, a∗2), . . . , (am+1, a∗m+1), (b1, b∗1), (b2, b∗2), . . . ,
(bn+1, b∗n+1) are edges in T t(m, n). If we delete edges (b1, b∗1), (b2, b∗2), . . . , (bn+1, b∗n+1)
from T t(n,m), then the 3-12-12 lattice with cylindrical boundary condition, denoted
by T c(n,m) (see Figure 6.2) can be obtained. If we delete the edges (a1, a∗1), (a2, a∗2), . . .,
(am+1, a∗m+1) from T c(m, n), then the 3-12-12 lattice with free boundary condition, de-
noted by T f (m, n) (see Figure 6.2) can be obtained.

1a

2a

ia

1ma

*
1a

*
2a

*
ia

*
1ma

1 2 n…

2

m

. ..
.

.
...

. ...

..
.

… …

1a

2a

ia

1ma

1b 2b ib 1nb

*
1b

*
2b *

ib
*

1nb

… …

1 2 n…

2

m

. ..
.

.
...

. ...

..
.

1a

2a

ia

1ma

*
1a

*
2a

*
ia

*
1ma

1 2 n…

2

m

. ..
.

.
...

. ...

..
.

*
1ma

*
ia

*
1a

*
2a

Fig. 6.2: The 3-12-12 lattice T t(n,m) (left), T c(n,m) (middle), and T f (n,m).

Note that almost all vertices of T c(m, n) and T f (m, n) are of degree 3. Since
T f (m, n) and T c(m, n) are spanning subgraphs of T t(m, n), by Lemma 6.2.1 we have

lim
n,m→∞

E(T t(n,m))
6mn

= lim
n,m→∞

E(T c(n,m))
6mn

= lim
n,m→∞

E(T f (n,m))
6mn

It is shown in [Yan and Zhang, 2009] that the eigenvalues of Ht(n,m) are:
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±

√
3 + 2 cos

2iπ
n + 1

+ 2 cos
2 jπ

m + 1
+ 2 cos

(
2iπ

n + 1
+

2 jπ
m + 1

)
, 0 ≤ i ≤ n, 0 ≤ j ≤ m.

Since T t(n,m) is the clique-inserted graph of Ht(n,m), we have

E(T t(n,m))

=

n∑
i=0

m∑
j=0

√√√
13 + 4

√
3 + 2 cos

2iπ
n + 1

+ 2 cos
2 jπ

m + 1
+ 2 cos

(
2iπ

n + 1
+

2 jπ
m + 1

)

+

n∑
i=0

m∑
j=0

√√√
13 − 4

√
3 + 2 cos

2iπ
n + 1

+ 2 cos
2 jπ

m + 1
+ 2 cos

(
2iπ

n + 1
+

2 jπ
m + 1

)
+ 2mn

=

n∑
i=0

m∑
j=0

√√√
26 + 2

√
121 − 32 cos

2iπ
n + 1

− 32 cos
2 jπ

m + 1
− 32 cos

(
2iπ

n + 1
+

2 jπ
m + 1

)
+ 2mn.

Thus, the average energy per vertex of the 3-12-12 lattice can be expressed as

lim
n,m→∞

E(T t(n,m))
6mn

=
1
3

+
1

24π2

∫ 2π

0

∫ 2π

0

√
26 + 2

√
121 − 32 cos x − 32 cos y − 32 cos(x + y)dxdy

= 1.4825 . . . .

The last line follows by a numerical integration. Therefore, the 3-12-12 lattices
T t(n,m),T c(n,m), and T f (n,m) with toroidal, cylindrical, and free boundary condi-
tions have the same asymptotic energy (≈ 8.895mn).

6.2.2 3-6-24 lattice

The clique-inserted lattice of T t(m, n) is a lattice with toroidal boundary condi-
tion, denoted by S t(m, n), illustrated in Figure 6.3). Note that (a1, a∗1), (a2, a∗2), . . .,
(am+1, a∗m+1), (b1, b∗1), (b2, b∗2), . . . , (bn+1, b∗n+1) are edges in S t(m, n). If we delete edges
(b1, b∗1), (b2, b∗2), . . . , (bn+1, b∗n+1) from S t(n,m), then the 3-6-24 lattice with cylindrical
boundary condition, denoted by S c(n,m) (see Figure 6.3)) can be obtained. If we
delete edges (a1, a∗1), (a2, a∗2), . . . , (am+1, a∗m+1) from S c(m, n), then the 3-6-24 lattice
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Fig. 6.3: The 3-6-24 lattice S t(n,m) (left), S c(n,m) (middle), and S f (n,m) .

with free boundary condition, denoted by S f (m, n) (see Figure 6.3) can be obtained.

Note that S f (m, n) and S c(m, n) are spanning subgraphs of S t(m, n), by Lemma 6.2.1
we have

lim
n,m→∞

E(S t(n,m))
18mn

= lim
n,m→∞

E(S c(n,m))
18mn

= lim
n,m→∞

E(S f (n,m))
18mn

.

The energy of the clique-inserted-graph of 3-12-12 lattice can be obtained by

E(S t(n,m))

=

n∑
i=0

m∑
j=0

√√√√√
30 + 2

√√√
173 − 16

√
3 + 2 cos

2iπ
n + 1

+ 2 cos
2 jπ

m + 1
+ 2 cos

(
2iπ

n + 1
+

2 jπ
m + 1

)

+

n∑
i=0

m∑
j=0

√√√√√
30 + 2

√√√
173 + 16

√
3 + 2 cos

2iπ
n + 1

+ 2 cos
2 jπ

m + 1
+ 2 cos

(
2iπ

n + 1
+

2 jπ
m + 1

)
+
√

5mn +
√

13mn + 6mn.

Then the average energy per vertex of the clique-inserted lattice of the 3-12-12
lattice is given by

lim
n,m→∞

E(S t(n,m))
18mn

=
1

72π2

∫ 2π

0

∫ 2π

0

(√
30 + 2

√
173 − 16

√
3 + 2 cos x + 2 cos y + 2 cos(x + y)
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+

√
30 + 2

√
173 + 16

√
3 + 2 cos x + 2 cos y + 2 cos(x + y)

)
dxdy

+

√
5 +
√

13 + 6
18

= 1.4908 . . . .

Thus, the lattices S t(n,m), S c(n,m), and S f (n,m) with toroidal, cylindrical, and free
boundary conditions have the same asymptotic energy (≈ 26.8344mn).

6.3 Spanning Trees and Dimer Coverings

6.3.1 Spanning Trees

Let NS T (G) denote the number of spanning trees of G. When G is a periodic
lattice in finite dimension D > 1, NS T (G) has asymptotic exponential growth. Define
the quantity zG by

zG = lim
n→∞

1
n

ln NS T (G).

This quantity, corresponding to the free energy per site in the thermodynamic limit,
is called bulk free energy. The following lemma indicates the relation between the
number of spanning trees of a regular lattice and of its k-th iterated clique-inserted
lattice.

Lemma 6.3.1. [Yan et al., 2008] Let G be an r-regular graph with n vertices. Then
the number of spanning trees of the iterated clique-inserted-graphs Ck(G) of G can
be expressed by NS T (Ck(G)) = rns−k(r + 2)ns+kNS T (G), where s = sk(r) = (r/2 − 1)(rk −

1)/(r − 1).

Therefore, we have the following proposition.

Proposition 6.3.2. Let H be an r-regular lattice. For Ck(H)(k = 0, 1, 2, . . .), the rate
of growth of the number of spanning trees, zCk(H), is given by r−k(zH + s ln r(r + 2)),
where s = (r/2−1)(rk−1)/(r−1) and zH denotes the rate of growth of spanning trees
of H.
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The next theorem implies that the boundary condition does not affect the bulk
limit of a lattice.

Theorem 6.3.3. [Lyons, 2005] Let 〈Gn〉 be a tight sequence of finite connected graphs
with bounded average degree such that

lim
n→∞
| V(G)n |

−1 | {x ∈ V(G′n); degG′n(x) = degGn(x)} |= 1,

then lim
n→∞
| V(G)n |

−1 log NS T (G′n) = h.

For the hexagonal lattice, zhc is 0.8076649 . . . as shown in [Shrock and Wu, 2000].
Thus, by Proposition 6.3.2 and Theorem 6.3.3, we have that for the 3-12-12 and
3-6-24 lattices with toroidal, cylindrical and free boundary condition,

z3−12−12 = 0.7205633 . . .

z3−6−24 = 0.6915295 . . . .

6.3.2 Dimer Coverings

Let M(G) denote the number of dimer coverings (perfect matchings) of G. The
free energy per dimer of G, denoted by ZG, is defined as ZG = lim

n→∞
2
n ln M(G). Given

the number of vertices and edges of a connected graph, the number of dimer cover-
ings of the graph and of its line graph have the following relation.

Lemma 6.3.4. [Dong et al., 2013] Let G be a 2-connected graph of order n and size
m, where m is even and ∆(G) is the maximum degree of G. Then M(L(G)) ≥ 2m−n+1,
where the equality holds if and only if ∆(G) ≤ 3.

With this general result, we can readily obtain the following.

Proposition 6.3.5. Let H be a cubic lattice with toroidal boundary conditions. The
free energy per dimer of Ck(H) (k = 1, 2, 3, . . .) is equal to 1

3 ln 2.

Proof. Assume that H has n vertices. Since Ck(H) is the line graph of the subdi-
vision of Ck−1(H), by Lemma 6.3.4 we have ZCk(G) = lim

n→∞
2

3kn ln 23kn− 5
6 ·3

kn+1 = 1
3 ln 2.

�
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Example 6.3.6. Let Rt(m, n) be the k-th iterated clique-inserted lattice of the hexag-
onal lattice Ht(m, n) with toroidal boundary. Note that the corresponding lattice
Rc(m, n) (R f (m, n)) with cylindrical (free) boundary condition can be considered as
the line graph of a graph which differs from S (Ck−1(Htm, n)) by a small number (small
in the sense that the number is o(mn) as m,n approach infinity) of edges. Therefore,
by applying Lemma 6.3.4, we have ZRt(m,n) = ZRc(m,n) = ZR f (m,n) = 1

3 ln 2. �

In general, when a cubic lattice is a line graph, the free energy per dimer of
plane lattices are the same as that of the corresponding cylindrical and toroidal
lattices. However, this may not be true when a cubic lattice is not a line graph.
The hexagonal lattice is such a counterexample as shown in [Yan et al., 2008].

6.4 Expansion Property

Let D(G) = diag(dG(v1), dG(v2), . . . , dG(vn)) be the diagonal matrix of vertex de-
gree of G. The Laplacian matrix of G is L(G) = D(G) − A(G). The eigenvalues of
L(G), denoted by µ1 ≤ µ2 ≤ · · · ≤ µn are called the Laplacian spectrum of G. It is
well known that µ2, called the algebraic connectivity of G, is greater than 0 if and
only if G is a connected graph. The spectral gap of G is defined as the difference
of the largest and the second largest eigenvalues of A(G). Note that for a regular
graph, µi = r − λi for i = 1, 2, . . . , n, which implies that its spectral gap is equal
to its algebraic connectivity. Here we use spectral gap to quantify the expansion
property, that is, a family of regular graphs is an expander family if and only if
there is a positive lower bound for their spectral gaps, and the larger the bound the
better the expansion. This characterization can be formulated as follows:
An infinite family of regular graphs, G1,G2,G3, . . ., is called a family of ε-expander
graphs [Hoory et al., 2006], where ε > 0 is a fixed constant, if (i) all these graphs
are k-regular for a fixed integer k ≥ 3; (ii) µ2 ≥ ε for i = 1, 2, 3, . . .; and (iii)
ni = |V(Gi)| → ∞ as i→ ∞. Note that Lemma 6.2.2 implies that

µ2(C(G)) =
r + 2 −

√
(r + 2)2 − 4µ2(G)

2
.
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Denote the function iteration of

f (x) =
r + 2 −

√
(r + 2)2 − 4x
2

by f 1(x) = f (x) and f k+1(x) = f ( f k(x)) for k = 1, 2, 3, . . ..
One primary application of expander graphs is in designing robust computer

networks. In the study of computer networks, it would be helpful to find simple and
local graph operations to enlarge networks such that the new networks share similar
topological properties with the old ones. For instance, Saad and Schultz [1988]
studied the mapping which maps grid to hypercubes and found many topological
properties are preserved under such an operation. In our case, applying clique-
insertion on networks can be considered as replacing each workstation by a cluster
(modelled by a complete graph) and rewiring them properly. By the following
result, we will see that this provides a modest modification to enlarge the networks
such that their expansion properties are maintained in some sense.

Proposition 6.4.1. Suppose G1,G2,G3, . . ., is a family of r-regular ε-expander graphs.
Then Ck(G1),Ck(G2),Ck(G3), . . . , is a family of r-regular f k(ε)-expander graphs.

Proof. Let x = ( 2
r+2 )2ε, then

f (ε) =
r + 2

2
(1 −

√
(r + 2)2 − 4ε

2
)

=
(r + 2)

2
(1 −

√
1 − x)

=
(r + 2)

2

(
1
2

x +
1
8

x2 +
1

16
x3 + · · ·

)
≈

ε

(r + 2)
.

The statement holds by definition. �

This implies that the lower bound of the spectral gaps of the new expander
family obtained by clique-insertion is a linear term of that of the original expander
family. Note that it is simple and intuitive enough to perform realistic operations
on networks according to clique-insertion. So even if the expansion properties of
clique-inserted lattices are not exceptional, it is still meaningful to consider clique-
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insertion as an approach to extend computer networks, because in reality, the trade-
off between performance and simplicity needs to be taken into account.

Let us apply clique-insertion to the famous expander family Xp,q of Lubostzky,
Phillips and Sarnak [Davidoff et al., 2003]. Recall that for a fixed real number
0 < γ < 1/6 and sufficiently large q, the spectral gap of Xp,q is bounded from below
by ε(r) = (p+1)− p

5
6 +γ− p

1
6−γ. By Proposition 6.4.1, for a fixed odd prime p, C(Xp,q)

is a (p + 3 −
√

p2 + 2p + 4p
5
6 +γ + 4p

1
6−γ + 5)/2-expander family with degree p + 1.

More generally, Ck(Xp,q) is a f k((p + 1) − p
5
6 +γ − p

1
6−γ)-expander family.
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Chapter 7
Enumeration of Independent Sets on the
4-8-8 Lattice

In this and the next chapter, we continue our discussion of network statistics. In
particular, we investigate the statistics of vertex independent sets on some (random)
networks using the transfer matrix method. In this chapter, we will first propose
the concept of transfer multiplicity and the multi-step transfer matrices method
to study more complicated lattices where the single step transfer matrix approach
as in [Neil J Calkin, 1998] is not compatible. We demonstrate our method on the
4-8-8 lattice by providing numerical results of the number of independent sets and
a rigorous bound of its entropy. We will also show that this entropy constant of
a two dimensional lattice with free boundary condition is the same as the entropy
constants of the corresponding cylindrical and toroidal lattices.

7.1 Background

A typical problem in lattice statistics is to count the number of ways of putting
particles on lattice sites such that no two share the same sites or are in adjacent
sites. In particular, for the two dimensional lattice gas model it is assumed that all
of the gas molecules lie on the vertices of a square lattice and only interact with
their four grid neighbours. The grid is taken to be rigid and square, so the limit
of partition function per vertex is called “the hard square constant” [Baxter et al.,

99
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1980]. The model has also been studied on the triangular and hexagonal lattices
[Baxter, 1982, 1999, Domb and Green, 1972, Finch, 1999, Pearce and Seaton, 1988].

In combinatorics, this enumeration problem is equivalent to counting vertex
independent sets on graphs. This problem also exists in structural chemistry, where
Merrifield and Simons defined a topological space for chemical graphs [Merrifield
and Simmons, 1989]. The cardinality of that topological space, Merrified-Simmons
index, is the number of independent sets on the chemical graphs. The properties
of this index of some types of benzenoids and polyominoes have been studied in
[Gutman, 1993, Ren and Zhang, 2007, Zhang and Tian, 2003, Zeng and Zhang,
2007]. The 4-8-8 lattice is an Archimedean tilling which has been used to describe
phase transitions in the layered hydrogen-boded SnCl2 · 2H2O crystal [Salinas and
Nagle, 2000] in physical systems. The triangular Kagomé lattice corresponds to
the positions of Cu atoms in the fabricated materials Cu9X2(cpa)6·xH2O (cpa=
2-carboxypentonic acid, an derivative of asorbic acid; X-F,Cl,Br) [Maruti and ter
Haar, 1994]. Various physical models such as the spanning trees, dimer covering
and bond percolation have been studied on these two lattices [Allen, 1974, Haji-
Ankabari and Ziff, 2009, Liu and Yan, 2013, Loh et al., 2008, Salinas and Nagle,
2000, Shrock and Wu, 2000, Wu, 2006b, Yan et al., 2008].

7.2 Transfer Matrix

Let m and n be positive integers. Gm,n denote a finite section of the 4-8-8 lattice
whose hexagons are arranged in m rows and n columns as shown in Fig.7.1.

1

2.
.
.

m

2 i n… …

1

Fig. 7.1: Grid graph Gm,n
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Given an independent set S of Gm,n, a portion of S that lies in a fixed column
of Gm,n can be represented by either an (m + 1)-vector or a 2m-vector of 0’s and 1’s,
where a 1 indicates that the vertex is in S and a 0 indicates that the vertex is not in
S . Thus, any independent set of Gm,n can be represented by 3n + 1 column vectors.

Example 2. Fig.7.2 below shows an independent set S in G3,4. The portions of S
that lie in each of the columns are represented by the respective vectors:
(1, 0, 0, 0, 1, 0), (0, 1, 0, 1), (1, 0, 1, 0), (0, 0, 1, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1, 1, 0),
(0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1), (0, 1, 1, 0, 0, 0).

1

2

3

2 43

1

Fig. 7.2: An independent set of G3,4.

Let Pm denote the set of all possible (m + 1)-vectors which may represent a
column in an independent set of Gm,n. The (3k + 2)-th and (3k + 3)-th columns of
an independent set of Gm,n are chosen from Pm, where 0 ≤ k ≤ n − 1. Clearly, Pm

is a collection of (m + 1)-vectors of 0’s and 1’s, and the cardinality of Pm is 2m+1.
Similarly, let Qm denote the set of all possible 2m-vectors which may represent a
(3k + 1)-th column in an independent set of Gm,n, where 0 ≤ k ≤ n. It is easy to see
that Qm consists of 2m-vectors of 0’s and 1’s in which no consecutive 1’s occupy the
positions of the (2k − 1)-th and 2k-th entries, for 1 ≤ k ≤ m. Since there are three
possibilities at each pair of consecutive (2k − 1)-th and 2k-th positions, the set Qm

has 3m vectors.
Let v(i) denote the i-th element of a vector v. Note that two column vectors v,

v′ need to fit into one of the following two cases to be a possible consecutive pair
of columns in an independent set of Gm,n,
(i) v and v′ are chosen from Pm and they are orthogonal to each other;
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(ii) v, v′ are chosen from Pm and Qm respectively and they satisfy the following
conditions:

(a) v(1) · v′(1) = 0,

(b) v(i) · v′(2i − 2) = 0 and v(i) · v′(2i − 1) = 0 for i = 2, 3, . . . ,m,

(c) v(m + 1) · v′(2m) = 0.

For fixed m and n, all possible independent sets S of Gm,n can be obtained by
a gluing process described below. First, we take a vector from Qm such that it
corresponds to the first column of S , and denote it as u. Second, to the right of u
we glue a vector v selected from Pm, making sure that u and v satisfy (ii). Third, we
glue a vector v′ from Pm to the right of v under the condition that v and v′ satisfy
(i). Then, we glue u′ to the right of v′ such that v′ and u′ satisfy (ii). Repeat the
above procedure until the (3n + 1)-th column is glued.

Let us call the gluing of the (i + 1)-th column vi+1 to the right of i-th column vi

as step i. Thus the transfer matrix representing step one, denoted Tm1 = (Tv1,v2), is a
3m × 2m+1 matrix whose rows are indexed by vectors of Qm and columns are indexed
by vectors of Pm, where Tv1,v2 = 1 if v1 and v2 represent possible consecutive pair
of columns in an independent set of Gm,n and Tv1,v2 = 0 otherwise. Note that the
matrix depends only on n.

Similarly, the transfer matrix for step two is a 2m+1×2m+1 matrix Tm2 whose rows
and columns are indexed by vectors of Pm. The entry of Tm2 in position (α, β) is 1
if the vectors represented by α, β are orthogonal, and is 0 otherwise. The transfer
matrix, Tm3 , for step three is the transpose of Tm1 . Note that Tm1 is the transfer
matrix for every step i when i = 3k + 1 (0 ≤ k ≤ n− 1), Tm2 is the transfer matrix for
every step i when i = 3k + 2 (0 ≤ k ≤ n − 1) and Tm3 is the transfer matrix for every
step i when i = 3k + 3 (0 ≤ k ≤ n − 1). Thus, if we take the transfer matrix of Gm,n

to be Tm=Tm1Tm2Tm3 , then it is well known that for the number of independent sets
of Gm,n, we have

f (m, n) = 1 · T n
m1,

where 1 denotes the all-one column vector. We call Tm a triple-step transfer matrix
since it is given as the product of three transfer matrices.
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When m = 2, the transfer matrices T21 , T22 and T23 are:

T21 =



1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0



, T22 =



1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0



, T23 = T>21
.

Thus, the triple-step transfer matrix of Gm,n is:

T2 =



27 18 18 18 12 18 18 12 12
18 9 12 12 6 12 12 6 8
18 12 9 9 6 9 12 8 6
18 12 9 9 6 9 12 8 6
12 6 6 6 3 6 8 4 4
18 12 9 9 6 9 12 8 6
18 12 12 12 8 12 9 6 6
12 6 8 8 4 8 6 3 4
12 8 6 6 4 6 6 4 3



.
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Fig. 7.3: The 4-8-8 lattice Gm,n with free boundary condition
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By identifying edges (ai, ai+1) with (a∗i , a
∗
i+1) (1 ≤ i ≤ 2m − 1) of Gm,n respectively,

the 4-8-8 lattice with cylindrical boundary condition, denoted as Hm,n, can be ob-
tained (see Figure 7.3). Note that here the graph can be seen as drawn on a vertical
cylinder.

Similar to the discussion of Gm,n, any independent set I of Hm,n can be generated
by gluing vectors from Pn−1 and Qn. Note that if v and v′ are chosen from Pn−1 and
Qn, they are a possible consecutive pair of vectors in I if and only if

v(1) · v′(1) + v(1) · v′(2n) = 0, v(i) · v′(2i − 2) = 0,

and
v(i) · v′(2i − 1) = 0,

for i = 2, 3, . . . , n.
I can be obtained by the following procedure . Firstly let us take a vector from
Qn such that it corresponds to the first row of I, and denote it as u. Secondly, we
glue a vector v from Pn−1 to the bottom of u, ensuring that u and v are legitimate
consecutive vectors in I. Thirdly, we glue a vector v′ from Pn−1 to the bottom of v
such that v and v′ are orthogonal. Then we glue u′ to the bottom of v′, making sure
that v′ and u′ are possible consecutive vectors in I. Repeat the above procedure
until the (3m + 1)-th column is glued.

Consider the transfer matrix of Hm,n. The transfer matrix Bn1 , which represents
every (3k +1)-th (0 ≤ k ≤ n−1) step, can be defined as a 3n×2n matrix of 0’s and 1’s
as follows. The rows of Bn1 are indexed by vectors of Qn and columns are indexed by
vectors of Pn−1, and the entry of Bn1 in position (α, β) is 1 if α, β represent a possible
consecutive pair of rows in an independent set of Hm,n, and is 0 otherwise. Let Bn3

denote the transfer matrix that represents every (3k + 3)-th (0 ≤ k ≤ n − 1) step. It
is not difficult to see that Bn3 is the transpose of Bn1 . The transfer matrix Bn2 that
represents every (3k + 2)-th (1 ≤ k ≤ n − 1) step is a 2n × 2n matrix whose rows and
columns are indexed by vectors of Pn−1. The entry of Bn2 in position (α, β) is 1 if
α, β are orthogonal, and is 0 otherwise. Thus if we take the transfer matrix of Hm,n

to be Bn = Bn1 Bn2 Bn3 , for the number of independent sets of Hm,n, we have

g(m, n) = 1 · Bm
n 1,
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where 1 denotes the all-one column vector.

When n = 2, the transfer matrices B21 , B22 and B23 are

B21 =



1 1 1 1
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 0 0
1 0 0 0



, B22 =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 , B23 = B>21
.

Therefore, the triple-step transfer matrix of Hm,n is

B2 =



9 6 6 6 4 6 6 6 4
6 3 4 4 2 4 3 3 2
6 4 3 3 2 3 4 4 2
6 4 3 3 2 3 4 4 2
4 2 2 2 1 2 2 2 1
6 4 3 3 2 3 4 4 2
6 3 4 4 2 4 3 3 2
6 3 4 4 2 4 3 3 2
4 2 2 2 1 2 2 2 1



.

The 4-8-8 lattice with toroidal boundary condition, denoted as Tm,n, can be ob-
tained by identifying edges (bi, bi+1) with (b∗i , b

∗
i+1) (1 ≤ i ≤ 2n−1) of Hm,n respectively

(see Fig. 7.3).

In general, for a two dimensional lattice Pm,n with free boundary condition and
transfer matrix Tm, let us denote its corresponding lattices with cylindrical boundary
condition and toroidal boundary condition by Cm,n (with transfer matrix Bn) and
Tm,n respectively.

We say that the square lattice is of transfer multiplicity one since computing the
number of independent sets for it only needs to employ single-step transfer matrices
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as shown in [Neil J Calkin, 1998]. This may not hold for other lattices. For example,
in [Zhang, 2006], for a generalized Aztec diamond we need to introduce double-step
transfer matrices, therefore the transfer multiplicity of a generalized Aztec diamond
is two. Based on the discussion above, the 4-8-8 lattice is of transfer multiplicity
three. The triangular Kagomé lattice has multiplicity four since quadruple-step
transfer matrices need to be involved in computing its Merrifield-Simmons index.
The entropy constant of a two dimensional lattice with free boundary condition is
defined by

η = lim
m,n→∞

f (m, n)1/k(m,n),

where f (m, n) is the number of independent sets of Pm,n and k(m, n) denotes the
number of vertices of Pm,n. Before we show that the entropy constants for a lattice
with these three different boundary conditions are the same, let us establish a
relation between the transfer matrix of Pm,n (Cn,m) and the number of independent
sets of Cn,m (Tn,m) by the following lemma.

Theorem 7.2.1. Let Pm,n, who has the same real symmetric transfer matrix in both
vertical and horizontal directions and denoted by Tm, be a two dimensional lattice
with free boundary condition for given positive integers m and n. Let Cm,n, whose
transfer matrix is denoted by Bn, be the corresponding lattice with cylindrical bound-
ary condition and Tm,n be the corresponding lattice with toroidal boundary condition.
Then the trace of T n

m is equal to the number of independent sets of Cm,n and the trace
of Bm

n is equal to the number of independent sets of Tm,n.

Proof. Recall that Cm,n can be obtained by identifying the leftmost and the right-
most columns of Pm,n. Thus there is a bijection between the independent sets of
Cm,n and the independent sets of Pm,n whose leftmost and rightmost column vectors
are the same. And the latter is the trace of T n

m.
Similarly, Tm,n can be obtained by identifying the top row and the bottom row

of Cm,n. Thus there is a bijection between the independent sets of Tm,n and the
independent sets of Cm,n whose corresponding top and bottom row vectors are the
same. And the latter is the trace of Bm

n . �

Neil J Calkin [1998] proved the existence of the entropy constant of the square
lattice and established its upper and lower bounds. Their approach is valid for the
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lattices with the same symmetric transfer matrices in both horizontal and vertical
directions. Thus, the bounds can be generalized and stated as follows.

Theorem 7.2.2. For both Tm and Bn, the entropy constant of the Merrifield-Simmons
index is lower bounded by (λp+2q

λ2q
)1/p, where λ’s are the largest eigenvalues of corre-

sponding T ’s. And the upper bound of the entropy constant is (ξ2k)1/2k, where ξ’s
are the largest eigenvalues of corresponding B’s.

7.3 Numerical Results

Note that the 4-8-8 lattice has the same symmetric transfer matrix in both
horizontal and vertical directions. By Theorem7.2.1 and Theorem 7.2.2, we can
derive the lower and upper bound of entropy constant for the 4-8-8 lattice.

Let p = 2, q = 3 and k = 4 in Theorem 7.2.2, since the largest eigenvalues of
T6, T8 and B8 are given by 105606.367915106937 . . ., 3510407.307349548675 . . . and
1220870.544468111359 . . . respectively, we have

5.765456527051 . . . ≤ lim
m,n→∞

f (m, n)1/mn ≤ 5.765456529341 . . .,

where f (m, n) is the Merrifield-Simmons index of the 4-8-8 lattice Gm,n. Since the
number of vertices of Gm,n is 4mn + 2m + 2n, we can see that the entropy constant
of the 4-8-8 lattice is

η = lim
m,n→∞

f (m, n)1/4mn+2m+2n,

which is between 1.549560101247 . . . and 1.549560101400 . . ..
Some numerical results of Merrifield-Simmons index of the 4-8-8 lattice with

various boundary conditions are presented in the following tables.
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This transfer matrix method for computing Merrifield-Simmons index is also
valid for non-planar lattices. For instance, the square lattice with crossed diagonal
bonds (obtained by adding two crossed diagonals to each square inner face) is non-
planar; its Merrifield-Simmons index can be computed by using multi-step transfer
matrix and it can be showed that the entropy constant is between 1.342542258 . . .
and 1.342652572 . . .. Unlike the Merrifield-Simmons index, dimer entropy is affected
by the boundary conditions, see [Kasteleyn, 1963, 1987, Yan et al., 2008].
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Chapter 8
Independent Sets on the Randomly
Triangulated Grid Graphs

Let us continue our discussion on the statistics of independent sets in this chap-
ter, on a random graph model. Let Gm,n be a grid graph of square cells in m rows
and n columns. Each square cell of the graph can be independently triangulated
by adding a diagonal edge in two ways. Let Gm,n(p) denote the random graph ob-
tained by admitting identical independent Bernoulli distribution on these two types
of triangulation for each square cell. In this chapter we consider the enumeration of
independent sets on Gm,n(p). By using the transfer matrix approach we obtained the
annealed of independent sets per site on Gm,n(p), i.e. ηm(p) = limn→∞ ln f (m, n; p)/mn,
where f (m, n; p) denote the expected number of independent sets on Gm,n(p). Sub-
sequently, we found very strong correlation between this annealed entropy per site
and the Shannon entropy of the corresponding Bernoulli distribution. This prob-
lem was suggested to the author by Brendan McKay during the 36th Australasian
Conference on Combinatorial Mathematics and Combinatorial Computing.

8.1 Background and Related Work

In recent years, the enumeration problem of certain types of subgraphs has been
discussed on random graphs. Zdeborová and Mézard [2006] obtained analytical
results of the annealed entropy and quenched entropy of dimer problems in regu-

113
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lar and Erdős-Rényi random graphs by means of the cavity method. Krivelevich
et al. [2003] studied the asymptotic value of independence numbers of Erdős-Rényi
random graphs. Greenhill et al. [2013] presented an asymptotic formula for the ex-
pectation of spanning trees on uniformly random regular graphs and the asymptotic
distribution of the number of spanning trees on uniformly cubic graphs were also
provided. Based on the structure of Graphene, a random planar hexagonal lattice
model whose samples are from real world were considered in [Ren et al., 2012].
Its dimer problem and dimer-monomer problem were studied in [Ren et al., 2012]
and [Ren et al., 2014] respectively. Inspired by the prior work, in this Chapter,
we extend our discussion of lattice gas model to the random triangulated square
lattice.

8.2 The Random Triangulation

Let Gm,n (where m and n always denote positive integers) denote a grid graph
whose square cells are arranged in m rows and n columns. The number of vertices
in Gm,n is (m + 1)(n + 1). Each square cell of the graph Gm,n can be triangulated by
adding a diagonal edge in one of the two directions. Assume that the probabilities
of choosing these two directions are p (north-east direction) and 1 − p (north-west
direction) respectively as shown in Figure 8.1. Let Gm,n(p) denote the random
graph obtained by admitting identically independent Bernoulli (p) on these two types
of triangulation for each square cell. Let us illustrate this type of random graph by
examples, when m = 2 or 3, in Figure 8.2 and Figure 8.3 respectively.

Fig. 8.1: α-type with probability p and β-type with probability 1 − p.
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Fig. 8.2: Sample space of random graph G2,1(p)

Fig. 8.3: Sample space of random graph G3,1(p)

Similar to Chapter 7, we denote the collection of binary (m+1)-vectors containing
no consecutive 1’s as Cm that represents all possible independent sets in a column of
Gm,n. The cardinality of Cm is Fm+2 (the (m + 2)-th Fibonacci number). For any one
of the 2m samples in the sample space of Gm,1(p), we can represent the independent
sets of the sample graph by a transfer matrix T (i)

m of order Fm+2 (i = 1, . . . , 2m), whose
rows and columns are indexed by vectors in Cm. More precisely, for any v, v′ ∈ Cm

the element of T (i)
m in position (v, v′) is 1 if the vertex sets corresponding to v, v′

consist an independent set of Gm,1 and is 0 otherwise. Taking the expectation of all
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transfer matrices of the Gm,n(p), we obtain the expected transfer matrix Tm(p) as
a weighted sum of transfer matrices for all 2mn samples. The graphs in the sample
space of G2,1(0.3) and their corresponding transfer matrices T (i)

m , i = 1, . . . , 2mn are
given below. The expectation of the transfer matrices for all samples is given by
T2(0.3).

T (1)
2 =



1 1 1 1 1
1 0 1 1 0
1 0 0 1 0
1 1 0 0 0
1 0 0 0 0


,T (2)

2 =



1 1 1 1 1
1 0 1 1 0
1 0 0 0 0
1 1 1 0 0
1 0 1 0 0



T (3)
2 =



1 1 1 1 1
1 0 0 1 0
1 1 0 1 1
1 1 0 0 0
1 0 0 0 0


,T (4)

2 =



1 1 1 1 1
1 0 0 1 0
1 1 0 0 0
1 1 1 0 0
1 0 0 0 0



T2(0.3) =



1 1 1 1 1
1 0 0.3 1 0
1 0.7 0 0.3 0.21
1 1 0.7 0 0
1 0 0.21 0 0


.

Note that a sample of Gm,n(p) can be constructed by gluing n samples (with
replacement) of Gm,1(p) successively. We show that the expected number of inde-
pendent sets on Gm,n(p) can be computed by the sum of entries of T n

m(p).

8.3 Main Results

In this section, we show that the expected number of independent sets on Gm,n(p)
can be computed by the sum of entries of T n

m(p).

Theorem 8.3.1. The expectation of the number of independent sets on Gm,n(p) is
given by

f (m, n; p) = 1T n
m(p)1T .
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Proof. Let p(T (i)
m ) denote the probability of choosing G(i)

m,1, i = 1, . . . , 2m from the
sample space of Gm,1(p) and fi(m, n) denote the number of independent sets on G(i)

m,n.
Then we have

f (m, n; p) =
∑

i1i2···in

p(T (i1)
m )p(T (i2)

m ) · · · p(T (in)
m ) fi1i2···in(m, n)

=
∑

i1i2···in

p(T (i1)
m )p(T (i2)

m ) · · · p(T (in)
m )1T (i1)

m T (i2)
m · · · T

(in)
m 1T

=
∑

i1i2···in

1
(
p(T (i1)

m )p(T (i2)
m ) · · · p(T (in)

m )T (i1)
m T (i2)

m · · · T
(in)
m

)
1T

= 1

 ∑
i1,i2...,in

p(T (i1)
m )p(T (i2)

m ) · · · p(T (in)
m )T (i1)

m T (i2)
m · · · T

(in)
m

 1T

= 1
(
p(T (1)

m )T (1)
m + p(T (2)

m )T (2)
m + · · · + p(T (2m)

m )T (2m)
m

)n
1T

= 1T n
m(p)1T ,

where the choice of i1, i2, . . . , in ∈ {1, 2, 3, . . . , 2m} are repeatable. So the index set is
of cardinality 2mn. �

The annealed entropy of the number of independent set of Gm,n(p) is defined as
ln f (m, n; p)/mn. Consider the limit of the annealed entropy of independent set per
square when n approaches infinity, that is

ηm(p) = lim
n→∞

ln f (m, n; p)/mn.

Let λm,1(p) denote the largest eigenvalue (in modulus) of Tm(p). In the following, we
prove the relation between ηm(p) and the largest eigenvalue (in modulus) of Tm(p).

Theorem 8.3.2. The limit of the annealed entropy of independent set per site of
Gm,n(p) as n→ ∞ is given by

ηm(p) = ln λm,1(p)/m.

Proof. It is easy to verify that Tm(p) is an irreducible matrix, which implies that
there is a positive (simple) eigenvalue of Tm(p) that exceeds the modulus of all
other eigenvalues (the existence of such an eigenvalue is guaranteed by the Perron-



118 Chapter 8. Independent Sets on the Randomly Triangulated Grid Graphs

Frobenius Theorem). Let k denote the Fibonacci number Fm+2, the characteristic
polynomial of Tm(p) can be written as:

xk + c1xk−1 + c2xk−2 + · · · + ck−1x + ck = 0

By the Hamilton-Caylay Theorem we have

T k
m + c1T k−1

m + c2T k−2
m + · · · + ck−1Tm + ckI = 0,

where I and 0 denote the Fm+2 by Fm+2 identity matrix and matrix of all 0’s respec-
tively. Then we obtain the recurrence relation of the cardinality of independent sets
in the form of

f (m, j; p) + c1 f (m, j − 1; p) + · · · + ck−1 f (m, j − k + 1; p) + ck f (m, j − k; p) = 0,

where j = k + 1, k + 2, . . .. By the theory of linear difference equations with constant
coefficients, the homogeneous solution to the above equation is a linear combina-
tion in the form of Ciλm,i(p)m, where Ci is the constant coefficient determined by the
initial conditions, i.e. the initial values of f (m, 1; p), f (m, 2; p), . . ., f (m, k; p). Let
λm,1(p), . . . , λm,l(p) denote the distinct eigenvalues of Tm(p) with algebraic multiplic-
ity 1, e2, . . . , el respectively. Thus,

f (m, n; p) = c1λ
n
m,1(p) +

l∑
i=2

ei∑
j=1

ai jmei− jλm
m, j(p),

where ai j are constant coefficients. Then we have

ηm(p) = lim
n→∞

ln f (m, n; p)/mn = ln λm,1(p)/m.

That completes the proof. �
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8.4 Experiments

Our experiment also supports Theorem 8.3.2. We report some of the values of
ln λm,1(p)/m and ln( f (m, n; p))/mn with n = 100 in Table 8.1 and Table 8.2 respec-
tively.

m p = 0.3 p = 0.5 p = 0.9
1 0.77932296726864 0.78213773426906 0.77085787963316
2 0.56617745580448 0.56777543927018 0.56156482815422
3 0.48903371824254 0.49063344553942 0.48436459137243
4 0.45193825107408 0.45340621564412 0.44769945558867
5 0.42929548846124 0.43072758929728 0.42515832764671
6 0.41430479539063 0.41569901252843 0.41028859427341
7 0.40356799600337 0.40493967122235 0.39962012472550
8 0.39552370200930 0.39687701253179 0.39163320947690
9 0.38926462553250 0.39060412280449 0.38541668087957
10 0.38425806847677 0.38558636349262 0.38044486767815
11 0.38016158614475 0.38148076455478 0.37637657279850

Table 8.1: The eigenvalue approximation

m p = 0.3 p = 0.5 p = 0.9
1 0.78964843564591 0.79245384580572 0.78121022063039
2 0.57368686057915 0.57529460853630 0.56904352987573
3 0.49552251420460 0.49712828026730 0.49083451592644
4 0.45793589169533 0.45941235502240 0.45367054368683
5 0.43499371732890 0.43643409238543 0.43083081447020
6 0.41980460313994 0.42120757999449 0.41576114593824
7 0.40892577348357 0.41030632482455 0.40495032385232
8 0.40077503278234 0.40213738856693 0.39685644356716
9 0.39443314552337 0.39578179095878 0.39055680108048
10 0.38936034439968 0.39069787982204 0.38551846531132
11 0.38520966133618 0.38653815221735 0.38139575476258

Table 8.2: The annealed entropy approximation

Let us denote the Shannon entropy of Bernoulli distribution Bernoulli (p) as H(p).
Intuitively, H(p) of the Bernoulli distribution that Gm,n(p) follows should describe
the uncertainty of our model. The numerical results suggest that the annealed
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entropy ηm(p) achieve the maximum when p = 1/2 as H(p) does. We set n = 100
and illustrate the relation between H(p) and ηm(p) for different values of m and p in
Figure 8.4. For each value of m, we plot ηm(p) against H(p) in the same color and
calculate the linear regression line with least squares. Our simulation suggests that
all these linear regressions have small residual standard errors and each regression
is performing better than “random noise” as a predictor, based on the output F-
statistic. Therefore, we conclude that there is a strong correlation between ηm(p)
and H(p).
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Fig. 8.4: Relation between the annealed entropy and the Shannon entropy



Chapter 9
Future Research Directions

We conclude this thesis by listing a few research directions that deserve further
investigation.

In Chapter 3, we indicate that Bayesian inference can be differentially-private
provided the prior is set appropriately, but the effects on learning have not been
fully examined. Even though larger c can improve privacy, the high concentration
of prior would result in the inhibition on learning. Therefore, the trade-off between
privacy and utility could be optimized by the choice of c, through which the number
of samples can be controlled.

In Chapter 4, we investigate the link between posterior sampling and the expo-
nential mechanism. By setting the utility function as the log-likelihood and base
measure as the prior, the density function in the exponential mechanism has similar
form to the posterior distribution. We use this to release approximate MAP point
estimates. Wang et al. [2015] noted this connection independently. In our frame-
work, privacy is achieved by setting ε to a sufficiently small value; it is noteworthy
that this is also how robustness results for altered Bayesian inference is obtained by
Grünwald [2012]. That connection suggests we can gain both privacy and efficiency
in some cases. We have proven that privacy is achievable by modifying the prior
which is consistent with the base measure in the exponential mechanism. Therefore,
we believe that the examination on settings where both ε and the prior measure
may be adjusted could be fruitful.

Graph structure is known to be deeply linked with computational complexity of

121



122 Chapter 9. Future Research Directions

exact Bayesian inference, and mixing times for sampling-based inference. Chapter
4 demonstrates how graph structure (i.e. conditional independence structure) also
impacts on differential privacy. Are there further connections between graph struc-
ture and differential privacy in other mechanisms developed here and elsewhere?

Beyond sampling-based methods, it is natural to consider differential privacy in
exact inference. There are algorithms such as message passing and junction tree
which perform exact inference on graphical models. Variational method such as
mean field approximation can be easily used to preserve privacy since approximation
with a different model might provide privacy guarantees for free. Finally, could
existing frameworks for probabilistic programming such as Stan [Stan Development
Team, 2015] be adapted to provide differential privacy in a usable manner? A
solution to this question would be of broad interest.

In Chapter 7, we develop an approach to count independent sets on the 4-8-8
lattice by modifying the classical transfer matrix method. However, Yao-ban Chan
reminded the author that there is a more powerful approach: the corner transfor-
mation method can be applied to this kind of problem and it usually provides better
approximations. Also, the 4-8-8 lattice has larger entropy constant of the number of
independent sets comparing to that of the square lattice [Neil J Calkin, 1998] while
the square lattice has larger entropy than that of the square lattice with crossed
diagonal bonds as shown in Chapter 7. Note that the vertices of the 4-8-8 lattice
are of degree three while the vertices of the square lattice and square lattice with
crossed diagonal bonds are of degree four and eight respectively. Is the entropy
of the number of independent sets negatively correlated to the average degree of a
lattice? Intuitively, the answer is likely to be a yes but further investigation needs
to be made.

On the random triangulated grid graph Gm,n(p), our experiments suggest that
there is a strong correlation between the annealed entropy per site of the inde-
pendent sets and the Shannon entropy of underlying Bernoulli distribution when
n approaches infinity. However, to derive an analytical relation between these two
entropies would be a challenge. The double limit of this annealed entropy as m and
n approach infinite at the same rate represents a more difficult task.
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