
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Finger, président du jury
Prof. B. Faltings, directeur de thèse

Prof. A. Bernstein, rapporteur
Prof. C. Tucci, rapporteur
Prof. L. Xia, rapporteur

Aggregating Information from the Crowd: ratings,
recommendations and predictions

THÈSE NO 6233 (2014)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 27 JUIN 2014

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'INTELLIGENCE ARTIFICIELLE

PROGRAMME DOCTORAL EN MANAGEMENT DE LA TECHNOLOGIE

Suisse
2014

PAR

Florent Frédéric GARCIN

Acknowledgements
I am very grateful to my thesis director, Prof. Boi Faltings, for his supervision, support, and

insightful discussions. Thank you! My acknowledgements go to the members of my thesis

jury for their valuable comments and suggestions: Profs. Abraham Bernstein, Matthias Finger,

Christopher Tucci, and Lirong Xia. A special thanks goes to Lirong for the wonderful time

across the Atlantic. I would like to express my gratitude to the lab assistants Marie Decrauzat

and Sylvie Thomet for their help solving administrative mazes.

Thanks also go to former and current members of the AI lab, in particular to: Arnaud Jutzeler

for discussions on how unique EPFL community is; Brammert Ottens for sharing the crazy

organizations of awesome ski weekends; Christos Dimitrakakis for introducing me to context

tree and for his precious expertise on statistics and probabilistic inference; Goran Radanovic

for great discussions about incentive schemes; Immanuel Trummer for breaking stereotypes

about Germans being so organized; Ludek Cigler for the awesome telemark theory and prac-

tice; Paul Dütting for tasty beers we have every time we meet; PuLi for sharing a great office

and being the best office mate; Thomas Léauté for being (not?) so French, his unique sense of

humour, and sharing the passion of cross-languages puns.

I would like to thank the many students I had the opportunity to work with: Abson Sae-Tang,

Achraf Tangui, Anaël Fiaux, Baptiste Vinh Mau, Bernard Maccari, Céline Heldner, Clément

Moutet, Egemen Vardar, Flavien Aubelle, Frederik Galle, GaoPeng, George Christodoulou, Gr-

isha Rozhdestvenskiy, Hieu Pham, Jérémy Gotteland, Jonathan Link, Jonathan Rohrbach,

Matthieu Fond, Michael Hobbs, Nadine Joswig, Phanindra Pisupati, Stéphane Bouquet,

Sébastien Epiney, and last, but not least ZhouKai.

Finally, I cannot express how thankful I am to LiNa and my family for their unconditional love,

help and support.

Lausanne, May 27, 2014 F. G.

iii

Abstract
With an ever-growing amount of data generated on the web, aggregating information from

the crowd into meaningful knowledge has become crucial to companies in order to create a

competitive edge. Not only companies, but also organizations and governments can benefit

from this aggregation.

In this thesis, we illustrate the benefits of aggregating information from the crowd with three

applications. In the first application, we investigate different ways of aggregating users’ ratings

on review websites. With the help of gamification techniques, we introduce a new methodol-

ogy for studying users’ rating behaviour, and show that there is a balance between the amount

of private information elicited from the crowd and the accuracy of the aggregated rating.

In the second application, we consider the aggregation of implicit feedbacks from the crowd

in order to generate personalized recommendations of news articles. We propose a new

class of recommender systems based on Context Trees (CT), specifically designed for a dy-

namic domain like the news. We show that CT recommender systems generate accurate and

novel recommendations in an offline setting, but also in real time on the newspaper website

swissinfo.ch.

In the last application, we address the problem of eliciting private information to predict

outcomes of events. We report on an experimental platform called swissnoise that allows

users to express their opinions on various topics ranging from sports to politics. It is the first

platform to implement a peer prediction mechanism for online opinion polls. We show that

peer prediction can be practically implemented, and discuss the design choices and variations

made to such mechanism. Finally, we find that peer prediction achieves a performance

comparable to that of prediction markets.

Keywords: aggregation, crowd, ratings, recommendation, news, opinion poll, prediction

market, peer prediction

v

Résumé
Avec une quantité toujours croissante de données générées sur le web, l’agrégation de l’in-

formation provenant de la foule en connaissance structurée est devenue cruciale pour les

entreprises afin de créer un avantage concurrentiel. Non seulement les entreprises, mais aussi

les organisations et les gouvernements peuvent bénéficier de cette agrégation.

Dans cette thèse, nous illustrons les avantages de l’agrégation d’information de la foule

avec trois applications. Dans la première application, nous étudions différentes façons de

regrouper les notes des utilisateurs sur les sites web d’évaluations. Avec l’aide de techniques

de ludification, nous introduisons une nouvelle méthodologie pour l’étude du comportement

des utilisateurs lorsqu’ils donnent une évaluation, et montrons qu’il existe un équilibre entre

la quantité d’informations privé extraite de la foule et la précision de l’évaluation agrégée.

Dans la deuxième application, nous considérons l’agrégation des évaluations implicites de la

foule afin de générer des recommandations personnalisées d’articles de presse. Nous propo-

sons une nouvelle classe de systèmes de recommandation basée sur les Arbres Contextuels

(AC), spécialement conçus pour un domaine dynamique tel que les articles de presse. Nous

montrons que les systèmes de recommandation AC génèrent des recommandations précises

et nouvelles dans un cadre hors-ligne, mais aussi en temps réel sur le site Internet du journal

swissinfo.ch.

Dans la dernière application, nous abordons le problème d’obtenir des informations privées

pour prédire le résultat d’événements. Nous rendons compte des résultats obtenus sur une

plate-forme expérimentale appelée swissnoise qui permet aux utilisateurs d’exprimer leurs

opinions sur divers sujets allant du sport à la politique. Il s’agit de la première plate-forme qui

met en oeuvre un mécanisme en ligne de prédiction par les pairs pour les sondages d’opinion.

Nous montrons que la prédiction des pairs peut être pratiquement implémentée, et discutons

des choix de conception et modifications apportés à ce mécanisme. Enfin, nous constatons

que la prédiction par les pairs permet d’obtenir une performance comparable à celle des

marchés de prédiction.

Mots clés : agrégation, foule, notations, recommandation, news, sondage d’opinion, marché

de prédiction, prédiction par les pairs

vii

Zusammenfassung
Angesichts der stetig wachsenden Datenflut im Internet, gewinnt das Extrahieren sinnvoller

Informationen daraus eine immer grössere Bedeutung. Nicht nur für Unternehmen sind diese

Informationen wertvoll, auch Organisationen und Regierungen können von den gewonnenen

Informationen profitieren.

Diese Dissertation zeigt anhand von drei Anwendungen, wie sinnvolle Informationen aus der

Datenflut extrahiert und genutzt werden können:

Die erste Anwendung untersucht unterschiedliche Möglichkeiten für zusammenfassende

Darstellung von Rezensionen auf Bewertungsportalen. Mit Hilfe einer spielerischen Methode

wird das Verhalten der Anwender studiert. Die Ergebnisse zeigen, dass zwischen der Menge der

privaten Einzelinformationen und der Genauigkeit der Zusammenfassung ein Gleichgewicht

herrscht.

Die zweite Anwendung befasst sich mit der Nutzung von impliziten Leserfeedback eines

Nachrichtenportals zur Generierung von personalisierten Artikelempfehlungen. Es wird eine

neue Klasse zur Generierung solcher Empfehlungen entwickelt, welche auf Context Trees (CT)

beruht, die speziell für diese dynamische Umgebung entworfen wurden. Experimente mit den

zur Verfügung gestellten Daten einer grossen Schweizer Zeitung sowie der Echtzeit-Test auf

dem Nachrichtenportal swissinfo.ch zeigen, dass diese Systeme akkurate und abwechslungs-

reiche Empfehlungen generieren.

Die letzte Anwendung betrifft die Erhebung von privaten Informationen zur Vorhersage von

Ergeignissen. Zur Untersuchung dieses Sachverhalts wurde die Plattform swissnoise entwickelt.

Auf dieser können Anwender ihre Meinung zu unterschiedlichen Themen wie Sport und

Politik formulieren. Die Plattform basiert auf einem Peer Prediction Mechanismus, also einer

Technik die bisher nur theoretisch untersucht wurde. Hier wird nicht nur die Praxistauglichkeit

dieser Technik bewiesen, sondern auch diverse Entscheidungen diskutiert, welche im Laufe

der praktischen Umsetzung anfallen. Schliesslich wird das System mit den sonst üblichen

Prediction Markets verglichen und festgestellt, dass vergleichbare Ergebnisse erzielt werden.

Schlagworte: Datenerhebung, Crowd, Bewertung, Empfehlung, Nachrichten, Prediction Mar-

ket, Peer Prediction, Online-Abstimmung

ix

摘摘摘要要要
随着网络数据量的日益增长，为了创造竞争优势，将群众信息集成
为有意义的知识对公司、组织和政府部门都具有至关重要的意义。
在本论文中，我们通过三个应用来阐述集成群众信息所带来的好
处。在第一个应用中，我们研究评论网站上的用户评分的不同集成
方法。通过游戏化技术，我们介绍了研究用户评分行为的新方法，
并且揭示了从群众中所提取的隐私信息量和评分集成的精确度之间
存在着权衡关系。
在第二个应用中，我们对隐性的反馈信息进行集成，以达到提供个
性化新闻推荐的目的。我们提出一类新的基于上下文树（context
tree）的推荐系统。这类推荐系统尤其适合于诸如新闻的动态领
域。我们的研究结果显示，基于上下文树的推荐系统不仅能在离线
环境设置下提供精确和新颖的推荐，并且在实时的新闻网站上也可
以达到同样的效果（swissinfo.ch）。
在最后一个应用中，我们对通过获取隐私信息预测事件结果进行了
阐述。我们设计了一个实验性平台swissnoise。用户可以通过该平
台对体育、政治等各种不同的话题表达意见。该平台是第一个实
现了通过同辈预测（peer prediction）机制进行在线意见调查的平
台。我们揭示了同辈预测机制的可行性，并且对设计选择和对该机
制的调适进行了讨论。最后我们发现，同辈预测机制可以达到与预
测市场同等的性能。

关关关键键键词词词：：：集成，群众，评分，推荐，新闻，意见调查，预测市
场，同辈预测

xi

Contents
Acknowledgements iii

Abstract (en/fr/de/cn) v

List of Figures xv

List of Tables xviii

1 Introduction 1

2 Aggregating Ratings 3

2.1 Introduction . 3

2.1.1 Contributions . 4

2.1.2 Related Work . 4

2.2 Aggregators . 6

2.3 Rating Model . 6

2.4 Gamification . 8

2.4.1 Metrics . 10

2.5 Results . 11

2.5.1 Static Experiment . 12

2.5.2 Dynamic Experiment . 13

2.6 Discussion . 15

2.7 Applications . 16

2.7.1 Ranking of Uniform Recommendations . 17

2.7.2 Personalized Recommendations . 19

2.8 Conclusion and Future Work . 22

3 Recommending News Articles 25

3.1 Introduction . 25

3.1.1 Contributions . 27

3.1.2 Related Work . 27

3.2 Context Trees . 30

3.2.1 Sequence Context Tree . 30

3.2.2 Topic Distribution Context Tree . 32

3.2.3 Experts . 32

xiii

Contents

3.2.4 Combining Experts for Predictions . 33

3.3 Expert Models . 33

3.3.1 Standard Model . 34

3.3.2 Popularity Model . 34

3.3.3 Freshness Model . 34

3.3.4 Mixing the Expert Models . 35

3.4 Context-tree Recommender Systems . 36

3.4.1 General Algorithm . 36

3.4.2 Recommender Systems . 36

3.5 Offline Evaluation . 38

3.5.1 Datasets . 39

3.5.2 Metrics . 39

3.5.3 Results . 41

3.6 PEN Recsys Framework . 43

3.6.1 Architecture . 44

3.6.2 Real-time Recommendation and Latency 46

3.6.3 Interfaces . 47

3.7 Live Evaluation at swissinfo.ch . 48

3.7.1 Baselines . 48

3.7.2 Offline . 50

3.7.3 Online . 51

3.8 Discussion . 55

3.8.1 Online vs Offline Evaluations . 55

3.8.2 Page Layout . 56

3.8.3 Manual and Dynamic Recommendations 60

3.9 Conclusion and Future Work . 60

4 Predicting Outcomes of Events 63

4.1 Introduction . 63

4.1.1 Contributions . 64

4.1.2 Related Work . 64

4.2 Prediction Mechanisms . 65

4.2.1 Prediction Market . 65

4.2.2 Peer Prediction . 67

4.3 Swissnoise . 69

4.3.1 Implementation and Design . 70

4.4 Results . 72

4.5 Conclusion and Future Work . 76

5 Conclusion 77

Bibliography 86

xiv

Contents

Curriculum Vitae 87

xv

List of Figures
2.1 Tripadvisor’s certificate of excellence issued to an hotel reaching 4.5 stars out of 5. 4

2.2 Typical rating scenario. 7

2.3 Gamified rating scenario. 9

2.4 Screenshot of the game: reports of other players (top left), sampling system

(bottom left) and area to estimate (right). 10

2.5 Truthfulness and mean absolute error for the static experiment. 13

2.6 Players’ demographics . 14

2.7 Game features . 14

2.8 Truthfulness and mean absolute error for the dynamic experiment. 15

2.9 Number of hotels over time that deviate more than 5 ranks from the final rank. 19

2.10 Kendall rank correlation over time. 19

2.11 Average precision and recall of recommendations, with confidence intervals at

95%. 21

2.12 Average hit ratio as a function of the size of recommended items, with confidence

intervals at 95%. 22

3.1 A story with dynamic recommendations on the right side, and manually-generated

recommendations on the bottom left (red-dashed areas). 26

3.2 VMM context tree for the sequence s = 〈n1,n2,n3,n2〉. Nodes in red-dashed are

active experts µ ∈ A(s). 31

3.3 Distribution of the length of visits. 40

3.4 VMM recommender system: different mixtures of experts (Bayesian update,

|F | = 10). 41

3.5 Accuracy for personalized and non-personalized news items. 41

3.6 Expected performance curves: accuracy and novelty trade-off. 42

3.7 System architecture and components . 45

3.8 Two possible solutions to deliver news recommendations. 46

3.9 Screenshot of the main panel . 47

3.10 Screenshots of settings and performance panels 49

3.11 Offline predicted accuracy for different sizes of candidate set. 50

3.12 CTR of online (bootstrap + phase 1) and offline evaluations. 52

3.13 Online actual CTR over visit length, with confidence intervals at 95%. 53

3.14 Distribution of visit length. 54

xvii

List of Figures

3.15 Online actual CTR of different mixtures of experts for phase 2. 55

3.16 swissinfo.ch’s page layout for a story and a ticker. For a story, dynamic (blue-

dashed) and manual (blue-dotted) recommendations are at the bottom of the

page. For a ticker, the position of dynamic recommendations (red-dashed)

changes: bottom or top right. 57

3.17 A swissinfo.ch’s story of average length (2758 characters) 58

3.18 swissinfo.ch’s dynamic recommendation boxes: bottom and top-right position.

Note that the number of recommendations is not the same. 59

3.19 Click-through rate on tickers for the two different placements, with confidence

intervals at 95%. 59

4.1 swissnoise’s homepage. 64

4.2 Different reward schemes for peer prediction (a = 50,b = 1). 69

4.3 swissnoise’s event description panels. 70

4.4 Profits and returns. 72

4.5 User activity on swissnoise. 73

4.6 Forecast accuracy for different liquidity parameters. The dashed and dotted

lines represent the log score for the initial probabilities and the actual market,

respectively. 74

4.7 Reject probability of the 3 items. 75

4.8 Average log score of the 3 items. 75

xviii

List of Tables
2.1 Tripadvisor dataset . 17

2.2 Average absolute difference of ranking . 18

2.3 Average number of outliers (with highest ratings ’5’) required to alter the ranking

(all p-values < 0.05). In bold, the highest values. 18

3.1 Datasets after filtering. 39

3.2 Average visit length with and without recommendations 54

xix

1 Introduction

More than 2.5 billion gigabytes of data1 are created every day in multiple forms. In one single

minute on the internet, 72 hours of Youtube videos are uploaded, Google addresses 2 million

search queries, 1.8 million items are liked on Facebook, 278 thousand tweets and 204 million

emails are sent, Amazon makes $83’000 in sales and 17 thousand transactions take place at

Walmart.

This tsunami of information is flooding straight into the world economy. Companies face a

massive amount of data about their customers, and at the same time users will continuously

generate new information. Indeed, in the era where everything is connected, the interactions

between individuals and organizations generate a huge quantity of data that is most of the

time, in fact, churned out by companies, unable to effectively process them.

It is thus crucial for companies to come up with efficient techniques to aggregate information

into meaningful knowledge. Companies can leverage this knowledge in order to have a

competitive edge. As a result they will be able to increase the quality of products and services

for instance. Not only companies can benefit from aggregating information from the crowd,

but also governments and organizations. What informations and how to aggregate them is

not trivial and often context dependent. In this thesis, we illustrate these benefits with three

applications of information aggregation from the crowd.

In the first application, we investigate various ways of aggregating users’ ratings on review

websites. Review websites play a major role in today’s electronic commerce because they

influence drastically customers’ decision making. For instance on a review website where

products are ranked by their overall aggregated rating, a product with a lower aggregated rating

will have a lower chance to be seen and selected by potential buyers. Therefore, understanding

how users give ratings is important. With the help of gamification techniques, we introduce

a new methodology for studying users’ rating behaviour. We explore different aggregating

mechanisms with interesting properties, and we show that there is a balance between the

amount of private information elicited from the crowd and the accuracy of the aggregated

1Estimations by IBM for 2012. http://www.ibm.com/big-data

1

Chapter 1. Introduction

rating. We illustrate the benefits of changing the way ratings are aggregated with two examples:

ranking of products and product recommendations. We believe that our results are helpful in

the design of human computation tasks in general, such as rating and reputation, community

sensing, opinion polls or question-and-answer websites.

Review websites collect explicit feedback through ratings. In the second application, we

consider the aggregation of implicit feedback from the crowd in order to generate personalized

recommendations. We tackle the problem of recommending news articles to anonymous users

solely based on their traces left on a newspaper website. Personalized news recommendations

have specific challenges. First, users’ preferences are subject to trends. Users do not want

to see multiple articles with similar content, and often we do not have enough information

to profile the users. Second, news evolves rapidly: stories and topics appear and disappear

quickly, and old news are no longer interesting. Thus, recommendations should provide

added value, and not just consist of the most popular stories that readers would have already

seen on the front page. We address these issues by proposing a new class of recommender

systems based on Context Trees (CT). CT recommenders employ an incremental algorithm

that adapts the models continuously, and is thus better suited for such a dynamic domain as

the context tree evolves over time and adapts itself to current trends and reader preferences.

We conduct an offline evaluation to demonstrate that CT recommenders make accurate and

novel recommendations. We then discuss how to apply CT recommenders to a live-traffic

website, and explain the design and implementation of a new online evaluation framework.

Finally, we deploy our framework on the newspaper website swissinfo.ch in order to run a live

evaluation.

Business decisions are tightly linked to the information gathered behind them. Unfortunately,

decision makers hardly ask employees who have direct contact with the customers how,

for instance, a new product will fly. Hence, executives take decisions without this crucial

information that could improve their analysis and reduce bad decision making. In the third

application, we address the problem of eliciting private information to predict outcomes of

events. It is usually done by rewarding participants for their responses. However, participants

might not always give honest answers. There are two mechanisms that provide this desired

property: prediction markets and peer prediction. Prediction markets have been extensively

used in practice, but on the contrary peer prediction has not been much explored. We report

on an experimental platform called swissnoise that investigates these two mechanisms. It is the

first platform to implement a peer prediction scheme in public opinion polls. Therefore, we

first show that peer prediction can be practically implemented. Second, we discuss the design

choices and variations made to such mechanisms when implementing them. Finally, we show

that peer prediction achieves a performance comparable to that of prediction markets. Our

results are not only useful to companies, but also to organizations and governments. They can

get insight on crucial issues in order to improve their analysis and reduce bad decision making.

In particular, peer prediction has the advantage of not requiring observable outcomes, and is

thus more suited for hypothetical questions related to product development, developing and

selecting marketing campaigns, or policy making.

2

2 Aggregating Ratings

2.1 Introduction

Review websites play a major role in customers’ decision making, superseding traditional

word-of-mouth. The importance of online reviews is such that companies use them as proof

of quality and do not hesitate to advertise their overall score. For instance, Tripadvisor1 is

issuing a “certificate of excellence” (Figure 2.1) based on the overall rating score achieved by a

hotel. These certificates are then displayed on hotel websites and entrance doors.

In general, review websites order products according to their ratings, and user only consider

those that are at the top of such rankings. Such ordering is obtained by aggregating individual

ratings into a single value. By submitting a rating, users influence the overall score of the

product they rate, and thus the final decision of potential customers.

Ratings are most commonly aggregated using the arithmetic mean. However, the mean is

susceptible to outliers and biases [35], and thus may not be the most appropriate aggregator

because reviews are often biased [45, 54]. As such, any website that collects users feedback,

reviews or ratings has an interest in designing a robust and strategyproof mechanism to

aggregate users preferences and ratings.

In this chapter, we study the influence of different aggregators on rating behavior and the

accuracy of the final aggregate. It would be best if we could carry out a study using data from

actual rating websites. However, nobody knows what the true quality of the rated items is,

nor do we have access to the beliefs of the raters. Furthermore, current rating websites are

polluted by spammers that have other motivations than obtaining accurate rankings. Our

interest is to model the behaviour of raters whose intention is to make the website reflect

the true quality, either because they are altruistic or because the website provides incentives

based on its success.

1http://www.tripadvisor.com

3

Chapter 2. Aggregating Ratings

Figure 2.1: Tripadvisor’s certificate of excellence issued to an hotel reaching 4.5 stars out of 5.

2.1.1 Contributions

In this chapter, we study the influence of different aggregators on rating behavior and the

accuracy of the final aggregate. To do so, we introduce a new way of studying users’ behaviour.

We place people in a game situation that closely mirrors the rating scenario. In the game, we

can carefully control the beliefs and motivations of users, and observe their reaction.

Second, we study the properties of different aggregators (mean, median and truncated mean)

on the rating behavior of users, and in particular on the degree of truthfulness and how well

the aggregate rating matches the true quality of a product.

Finally, we illustrate the benefits of changing the way ratings are aggregated in two applications:

ranking and recommendation. This chapter builds on the results published in [54, 35, 36, 37].

2.1.2 Related Work

In the literature on online ratings, some works focus on the underlying distribution of ratings

and the potential biases [45, 46, 54, 29]. However, only a few researches explore how rating

aggregation should be made [35, 71, 62].

Ratings are most commonly aggregated using the arithmetic mean. However, the mean is quite

sensitive to outliers and biases and thus may not be the most informative aggregator. Garcin

et al. [35, 36] show that other aggregating functions perform better with respect to different

criteria such as the informativeness, robustness and truthfulness. On all these criteria, the

mean seems to be the worst way of aggregating ratings. The median is more robust, truthful

and improves recommendation accuracy.

McGlohon et al. [71] study how to aggregate reviews of different scales and from different

sources. They look at statistical and re-weighting methods for aggregating ratings. For the

4

2.1. Introduction

former, they use techniques such as the mean, the median and lower bounds on normal

and bimodal confidence interval. For the latter, the idea is to give more weight to useful

ratings. Because it is impossible to know the ground truth about the true quality of a product,

they evaluate the accuracy of the proposed methods based on pairwise ranking of items and

sampling from the existing users’ ratings. The accuracy is then computed on the number of

correctly ranked pairs of items. They conclude that the proposed methods do not outperform

the mean, and the median performs poorly because of multiple ties.

Leberknight et al. [62] introduce a rating aggregation technique based on the rating volatility.

It has the advantage to capture the temporal trend of a product or service, and to be more

responsive than the mean.

In these works, the ground truth about the true quality of a product is never known, and thus it

makes it difficult to know how an aggregator will behave when implemented on a real website.

The topic of aggregation in crowdsourcing scenarios is also relevant. The observation that a

crowd of laymen could together obtain a better judgement than an expert was first made by

Galton [30] and made popular by the book of [99]. Most work has focused on applications of

this effect to specific problems.

It is known that workers are prone to dishonest behavior in crowdsourcing markets [98]. As

a result, a flourishing literature on quality control for crowdsourcing tasks emerged [49, 61,

50, 76]. While some works target specific tasks such as classification [106, 49, 55], few address

tasks with more complex outputs like ranking [58]. To our knowledge, none looked at the

problem of rating aggregation.

Closely related to rating aggregation is the research on vote aggregation in social choice theory

[17, 3, 60]. Clemen and Winkler discuss the combination of experts’ probability distributions

in risk analysis. They conclude that simple rules such as the mean are important because

they are easy to use, have robust performance, and are easy to justify in public policy settings.

Ariely et al. suggests to take averages for quantitative judgement because it is a powerful and

robust way of reducing the judgement error. Larrick and Soll show that people in general have

misconceptions about the average and it should be used to reduce judgement error.

Another related line of research is the Maximum Likelihood Estimation (MLE) point of view of

social choice, where the agent’s preferences are ordinal, that is, they report orders instead of

ratings [19, 21, 20, 105, 81]. More recently, various voting rules and elicitation schemes have

been evaluated in human computation scenarios [77, 70].

Our problem is also related to the pointwise approaches in learning to rank [67], which focuses

on designing sensible error functions and fast algorithms for computing the ground truth.

However, in MLE of social choice and learning to rank, the agents are assumed to be truthful,

while in our study, agents can be strategic.

5

Chapter 2. Aggregating Ratings

2.2 Aggregators

Reports are most commonly aggregated using the arithmetic mean. However, the mean is

quite sensitive to outliers and biases and thus may not be the most appropriate aggregator.

There exist aggregation functions such as the median with interesting properties [35, 36]. We

consider the following aggregators:

• the mean is defined as the average value Mean(R) = 1
|R|

∑
r∈R r

• the median is the value in the middle between the lower and upper half of the reports

when the reports are ordered by their magnitude. When the number of reports is even,

we break the ties by taking the average of them. Formally, consider R = (r(1),r(2), ...,r(n))

the reports sorted in ascending order, and let n = 2m −1 if n is odd, and n = 2m if n is

even for some integer m. The median is the value such as:

Median(R) =
r(m) if n is odd,

r(m)+r(m+1)

2 if n is even.
(2.1)

• the α-truncated mean (with α ∈ [0,50)) drops the highest and lowest k = bα(n −1)/100c
reports, and compute the mean of the remaining reports.

Meanα(R) = 1

n −2k

n−k∑
i=k+1

r(i) (2.2)

During the experiments, we will vary α ∈ {10,20,30,40}. Note that the mean and median are

special cases of the truncated mean, respectively atα= 0 and the median is the limit asα→ 50

(at 50% no ratings would remain to take the average).

2.3 Rating Model

The goal of a product rating website is to collect ratings and aggregated them in order to reveal

the true quality of a product. The process of collecting ratings is illustrated in Figure 2.2. Here,

a mobile phone has a true quality q∗. This true quality is unknown and hidden. A user u

perceives the quality of the mobile phone by using it, and we write qu this perceived quality.

Note that the user’s perceived quality qu might not be the same as the true quality of the

product q∗. The user u sends a report ru to the product rating website. Finally, the product

rating website aggregates ratings from users.

Following the scenario in Figure 2.2, we consider the problem of estimating a continuous

signal drawn from a certain probability distribution. Reporters obtain noisy observations of

samples of the signal according to this probability distribution and form an opinion on the

most likely value of the signal.

6

2.3. Rating Model

true quality perceived quality

q*

q1

q2

qu

...
A({r1, r2, …, ru})

aggregated value

r1

r2

ru

Figure 2.2: Typical rating scenario.

More formally, let q∗ denote the true value of the signal, and f (·|q∗) a probability distribution

of this signal. We denote qu ∼ f (·|q∗) the user’s u observed value of the signal, and ru the

report of user u. The user u can actively get samples s such that s ∼ g (·|qu), where g is another

(possibly the same as f) probability distribution. The range of g should be close to qu in order

to avoid too much noise, hence we bound g such that s ∈ [qu − ε, qu + ε], with small ε. For

example, in a product rating scenario the probability distribution g models the uncertainty

of a user on perceiving the personalized quality of a product, whereas f models the noise in

generating personalized qualities of an item.

We assume that errors in observation of the signal are independent of one another and follow

a normal (Gaussian) distribution. It has been shown that in scenarios such as product reviews

the reports follow other distributions: Hu et al. [45, 46] observe that Amazon product reports

follow a U-shape distribution or a J-shape distribution, a normal distribution centered to the

extreme report. However, these distributions are caused by purchasing and self-selection bias.

Users with extreme opinions are more likely to “brag or moan”, justifying a U-shape distribu-

tion. Users tend to purchase products with higher valuation, making a J-shape distribution.

When users are systematically queried about their opinion, their distribution is close to a

normal distribution [45].

However, when users are systematically queried about their opinion, their distribution is close

to a normal distribution [45]. In this chapter, we focus on scenarios where users participate

with the goal of giving the most accurate information without any external motives. Such

scenarios could apply not only to product rating websites, but also community sensing,

opinion polls or question-and-answer websites. Note that our methodology can be extended

to other cases.

7

Chapter 2. Aggregating Ratings

More precisely, we consider that q∗ is uniformly distributed in the interval [a,b] = [0,10] and

the signal instances as well as their observations are perturbed by normally distributed noise:

q∗ ∼ U (0,10) (2.3)

qu ∼ f =N (q∗,σ2) (2.4)

s ∼ g =N (qu ,0.4) (2.5)

In the above formulas U is the uniform distribution and N is the normal distribution. We

choose σ2 such that it varies with respect to the true quality of the item q∗. If q∗ is located

near the boundaries of the domain [a,b] = [0,10] then σ2 is smaller, making the distribution f

narrower. Products with an average true quality tend to have a larger variance than products

which are on the extremes [97].

2.4 Gamification

We are interested in observing how people behave when their task is to obtain a true estimate

of the signal, as it would be the case in product rating or estimation of publicly observable

phenomena. To this end, we construct an interactive game. This technique of gamification [25]

allows us to conduct a user study and collect data from users while they are playing a game.

This approach increases user engagement and data quality [16].

To avoid any influence from previous beliefs, the game places the players in a completely

unfamiliar situation that closely mirrors the characteristics of a product rating scenario such

that the reporter is motivated to make the result reflect reality. In this game (called the fishing

game), the player is assumed to be hired by a fishing company, and her job is to estimate

the concentration of fish in different regions of the lake. For a given region, the player u has

to evaluate and report the number of fish ru in this region. The player sees reports R \ {ru}

submitted by other players. She can observe as much as she wants the different regions of the

lake to obtain samples s of the number of fish. This rating scenario is illustrated in Figure 2.3.

The utility U depends on how closely the aggregate value corresponds to the true value as

observed by the company. The player starts with a given budget and the goal of the game is

to gather as much points as possible. As the game is simulated, we can place the player in

situations where her own measurements are very similar or very different to the reports of

other players, and observe her behaviour.

We model users who are concerned about making the most accurate aggregation. In this case,

users want to see the aggregate as close as their own perceived signal. Thus, we model their

utility function by the Euclidean distance as

U (R|qu ,A) = 1− |qu −A (R)|
b −a

(2.6)

8

2.4. Gamification

true quantity observation:
uncertainty of the
user on the
perceived quantity

q*

q1

qu

A({r1, r2, …, ru})

statistics

r1

ru

s1

s2

s3

aggregated value

...

qu ~ f(.|q*)
perceived
quantity

s ~ g(.|qu)q* ~ U(.)

Figure 2.3: Gamified rating scenario.

where R is the set of all reports including the player’s report, A the aggregator and qu the user’s

perceived value of the signal, or in this case the user’s perceived number of fish. For simplicity,

we bound the probability distributions f and g between a and b, i.e. q∗, qu ∈ [a,b]. Note that

the utility is maximum when the user’s perceived number of fish equals the aggregated value

qu =A (R).

In order to collect accurate data, we test different combinations of the initial parameters: the

true amount of fish q∗ and the aggregator A . This defines a game as a tuple G = (q∗,A). The

rest of the parameters (i.e. qu) are directly derived from the game, except for f , g , ε and the

boundaries a, b which are fixed. For a given game, we collect 3 reports (one per region of the

lake). Each region of the lake has different parameters generated from G , allowing us to collect

more data and increase randomization.

We believe that the information about the aggregator available to the users plays a crucial role

in the behaviour of the users. To ensure that users understand how reports are aggregated, we

make them pass a short exam before entering the actual game.

The process of the game is the following: the player

1. sees a short description of the game with its goal,

2. sees a description of the aggregator with an example,

9

Chapter 2. Aggregating Ratings

Figure 2.4: Screenshot of the game: reports of other players (top left), sampling system (bottom
left) and area to estimate (right).

3. takes an exam to validate the understanding of the aggregator,

4. if she passes, plays one game G .

Each of these steps is displayed on a new panel (screen). If a player fails at step 3, she can take

another exam. However, we track the success rate of each player to filter out those players who

do not understand the aggregator, or who tend to play randomly. When playing one game

(step 4), it is possible to access step 1 and 2 at any time.

Figure 2.4 is a screenshot of the game interface. On the right side, it shows which area of the

lake is currently selected. On the left side, we display the distribution of reports from other

players, and below the samples obtained from the observations. In this particular case, the

true number of fish was set to q∗ = 6, while for the user it was qu = 4.

2.4.1 Metrics

We measure two behaviours. The first one concerns the user and her reports. We want to see

if users tend to report their true observation or try to drive the aggregate value towards their

true preference. Therefore, we will measure the percentage of truthful reports.

Definition 1 (Truthfulness). A report ru from user u is truthful if

|qu − ru | ≤ ε (2.7)

10

2.5. Results

Truthfulness is defined within a margin ε which goes for the noise involved in the sampling

made by the user.

Second, we look at the capability for an aggregator to reveal the true value of the signal.

Consider a probability density function f symmetric on some unknown point θ that we want

to estimate. In theory, mean, median and truncated mean are consistent estimators of θ

because they converge to this value as the sample size gets bigger. However, in practice it

might not be the case. Thus we need to look at another way to measure their performance.

We define the Mean Absolute Error (MAE) as a measure of how spread out the estimator (the

aggregated value) of a reports distribution is from the true value of a product.

Definition 2 (Mean absolute error). The mean absolute error e of an aggregator A (R) for a set

of reports R, n = |R| is given by

e(R|A , q∗) = 1

n

n∑
i=1

|q∗−A ({r1, ...,ri })| (2.8)

In addition, we measure the robustness of an aggregator to manipulation. We define a success-

ful manipulation as a case where manipulators set the aggregate to a value of their choosing

through malicious reports.

Definition 3. The robustness of an aggregator is a total order ≥r over aggregators. For any pair

of aggregators A1,A2, we say that A1≥r A2 iff in all scenarios where there is a manipulation

through malicious reports that succeeds with aggregator A1, there is also a manipulation that

succeeds with aggregator A2. We say that A1 >r A2 iff A1≥r A2 but not A2≥r A1.

Thus, whenever α1 >α2, the α1-truncated mean is more robust than the α2-truncated mean,

since it discards more reports and thus more reports of manipulators. This also shows that the

mean is the least robust aggregator, while the median is the most robust aggregator [47].

2.5 Results

The first hypothesis is based on the observation that most people trust their own observations

more than those of others, so that users would tend to want the aggregate to be as close as

possible to their own beliefs. Thus, they would strategize less when the aggregator is more

robust, leading to the following hypothesis:

Hypothesis 1. The number of true reports (truthfulness) increases as the degree of robustness

increases.

Besides truthfulness of the reports, another interesting question is how well the aggregate

reflects the true value. The lowest mean absolute error would be reached with truthful reports

and the mean as an aggregator. However, the mean does not elicit truthful reports and the

median does not perform the best aggregation. Thus, we hypothesize:

11

Chapter 2. Aggregating Ratings

Hypothesis 2. There is a tradeoff between truthfulness and mean absolute error: no aggregator

achieves the highest accuracy as well as truthfulness.

We conduct two types of experiments. In the first type, we look at a static setting in which a

single instance of the signal is presented (with noise) to the users. In the game, we generate

10 artificial reports from the same distribution as qu , and ask the users to play the game as

described previously.

In the second type, we look at the dynamic process of estimating the signal from different

observations. We conjecture that the behavior changes with the number of reports. When

there are few reports, a fake report would influence the overall rating more than when the total

number of reports is high. In addition, a malicious user might have greater incentives if she

sees that it is easier to alter the aggregated value. So we will consider a dynamic setting where

users provide reports in sequence.

2.5.1 Static Experiment

The static experiment is the following. For a given user, we select one aggregator and we

generate the true number of fish q∗ ∼ U (0,10). We draw 10 artificial reports from the

distribution N (q∗,σ2), plus one value which will be the user’s true perceived value of the

number of fish qu ∼ N (q∗,σ2). qu is the value we want to “inject” as a belief, and the user will

be able to sample from. We do not take into account reports from users who do not sample.

We evaluate 6 aggregators: the mean, truncated mean at 10%, 20%, 30%, 40% and the median.

Each user plays 3 scenarios per aggregator, for a total of 18 scenarios. Since there are 3 areas

of the lake per scenario, it means she reports in total 54 ratings. 21 users from a technical

university played the game. They are all scholars (Master and PhD students, PostDocs and

Professors) with a background in computer science. They played altogether for 7 hours and 16

minutes, which makes it 21 min per user, for an average of 1’10" per scenarios. We present

averages with confidence intervals at 90% (bootstrap sampling, 10’000 samples).

Figure 2.5(a) validates Hypothesis 1, and shows that indeed the truthfulness increases with the

robustness. We fixed the threshold ε to 1. With the median which is the most robust aggregator,

more than 60% of the reports are truthful, while with the mean we obtain only about 25% of

truthful reports.

We might expect the truthfulness to be maximum at 100% with the median [75], but in practice

it is not the case. This may actually be due to the fact that some participants do not fall prey to

the fallacy of trusting their own observation, but also trust the reports of others. For normally

distributed reports, the mean is the most accurate aggregator as it minimizes the mean square

error. Users who trust the accuracy of other users’ reports should be truthful with the mean,

and non-truthful with the median because the median would not pick the best aggregated

value.

12

2.5. Results

mean 10% trunc 20% trunc 30% trunc 40% trunc median
0

10

20

30

40

50

60

70

truthfulness (%)

(a) Truthfulness (ε= 1)

mean 10% trunc 20% trunc 30% trunc 40% trunc median
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MAE (%)

(b) Mean absolute error

Figure 2.5: Truthfulness and mean absolute error for the static experiment.

Intuitively, the mean has the lowest MAE, and the median the highest. This holds under the

assumption that the reports are truthful and come from the same underlying distribution. In

practice, Figure 2.5(b) demonstrates that it is not the case, leading to Hypothesis 2. The mean

and median have about the same MAE (∼4%). However, the 30%-truncated mean dominates

with a MAE near 2.5%. It is important to note that these numbers are not surprisingly low

because the other reports are artificial and come from the same underlying distribution. We

normalized the MAE by the range of possible values.

2.5.2 Dynamic Experiment

In the static experiment, the reports attributed to other players were randomly generated so

that our measurements of MAE were not representative of a realistic scenario where players

influence one another. Thus, we also ran a dynamic experiment using Amazon Mechanical

Turk where a player saw actual reports from other players. The players received a fixed payment

to play the game, and a bonus based on their performance.

538 players played the game and gave 7902 reports (before filtering). We filtered players in two

ways. First, they had to pass an exam on the understanding of the aggregators. The success

rate was 96% with on average 1.5 attempts. Second, we discard reports of players who do not

sample. On average, players made 3.9 observations per area. After this filtering, we had a total

of 4921 reports from different players and we selected the first 120 reports for each aggregator,

scenario and area. We present averages with confidence intervals at 90% (bootstrap sampling,

10’000 samples).

Figure 2.6 shows the demographics of the players: their origin, age, education and current

occupation. About half of the players are male (53.5%). These statistics about Amazon

Mechanical Turk are not surprising and follow the trends observed by Ross et al. [89].

13

Chapter 2. Aggregating Ratings

69%

< 1%

3%

< 1%

26%

north−america

south−america

europe

oceania

asia

(a) Origin

27%

51%

15%

7%

17−25

26−40

41−55

above−55

(b) Age

18%

60%

22%

high−school

college

graduate−school

(c) Education

3%
5%

5%

14%

16%

18%

40%

retired

teacher

other

student

manager

stay−home

worker

(d) Occupation

Figure 2.6: Players’ demographics

21%

32%

40%

6%1%

very−easy

easy

average

difficult

very−difficult

(a) Difficulty level

4%

8%

18%

40%

30%

very−poor

poor

average

good

very−good

(b) Game quality

1%5%

21%

41%

32%

totally−unclear

somewhat−unclear

mostly−clear

very−clear

extremely−clear

(c) Instruction clarity

5%

11%

20%

40%

24%

never

rarely

sometimes

always

very−often

(d) Demand for similar
tasks

Figure 2.7: Game features

Regarding the game itself (Figure 2.7), players are satisfied. More than 80% of the players

enjoyed playing this game. It was designed in such a way that it is not difficult to understand

and play: more than 73% find the instruction clear, and about 53% find the game easy. The

engagement of the players is such that they would like to see more tasks involving games in

Amazon Mechanical Turk (Figure 2.7(d)). It is important to note that players thought they

were playing a game, and they did not realized they were involved in a user behavior study.

Figure 2.8 shows the average degree of truthfulness, using a margin ε= 1, and the MAE for

different aggregators as the number of reports increases. At each time point, the player sees

the reports of previous players and contributes its own report. The curves show the evolution

of both as reports are gathered incrementally, with players always shown the earlier reports. It

thus mirrors closely the behavior of an online rating website. We normalized the MAE by the

maximum possible deviation (error) to the true value.

The biggest differences in truthfulness and MAE exist when the number of reports is small.

This can be expected as here the potential for manipulation is the greatest. For example in a

product rating scenario, it is also very crucial since the rating will determine the popularity of

an item and thus the potential for even obtaining future ratings.

For both truthfulness and MAE, the mean is clearly not the best aggregator. Truthfulness drops

14

2.6. Discussion

0 20 40 60 80 100 120
65

70

75

80

85

90

95

100

index

truthfulness (%)

mean

10% trunc

20% trunc

30% trunc

40% trunc

median

(a) Truthfulness (ε= 1)

0 20 40 60 80 100 120
0

5

10

15

20

index

MAE (%)

mean

10% trunc

20% trunc

30% trunc

40% trunc

median

(b) Mean absolute error

Figure 2.8: Truthfulness and mean absolute error for the dynamic experiment.

dramatically when the number of reports is small. Players want the aggregate to be as close as

possible to their own belief. However when the number of reports increases, some players

tend to trust the reports of others (Figure 2.8(a)).

After 120 reports, the difference in MAE among aggregators is small (Figure 2.8(b)). The

mean and 10%-truncated mean converge slower than more robust aggregators. More robust

aggregators need less reports to reach an acceptable MAE: about 60 reports are required for

the mean while less than 20 reports for the median.

Regarding Hypothesis 1, there is a difference between the most and least robust aggregators,

i.e. the median and mean respectively. However it is difficult to conclude anything for the

truncated mean methods.

Hypothesis 2 is also valid in the dynamic setting. However this tradeoff exists mostly when the

number of reports is small because the difference among aggregators is more important for

both truthfulness and MAE. Note however that in a product ranking, even small differences

in ratings can have a huge influence on the position in the ranking, so that the differences in

MAE can still have a big impact.

Overall, the median or 40%-truncated mean are good candidates for aggregators. They both

achieve high truthfulness and low MAE over small and large numbers of reports.

2.6 Discussion

The analogy we are making between the fishing game and a product rating scenario is not

perfect because the fishing game removes some biases that exist in a product rating scenario.

However, although it would be possible to conduct such experiment on a product rating

website with real products, we would not know what the true quality experienced by a user is.

15

Chapter 2. Aggregating Ratings

Since it is a new and unique game, there are no prior expectations on the quantity of fish

(quality) nor word-of-mouth effects [10]. Social influences on users’ perception of quality can

lead to biased ratings [18, 12]. Influences from other players (through displaying previous

reports) and their need of conformity might drives players’ behaviour. We have not explored

this issue, but our methodology would be able to address it by, for instance, hiding the reports

of other players.

This study illustrates a cognitive bias referred to the Lake Wobegon effect, in which human

tends to overestimate one’s capabilities. This illusory superiority appears for the mean aggre-

gator: users who trust their own observation should report truthfully because the mean is the

most accurate aggregator. Actually, in this study it is not the case, showing this effect [39].

We believe that our methodology is helpful to understand how rating aggregation happens,

and to illustrate that another choice of aggregator could improve rating websites. In situations

such as community sensing, opinion polls or question-and-answer websites, our analogy fits

better.

In general, review websites order products according to their ratings, and user only consider

those that are at the top of such rankings. Such ordering is obtained by aggregating individual

ratings into a single value. By submitting a rating, users influence the overall score of the

product they rate, and thus the final decision of potential customers. Most rating websites

use the arithmetic mean as a way of aggregating ratings. We have seen that when the number

of ratings is small, there are big differences between aggregators in terms of truthfulness and

performance. We believe that rating websites should consider an adaptive strategy where

aggregators are dynamically selected as the number of ratings increases.

We believe that our methodology is helpful to understand how rating aggregation happens,

and to illustrate that another choice of aggregator could improve rating websites. Our analogy

applies also in situations such as community sensing, opinion polls or question-and-answer

websites. We illustrate our findings with two applications in the next section.

2.7 Applications

Recommender systems use ratings provided by users to recommend products. Recommen-

dations can be uniform for the entire user population, such as hotel recommendations on

Tripadvisor.com, or personalized to the taste of a specific user, such as product recommenda-

tions on Amazon.com. Common to both types of systems is that they collect ratings of items

from their users, aggregate these ratings and allow users to filter the items that are ranked

highest according to these aggregates.

In the first application, we investigate the effect of the aggregator on the ranking of uniform

recommendations. In the second application, we study the robustness of aggregators for

personalized recommendations.

16

2.7. Applications

Table 2.1: Tripadvisor dataset
City Reviews Hotels

Boston 5537 66
Las Vegas 28553 131
New York 40676 264
Sydney 3659 103

2.7.1 Ranking of Uniform Recommendations

We consider feedback from a popular travel website named Tripadvisor that collects reviews

of hotels from users around the world. The reviews contain a textual comment with a title, an

overall rating and numerical ratings from 1 (lowest) to 5 (highest) for different features such

as cleanliness, service, location, etc. The site provides ranking of hotels according to their

location. Like most of the reputation sites, it aggregates reviews into a single value for each

hotel and, based on that value, sorts hotels in ascending order. It uses a simple arithmetic

mean on the overall ratings to recommend hotels.

We selected four cities for this study: Boston, Las Vegas, New York and Sydney. Table 2.1 shows

for each city the number of reviews and hotels. All data were collected by crawling the website

in July 2007.

Robustness

It is well-known that distributions of reports are far from normal due to reporting biases [45].

Aggregators such as the mean, median and mode have relatively the same value for normal

distributions. However, they should have a significant difference for non-normal distributions.

To support this hypothesis, we conducted the following experiment. For each of the four cities

considered in our study, we computed a full ranking of the hotels according to each of the

aggregators explained in Section 2.2. Then, for every pair of aggregators we measured the

distance between the corresponding orderings of hotels within a city. To measure the distance

between the two rankings we chose the average absolute difference between the position of

the same hotel in the two rankings.

The results are presented in Table 2.2. For example, the rank of a hotel varies on average with

14.7 positions (up or down) when the ranking is done according to the median instead of the

mean. The average difference of ranks triggered by different aggregators is quite high: 1 to 15

ranks. Considering that most review websites display only the first 5 or 10 "best" items, the

results of Table 2.2 show that different aggregators can completely change the list of candidates

suggested to the users. Therefore it becomes important to better understand the properties of

each aggregator.

We look at the robustness of each aggregator by taking the number of outliers required to alter

the ranking of a given hotel. For each hotel, we inject outliers with the highest possible ratings,

17

Chapter 2. Aggregating Ratings

Table 2.2: Average absolute difference of ranking
mean 10% 20% 30% 40% median

mean - 1.391 3.422 5.134 7.989 14.736
10% - - 2.576 4.422 7.466 14.427
20% - - - 2.729 6.386 14.183
30% - - - - 5.266 14.009
40% - - - - - 10.119
median - - - - - -

Table 2.3: Average number of outliers (with highest ratings ’5’) required to alter the ranking (all
p-values < 0.05). In bold, the highest values.

Boston Las Vegas New York Sydney

mean 3.210 3.927 2.096 2.134
10% 3.065 4.037 2.323 2.030
20% 2.871 3.817 2.458 2.507
30% 3.129 8.881 8.076 3.552
40% 8.016 23.266 30.462 6.791
median 20.548 87.954 59.000 11.582

i.e. 5, until the rank changes. Table 2.3 summarizes the results for each city.

Two reviews are enough to change the rank when the aggregator is the mean while the median

needs at least 11 outliers. This clearly shows that when we increase the percentage of trun-

cated ratings, hence the robustness of the aggregator, we require more and more outliers to

manipulate the aggregation.

Informativeness

In review websites, the goal of the aggregator is to reflect the user’s reviews into one value.

One assumption of aggregator is that users have reported their true experience. However, it is

often not the case. For instance, the ratings are often part of discussion threads where past

reviews influence future reports by creating prior expectations [54]. Therefore we can ask how

an aggregator will continue to correctly reflect users’ opinion.

Figure 2.9 illustrates the stability of each aggregator by counting the number of hotels that

deviate by more than 5 ranks from the final ranking. We selected hotels with at least 50

reviews and at each time step, one rating is given to one hotel. The median is the most stable

aggregator. However, the 30%-truncated mean follows the standard mean.

Figure 2.10 shows the Kendall rank correlation over time. Although all aggregators have the

same convergence speed, the median has a higher correlation to the final ranking when the

number of ratings is small (less than 500 ratings).

18

2.7. Applications

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

time step

number of hotels

mean

30% trunc

median

(a) Las Vegas

0 500 1000 1500 2000
0

50

100

150

200

time step

number of hotels

mean

30% trunc

median

(b) New York

Figure 2.9: Number of hotels over time that deviate more than 5 ranks from the final rank.

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

time step

Kendall rank correlation

mean

trunc 30%

median

(a) Las Vegas

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

time step

Kendall rank correlation

mean

trunc 30%

median

(b) New York

Figure 2.10: Kendall rank correlation over time.

2.7.2 Personalized Recommendations

Any collection of ratings is likely to contain outliers or even ratings that have been inserted

with the purpose of manipulating the recommendations, therefore it is desirable that the

aggregation function should be as robust as possible against them. We illustrate here how the

aggregation method influences the accuracy and robustness of the recommendations. We

measure robustness by the fraction of users whose recommendations are likely to be affected

by outliers or malicious ratings (hit ratio).

We present results of empirical studies. We report on experiments with the MovieLens data

that show that the median may also be helpful to defend against outliers and malicious attacks.

We observe that the notions of average differ significantly. In particular, the median tend to be

more robust to outliers and biased reviews but also result in much higher recommendation

accuracy than the mean, and thus may be more informative for a user.

19

Chapter 2. Aggregating Ratings

Settings

We constructed a user-based collaborative filtering system based on the k-Nearest Neighbour

algorithm as outlined in [73]. Given a user u and a target item i for which the system must offer

a recommendation, the algorithm first computes the 50 most similar users to u (neighbours

of u) based on the available ratings. The similarity between users u and v is computed using

Pearson’s correlation coefficient:

si mu,v =

n∑
i=1

(ru,i − r u) · (rv,i − r v)√
n∑

i=1
(ru,i − r u)2 ·

√
n∑

i=1
(rv,i − r v)2

(2.9)

where ru,i and rv,i are the ratings of some item i for u and v respectively, and r u and r v are

the average ratings of u and v over the set of items.

The predicted rating for an item i not yet rated by user u is computed by aggregating the

ratings of the u’s neighbours for item i . We consider two aggregation rules that take advantage

of the similarity:

• the mean of the neighbouring ratings weighted by their similarity:

pr edu,i = r u +

∑
v∈V

si mu,v (rv,i − r v)∑
v∈V

|si mu,v |
(2.10)

This is the aggregator commonly used in collaborative filtering today, and the one used

in [73].

• the median of the neighbouring ratings weighted by their similarity. Assuming that the

neighbours are ordered by increasing rating, the median is the rating ri given by the

smallest user i such that

i∑
j=1

si mn j ,u ≥
n∑

j=i+1
si mn j ,u (2.11)

In cases of ties, we break them at random.

The following results are based on an empirical study of a collaborative filtering system using

the MovieLens2 dataset. The dataset contains 1682 movies rated by 943 users. 100’000 ratings

ranging from 1 to 5 were given by these users, and each user rated at least 20 movies.

2http://grouplens.org/datasets/movielens/

20

2.7. Applications

0 10 20 30 40 50
0

10

20

30

40

50

number of recommendations

precision (%)

mean

median

(a) Precision

0 10 20 30 40 50
0

20

40

60

80

100

number of recommendations

recall (%)

mean

median

(b) Recall

Figure 2.11: Average precision and recall of recommendations, with confidence intervals at
95%.

Accuracy

We evaluate the quality of the different algorithms for computing the predictions using preci-

sion and recall [42]. The mean absolute error (MAE) is difficult to compare since the median

uses only a restricted set of values. Therefore, the MAE is not indicative of the actual perfor-

mance of the recommender system.

We ran a 5-fold cross validation with disjoint test sets (80% training and 20% testing). We

present average performances with confidence intervals at 95% (bootstrap sampling, 10’000

samples).

Figure 2.11 shows that the mean is by far not the best aggregator for recommendations; both

precision and recall are significantly higher when the median is used. This difference is more

marked because the Pearson similarity metric is more likely to include outliers among the

neighbours, and it seems that the robustness of the median allows the recommender to take

advantage of the Pearson metric in a stronger way than when the mean is used.

Resilience Against Attacks

Since recommendations are different for each user, we can no longer give a single number of

ratings required to change this ranking. Instead, we consider the robustness of the average

recommendation received by each user. We considered scenarios where an attacker wants to

push an item into users’ recommendations by inserting fake user profiles that provide high

ratings for that item. In particular, we implemented the average attacks described by Mobasher

et al. [73] with 150 (15%) attack profiles, and 5% of filler items. We characterise robustness by

the hit ratio, defined as the percentage of times that the promoted item is recommended in a

21

Chapter 2. Aggregating Ratings

0 10 20 30 40 50
0

20

40

60

80

100

number of recommendations

hit (%)

mean

median

Figure 2.12: Average hit ratio as a function of the size of recommended items, with confidence
intervals at 95%.

recommendation list as a result of the attack. We randomly select 50 target items on which

we perform the attack, and select at random 50 users to evaluate the hit ratio. We present

average performances over 10 runs and confidence intervals at 95% (bootstrap sampling,

10’000 samples).

Figure 2.12 shows the hit ratios as a function of the number of recommendations. We can see

that when the number of recommended items is small, aggregating ratings by the median

makes the recommender very resilient against attack, and it remains more resilient than the

mean even when many recommendations are given. This again shows the much greater

robustness of the median as a rating aggregator.

2.8 Conclusion and Future Work

We have used a new form of experiment based on a game to understand the behaviour of

people in certain scenarios that exploit the wisdom-of-the-crowd effect. We have focused on

the behaviour of users who are well-intentioned and act so as to make the aggregate reflect

their belief of the true signal value, either through altruism or through incentives based on the

success with other users. The fishing game closely mirrors eliciting opinions or observations,

but in a completely artificial context where players’ beliefs can be perfectly manipulated. Using

two experiments, we have demonstrated that while the median aggregator elicits more truthful

reports, its overall accuracy is not better than that of the mean since it does not perform the

most accurate aggregation. We have shown that a different aggregator, the 40%-truncated

mean, provides the best tradeoff between accuracy and truthfulness for the static setting,

while for the dynamic setting the answer is not clear.

The fact that the median elicits the most truthful reports can be explained by the Lake Wobegon

effect [39], i.e. people tend to trust their own observations more than others’. Actually, a user

22

2.8. Conclusion and Future Work

who trusts others’ reports should be most truthful when aggregation is via the mean, as this is

the most accurate aggregator.

Our results are useful in the design of human computation tasks in general, such as rating

and reputation, community sensing, opinion polls or question-and-answer websites, where

users are motivated by the quality of the final result. Here there are often very few reports and

so the difference between the results obtained with different aggregators is significant: using

the median cuts the average error in half. To obtain this improvement, it is important that

users know and understand the aggregator that is being applied. An important application

of our results is in crowdsourcing tasks where the wisdom-of-the-crowd effect is important.

Our findings show that by carefully choosing the right aggregator, it is possible to collect less

reports and at the same time achieve a good quality of the output, thus it lowers the cost of

crowdsourcing tasks by recruiting less workers.

As future work and with the help of this methodology, it would be possible to study different

signal distributions such as the bimodal, explore new aggregators like the geometric mean,

and investigate the effect of discretization of the reports. It would be also interesting to extend

the framework to multi-dimensional signals, such as present when products have overall

ratings and ratings per feature.

23

3 Recommending News Articles

3.1 Introduction

The proliferation of online news creates a need for filtering interesting articles. Compared

to other products, however, recommending news has specific challenges: news preferences

are subject to trends, users do not want to see multiple articles with similar content, and

frequently we have insufficient information to profile the reader.

The first recommender systems were originally designed for news forums. Since then, they

have been used with considerable success for products such as books and movies, but have

found surprisingly little application in recommending news articles, due to the unique chal-

lenges of the area.

When users are identifiable as regular visitors to a news website, techniques from product

recommendation can be adapted [23, 48]. However, most websites operated by individual

newspapers do not have a strong base of electronic subscribers. Visitors to these websites are

casual users, often accessing them through a search engine, and little is known about them

except what can be gathered through an ephemeral browsing history.

The main page of a news website is already a set of recommended articles, which simulta-

neously addresses the needs of many users (Figure 3.1). More specific recommendations

are sometimes available to readers of individual articles. There are two shortcomings to this

strategy: first, recommendations are usually edited manually, and second, they only consider

the last article read. Our goal is to construct recommendations automatically and use the

complete browsing history as a basis for giving personalized recommendations.

In principle, common recommender techniques such as collaborative filtering could be

applied to such a task, and have been adapted to temporal sequences [108, 95, 84]. However,

they face several challenges specific to news. First, news are rapidly evolving: new stories

and topics appear and disappear quickly, and old news are no longer interesting. Second,

recommendations should provide added value, and not just consist of the most popular stories

25

Chapter 3. Recommending News Articles

Figure 3.1: A story with dynamic recommendations on the right side, and manually-generated
recommendations on the bottom left (red-dashed areas).

that the reader would have already seen on the front page.

In the first part of this chapter, we address these issues by proposing a new class of news

recommendation systems based on Context Trees (CT), which provide recommendations

and are updated fully incrementally. We emulate the process involved in implementing a

recommender system on a real website by using offline datasets. We show that context-tree

recommendations have state-of-the-art performance both with respect to prediction accuracy

and to recommendation novelty, which is crucial for news articles since users want to read

stories they do not know.

Unfortunately, an offline evaluation is very artificial because it is not possible to assess the

impact of recommendations on real users. In an online environment, the evaluation are

motivated by different factors, and the way to measure the performance of a recommender

system is different.

In the second part of this chapter, we focus on online evaluation of our state-of-the-art

algorithms. When conducting online evaluation, one must pay careful attention to the re-

quirements of such evaluation. The framework involved in this online evaluation has to be

fast. The framework must provide real-time recommendations as soon as possible, without

making the users wait. Second, it must be reliable. It is not acceptable for a newspaper website

to suffer from crashes. Third, a flexible design is important. It should be easy to add new

components or extend recommender systems. Finally, it must be scalable. News websites

are subject to unpredictable visit peaks and the framework must be able to handle them by

delivering recommendations on time and without problems.

26

3.1. Introduction

Unfortunately, it is not possible to use current open-source platforms because they are not

tailored to the specific needs of news recommendations and thus are difficult to adapt to

the news domain. We introduce the PEN recsys framework for online evaluation of news

recommender systems. The PEN recsys framework is currently (as of April 2014) in use by

the news website swissinfo.ch1 for evaluating the recommender systems presented in this

chapter.

3.1.1 Contributions

In this chapter, we study how recommendations for news articles should be performed with

the help of implicit feedback of the users. First, we introduce a new class of recommender

systems based on context trees. In an offline evaluation setting, we show that they make

accurate and novel recommendations, and that they are sufficiently flexible for the challenges

of news recommendations.

Second, we discuss how to apply news recommender systems to live-traffic website. In order

to do so, we described the design and implementation of a new online evaluation framework.

Finally, we illustrate the difference between offline and online evaluations. This chapter builds

on the results published in [38, 32, 34, 33].

3.1.2 Related Work

In general, there are two classes of recommender systems: collaborative filtering [96], which

use similar users’ preferences to make recommendations, and content-based systems [68],

which use content similarity of news items.

The Grouplens project is the earliest example of collaborative filtering for news recommen-

dation, applied to newsgroups [87]. News aggregation systems such as Google News [23]

also implement such algorithms. Google News uses probabilistic latent semantic indexing

and MinHash for clustering news items, and item covisitation for recommendation. Their

system builds a graph where the nodes are the stories and the edges represent the number of

covisitations. Each of the approaches generates a score for a given news, aggregated into a

single score using a linear combination.

Content-based recommender system is more common for news personalization [7, 1, 48].

NewsWeeder [59] is probably the first content-based approach for recommendations, but

applied to newsgroups. NewsDude [7] and more recently YourNews [1] implemented a content-

based system.

It is possible to combine the two types in a hybrid system [11, 65, 64]. For example, Liu et al.

[65] extend the Google News study by looking at the user click behaviour in order to create

1www.swissinfo.ch

27

Chapter 3. Recommending News Articles

accurate user profiles. They propose a Bayesian model to recommend news based on the

user’s interests and the news trend of a group of users. They combine this approach with the

one by Das et al. [23] to generate personalized recommendations. Li et al. [64] introduce an

algorithm based on a contextual bandit which learns to recommend by selecting news stories

to serve users based on contextual information about the users and stories. At the same time,

the algorithm adapts its selection strategy based on user-click feedback to maximize the total

user clicks.

We focus on a class of recommender systems based on context trees. Usually, these trees are

used to estimate Variable-order Markov Models (VMM). VMMs have been originally applied

to lossless data compression, in which a long sequence of symbols is represented as a set of

contexts and statistics about symbols are combined into a predictive model [88]. VMMs have

many other applications [4].

Closely related, variable-order hidden Markov models [102], hidden Markov models [74] and

Markov models [79, 92, 24] have been extensively studied for the related problem of click

prediction. These models suffer from high state complexity. Although techniques [107] exist

to decrease this complexity, multiple models have to be maintained, making these approaches

not scalable and not suitable for online learning.

Few works [108, 95, 84] apply such Markov models to recommender systems. Zimdars et al.

[108] describe a sequential model with a fixed history. Predictions are made by learning a

forest of decision trees, one for each item. When the number of items is big, this approach does

not scale. Shani et al. [95] consider a finite mixture of Markov models with fixed weights. They

need to maintain a reward function in order to solve a Markov decision process for generating

recommendations. As future work, they suggest the use of a context-specific mixture of weights

to improve prediction accuracy. In this work, we follow such an approach. Rendle et al. [84]

combine matrix factorization and a Markov chain model for baskets recommendation. The

idea of factoring Markov chains is interesting and could be complementary to our approach.

Their limitation is that they consider only first-order Markov chains. A bigger order is not

tractable because the states are baskets which contain many items.

Over the last few years, researchers in the recommender systems community have developed

open-source libraries which try to bring a growing number of recommender algorithms under

one roof [31, 28, 2, 69, 86, 101]. Most of these libraries are designed for research purposes to

conduct offline evaluations and only a few target online evaluations on production websites

[101, 86]. In the following, we present the ones that are still actively under development and

free/open source.

MyMediaLite [31] is an actively maintained C# library. It contains simple baseline techniques

such as slope-one or random/most popular item, several variants of k-nearest neighbour

models and some matrix factorization methods. Unfortunately, MyMediaLite is not thread-

safe, and thus is not suitable for concurrent access required in a highly-dynamic environment

such as the news domain.

28

3.1. Introduction

Apache Mahout [2] is a distributed machine learning library in Java. Although it is not specif-

ically developed for recommendations, it contains some collaborative filtering algorithms.

This library implements the Map/Reduce paradigm and is tailored for distributed systems.

As we discuss in Section 3.6.2, standard news websites do not need such complex distributed

framework because it brings an heavy overhead when deployed on a single server.

LensKit [28] is a Java-based library developed for offline research environments. It focuses on

collaborative filtering techniques.

GraphLab [69] is a C++ collection of machine learning toolkits on graphs. One toolkit is dedi-

cated to collaborative filtering with implementations of Alternating Least Squares, Stochastic

Gradient Descent and Singular Value Decomposition.

easyrec [86] is a web service in Java generating recommendations through an API. easyrec

is designed for online evaluation. However, it is not clear which algorithms are available.

Recently, easyrec reached the final stage of its research project and it is also not clear whether

this engine will stay free and open source or not.

reclab [101] provides a Java API to build recommender models. It does not come with any

implemented algorithms, and it is designed to run together with a cloud service provided by

the developers. Unfortunately, this library seems no longer active.

These libraries are all useful for research purposes but cannot be used on production websites

due to restrictions on licenses for commercial usages. In addition, most of them are designed

for offline evaluation.

Although the first recommender systems were originally designed for news forums [87], the

literature describing actual implementations and evaluations on live news websites is scarce.

Liu et al. [65] analyse the deployment of a hybrid recommender system on the news aggregator

Google News. They compare their method against the existing collaborative filtering system

implemented by Das et al. [23], and consider only logged-in users for the evaluation. They

show a 30% improvement over the existing collaborative filtering system.

Kirchenbaum et al. [57] conduct an online evaluation with logged-in users of several recom-

mender systems for news articles on Forbes.com. They report that an hybrid-based system

performs the best, with a 37% improvement over popularity-based methods.

Said et al. [91, 90] study the weekly and hourly impressions and click-through rates in the

Plista news recommender framework [56], which delivers recommendations to multiple news

websites. They observe that live evaluation is sensitive to external factors not necessarily

related to recommendations. They also identify trends in recommendations related to the

type of news websites (traditional or topic-focused news sources). Readers of topic-focused

websites are less likely to take recommendations than readers of traditional news websites [90].

Unfortunately, it is not clear which recommender algorithm is in used in Plista framework and

29

Chapter 3. Recommending News Articles

during their analysis.

Our live evaluation is similar to the one of Kirchenbaum et al. [57], but differs in two crucial

points. First, we consider anonymous users for whom it is impossible to track across multiple

visits. Second, the nature of the websites (Forbes.com and swissinfo.ch) are not the same, and

thus readers’ behaviours are different [90].

3.2 Context Trees

Because of the sequential nature of news reading, it is intuitive to model news browsing as a

k-order Markov process [95]. The user’s state can be summarised by the last k items visited,

and predictions can be based only on this information. Unfortunately, it is not clear how to

select the order k. A variable-order Markov model (VMM) alleviates this problem by using a

context-dependent order. In fact, VMM is a special type of context-tree model [4].

There are two key ideas behind a CT recommender system. First, it creates a hierarchy of

contexts, arranged in a tree such that a child node completely contains the context of its

parents. In this work, a context can be the set of sequences of news items, sequence of topics,

or a set of topic distributions. As new articles are added, more contexts are created. Contexts

corresponding to old articles are removed as soon as they disappear from the current article

pool.

The second key idea is to assign a local prediction model to each context, called an expert.

For instance, a particular expert gives predictions only for users who have read a particular

sequence of stories, or users who have read an article that was sufficiently close to a particular

topic distribution.

In the following, we first introduce the notion of context tree. Then, we describe various

prediction models, how to associate them with the context tree and combine them in order to

make recommendations.

3.2.1 Sequence Context Tree

When a user browses a news website, we track the sequence of articles read.

Definition 4. A sequence s = 〈n1, . . . ,nl 〉 is an ordered list of articles ni ∈N read by a user, and

we denote st the sequence of articles read until time t . We write the set of all sequences by S .

Note that a sequence can also be a sequence of topics of articles.

A context tree is built based on these sequences and their corresponding suffixes.

Definition 5. A k-length sequence ξ of is a suffix of a l-length sequence s, if k ≤ l , and the last

elements of s are equal to ξ, and we write ξ≺ s when ξ is a suffix of s.

30

3.2. Context Trees

Figure 3.2: VMM context tree for the sequence s = 〈n1,n2,n3,n2〉. Nodes in red-dashed are
active experts µ ∈ A(s).

For instance, one suffix ξ of the sequence s = 〈n1,n2,n3,n4〉 is given by ξ= 〈n3,n4〉.

If two sequences have similar context, the next article a user wants to read should also be

similar.

Definition 6. A context S = {s ∈S : ξ≺ s}, S ⊂S is the set of all possible sequences S ending

with the suffix ξ.

We can now give a formal definition of a context tree.

Definition 7. A context tree T = (V ,E) with nodes V and edges E is a partition tree over the

contexts S . It has the following properties: (a) The set of contexts at a given depth forms a

partition: If Vk are the nodes at depth k of the tree, then Si ∩S j =;∀i , j ∈ Vk , while
⋃

i∈Vk
Si =S

(b) Successive refinement: If node i is the parent of j then S j ⊂ Si .

Thus, each node i ∈ V in the context tree corresponds to a context Si . Initially the context

tree T only contains a root node with context S0 =S . Every time a new article nt is read, the

active leaf node is split in a number of subsets, which then become nodes in the tree. This

construction results in a variable-order Markov model, illustrated in Figure 3.2.

The main difference between news articles and products is that articles continuously appear

and disappear, and the system thus maintains a current article pool that is always changing.

The model for recommendation changes along with the article pool, using a dynamically

evolving context tree. As new articles are added, new branches are created corresponding to

sequences or topic distributions. At the same time, nodes corresponding to old articles are

removed as soon as they disappear from the current pool.

31

Chapter 3. Recommending News Articles

3.2.2 Topic Distribution Context Tree

Because of the large number of news items relative to topics, a context tree on topics might

make better predictions. In particular, stories that have not been read by anyone can be

recommended thanks to topic similarity. In this type of tree, each context represents a subset

of the possible topic distributions of the last read article. The structure of the tree is slightly

different and is modelled via a k-d tree.

A k-d tree is a binary tree that iteratively partitions a k-dimensional space S into smaller

sets [6]. The i -th node corresponds to a hyper-rectangle Si ⊂ S and has two children j , j ′

such that S j ∪S j ′ = Si and S j ∩S j ′ =;. In particular, the two children are always defined via a

hyperplane splitting Si in half, through the center of Si , and which is perpendicular to one

principal axis. In practice, we simply associate each node to one of the k axes based on the

depth such that we cycle through all possible axes: a = depth mod k. The set S is [0,1]k , the

set of k-dimensional multinomial distributions on the possible topics.

In analogy to the sequence CT, a context is a hyper-rectangle Si and a suffix is the center θ of

Si in a topic distribution CT.

For instance, consider a node i with center θ ∈ Si and associated axis a. Its two children

correspond to two sets of topic distributions: Its left child j contains the distributions θ′ ∈ Si

with θ′a < θa , while its right child j ′ is the set on the other side of the hyperplane: S j ′ = {θ′ ∈ Si :

θ′a ≥ θa}. When the system observes a new topic distribution θ, the distribution is added to

the tree, and possibly the tree expands.

3.2.3 Experts

We assign a local prediction model called expert to each context (node) in the tree. More

formally,

Definition 8. An expert µi is a function associated with a specific context Si that computes an

estimated probability of the next article nt+1 given that context, i.e. Pi (nt+1 | st).

The user’s browsing history st is matched to the context tree and identifies a path of nodes

(see Figure 3.2). All experts associated with these nodes are called active and are responsible

for the recommendation.

Definition 9. The set of active experts A (st) = {µi : ξi ≺ st } is the set of experts µi associated to

contexts Si = {s : ξi ≺ st } such that ξi are suffix of st .

32

3.3. Expert Models

3.2.4 Combining Experts for Predictions

The active experts A (st) are combined by marginalizing to obtain a mixture of probabilities of

all active experts:

P(nt+1 = x | st) = ∑
i∈A (st)

ui (st)Pi (nt+1 = x | st), (3.1)

with ui (st) = P(i |st) being the probability of the i -th expert relevant for this context. These

probabilities are derived as follows.

With each node i in the context tree we associate a weight wi ∈ [0,1] that represents the

usefulness of the corresponding expert. Given a path in the context tree, we consider experts

in the order of the most specific to the most general context, i.e. along the path from the most

specific node to the root. In this process, with probability equal to the weight wi we stop at a

node without considering the more general experts. Thus, we take into account the relative

usefulness of the experts.

Letting w j be the probability of stopping at j given that we have not stopped yet, we thus

obtain the probability ui that the i -th expert is considered as ui (st) = wi
∏

j :S j⊂Si
(1−w j) if

st ∈ Si and 0 otherwise.

The calculation of the total probability can be made efficiently via the recursion qk = wkPk (nt+1 =
x|st)+ (1−wk)qk−1, where qk is the combined prediction of the first k experts. In Figure 3.2,

the prediction of the root expert for the next item x is q0, while q4 is the complete prediction

by the model for this sequence.

The weights are updated by taking into account the success of a recommendation. When a

user reads a new article x, we update the weights of the active experts corresponding to the

suffixes ending before x according to the probability qk (x) of predicting x sequentially via

Bayes’ theorem [26]:

w ′
k = wkPk (nt+1 = x | st)

qk (x)
. (3.2)

No other weights are updated2. Finally, we also update the local models of the active experts

(see Section 3.3).

3.3 Expert Models

Recommending news articles depends on multiple factors: the popularity of the news item,

the freshness of the story, the sequence of news items or topics that the user has seen so

far. Thus, each expert is decomposed into a set of local models, each modelling one of these

properties. The first model ignores the temporal dynamics of the process. The second model

2w0 = 1 since we must always stop at the root node.

33

Chapter 3. Recommending News Articles

assumes that users are mainly looking at popular items, and the last model that they are

interested in fresh items (i.e. breaking news).

3.3.1 Standard Model

A naïve approach for estimating the multinomial probability distribution over the news items is

to use a Dirichlet-multinomial prior for each expert µi . The probability of reading a particular

news item x depends only on the number of times αx it has been read when the expert is

active.

Pstd
i (nt+1 = x|st) = αx +α0∑

j∈N (α j +α0)
, (3.3)

where α0 is the initial count of the Dirichlet prior.

The dynamic of news items is more complex. A news item provides new content and therefore

has been seen by few users. News is subject to trends and frequent variations of preferences.

We improve this simple model by augmenting it with models for popular or fresh news items.

3.3.2 Popularity Model

A news item x ∈P is in the set of popular items P when it has been read at least once among

the last |P | read news items. We compute the probability of a news item x given that x is

popular as:

P
pop
i (nt+1 = x|st) = cx +α0∑

j∈N (c j +α0)
, (3.4)

where cx is the total number of clicks received for news item x. Note that cx is not equal to αx

(Equation 3.3). αx is the number of clicks for news item x when the expert is active, while cx is

the number of clicks received by news item x in total whether the expert is active or not.

The number of popular items |P | is important because it is unique for each news website.

When |P | is small, the expert considers only the most recent read news. It is important to tune

this parameter appropriately.

3.3.3 Freshness Model

A news item x ∈ F is in the set of fresh items F when it has not been read by anyone but

is among the next |F | news items to be published on the website, i.e. a breaking news. We

compute the probability of news item x given that x is fresh as:

P
f r esh
i (nt+1 = x|st) =

{
1

|F |+1 , if x ∈F
1

(|F |+1)(|N |−|F |) , if x ∉F .
(3.5)

34

3.3. Expert Models

The number of fresh items |F | influences the prediction made by this expert, and is unique

for each news website.

3.3.4 Mixing the Expert Models

We combine the three expert models using this mixture:

Pi (nt+1 = x|st) = ∑
τ∈{std ,pop, f r esh}

Pτi (nt+1 = x|st)pτ
i . (3.6)

There are two ways to compute the probabilities pτ
i : either by using a Dirichlet prior that

ignores the expert prediction or by a Bayesian update to calculate the posterior probability of

each expert according to their accuracy.

For the first approach, the probability of the next news item being popular is:

ppop
i =Pi (nt+1 ∈P) = αpop +α0

(αpop +α0)+ (αnot pop +α0)

= αpop +α0

2α0 +∑
j α j

, (3.7)

where
∑

j α j represents the number of times the expert µi has been active, αpop and αnot pop

the number of read news items which were respectively popular and not popular when the

expert µi was active.

Similarly, the probability of the next news item being fresh is given by:

p f r esh
i =Pi (nt+1 ∈F) = α f r esh +α0

2α0 +∑
j α j

, (3.8)

where α f r esh is the number of read news items which were fresh when the expert µi was

active.

Noting that P ∩F =;, the probability of the next news item being neither popular nor fresh

is:

p std
i =Pi (nt+1 ∉P ∪F) = 1−Pi (nt+1 ∈P)−Pi (nt+1 ∈F). (3.9)

It might happen that by using the Dirichlet priors, predictions are mainly made by only one

expert model. To overcome this issue, we compute the probabilities pτ
i , τ ∈ {std , pop, f r esh}

via a Bayesian update, which adapts them based on the performance of each expert model:

pτ
i ← Pτi (nt+1 = x|st)pτ

i

Pi (nt+1 = x|st)
. (3.10)

35

Chapter 3. Recommending News Articles

3.4 Context-tree Recommender Systems

We describe here the general algorithm to generate recommendations for the class of context-

tree recommender systems. This algorithm can be applied to domains other than news in

which timeliness and concept drift are of concern. We then focus on the news domain and

describe in more details three VMM-based recommender systems and one based on the k-d

context tree.

3.4.1 General Algorithm

Algorithm 1 presents a sketch of the CT recommender algorithm. For simplicity, we split our

system in two procedures: learn and recommend. Both are executed for each read article x

of a user with browsing history s in an online algorithm such as [85, 66], without any further

offline computation. The candidate pool C is always changing and contains the popular P

and fresh F stories. The system estimates the probability of each candidate and recommends

the news items with the highest probability. In order to estimate the probability of a candidate

item, the system 1) selects the active experts A (s) which correspond to a path in the context

tree from the most general to the most specific context, 2) propagates q from the root down to

the leaf, i.e the most specific context. q at the leaf expert is the estimated probability of the

recommender system for the candidate item x, i.e. P(nt+1 = x|st) (see Equation 3.1).

3.4.2 Recommender Systems

We consider three VMM variants of recommender systems, and one based on the k-d context

tree.

VMM Recsys

The standard VMM recommender builds a context tree on the sequences of news items. That

is st = 〈n1, . . . ,nt 〉 is a sequence of news items, and each active expert predicts nt+1, the next

news item.

Content-based VMM (CVMM) Recsys

In order to build a CT on topic sequences, we find a set of topics for each story, and assign the

most probable topic to the news item. We then perform predictions on topics.

More precisely, we use the Latent Dirichlet Allocation (LDA) [9] as a probabilistic topic model.

After concatenating the title, summary and content of the news item together, we tokenize the

words and remove stopwords. We then apply LDA to all the news stories in the dataset, and

obtain a topic distribution vector θ(n) for each news item n.

36

3.4. Context-tree Recommender Systems

Algorithm 1 CT recommender system

1: procedure LEARN(x,s, context set Ξ)
2: q ← 0 and t ←|A (s)|
. loop from most general expert µ0 to most specific expert µt

3: for i ← 0, t do
4: pi ←Pi (nt+1 = x|s) . i th expert prediction

5: q ← wi pi + (1−wi)q . combined prediction

6: wi ← wi pi

q . weight update

7: update p std
i , ppop

i , p f r esh
i (Equation 3.7-3.9 or Equation 3.10)

8: end for
9: if x ◦ s ∉Ξ then . is the context in the tree?

10: Ξ=Ξ⋃
{x ◦ s} . add a new leaf.

11: end if
12: end procedure
13: procedure RECOMMEND(s)
14: for all candidate n ∈C do
15: q (n) ← 0 and t ←|A (s)|
. loop from most general expert µ0 to most specific expert µt

16: for i ← 0, t do
17: q (n) ← wiPi (n|s)+ (1−wi)q (n)

18: end for
19: end for
20: R ← sort all n ∈C by q (n) in descending order
21: return first k elements of R

22: end procedure

37

Chapter 3. Recommending News Articles

We now define a context tree as follows. Let zt be the most probable topic of the t-th news

item. Then the topic sequence is st = 〈z1, ..., zt 〉 and ξ is a suffix of topic sequences. The context

tree generates a topic probability distribution P(zt+1 = j |st), while the LDA model provides us

with a topic distribution P(z = j |n) for each news item n. These are then combined into the

following score:

scor e(n | st) = max
j

{P(zt+1 = j | st) ·P(z = j | n)}. (3.11)

The system recommends the articles with the highest scores.

Hybrid VMM (HVMM) Recsys

We combine the standard VMM with the content-based system into a hybrid version. The

context tree is built on topics, similarly to the CVMM system, but the experts make predictions

about news items, like the VMM system.

HVMM system builds a tree in the space of topic sequences. Each suffix ξ of size k is a sequence

of most probable topics 〈z1, z2, ..., zk〉. However, all predictive probabilities (Equation 3.1 and

later) are defined on the space of news items.

k-d Context-Tree (k-CT) Recsys

The CVMM and HVMM structures make predictions on the basis of the sequence of most

probable topics. Instead, we consider a model that takes advantage of the complete topic

distribution of the last news item. We use a k-d tree to build a context model in the space of

topic distributions.

Baselines

In addition, we have the following baselines:

Z-k is a fixed k-order Markov chain recommender similar to the ones by Zimdars et al. [108].
MinHash is the minhash system used in Google News [23].
MostPopular recommends a set of stories with the highest number of clicks among the last

read news items.

3.5 Offline Evaluation

We investigate whether the class of CT recommender systems has an advantage over standard

methods and if so, what is the best combination of partition and expert model.

We measure performance both with respect to accuracy and novelty of recommendations.

Novelty is essential because it exposes the reader to relevant news items that she would not

38

3.5. Offline Evaluation

News stories Visits Clicks

TDG 10’400 600’256 1’069’131
24H 8’613 249’099 509’978

Table 3.1: Datasets after filtering.

have seen by herself. Obvious but accurate recommendations of most-popular items are of

little use.

We evaluate our systems on two datasets described below. We examine on the first dataset the

sensitivity of the CT models to hyperparameters. The second dataset is used to perform an un-

biased comparison between the different models. We select the optimal hyperparameters on

the first dataset, and then measure the performance on the second dataset. This methodology

[5] mirrors the approach that would be followed by a practitioner who wants to implement a

recommender system on a newspaper website.

3.5.1 Datasets

We collected data from the websites of two daily Swiss-French newspapers called Tribune de

Genève (TDG) and 24 Heures (24H)3. Their websites contain news stories ranging from local

news, national and international events, sports to culture and entertainment.

The datasets span from Nov. 2008 until May 2009. They contain all the news stories displayed,

and all the visits by anonymous users within the time period. Note that a new visit is created

every time a user browses the website, even if she browsed the website before. The raw data

has a lot of noise due to, for instance, crawling bots from search engines or browsing on

mobile devices with unreliable internet connections. Table 3.1 shows the dataset statistics

after filtering out this noise, and Figure 3.3 illustrates the distribution of visit length for each

dataset.

3.5.2 Metrics

There has been a lot of discussions on the best way of evaluating recommender systems

[43, 94]. The best would be to implement them on an actual site and measure the click rate

on recommended items. Unfortunately, this is usually far too costly to do, and evaluation

has to be carried out based on the behaviours that was observed without the recommender

being present. In our case, we have visit histories from the newspaper websites, and we

can evaluate how well our recommendations match the news items that readers selected

themselves. It is clear that this is a somewhat inaccurate measure: a) the user may not have

liked all the items she visited; b) the user may have preferred one of the recommended items

to the one she clicked, so the fact that a recommended item was not visited does not mean the

3www.tdg.ch and www.24heures.ch

39

Chapter 3. Recommending News Articles

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

10
5

10
6

visit length

frequency

24H

TDG

Figure 3.3: Distribution of the length of visits.

recommendation is bad.

We evaluate how good the systems are at predicting the future news a user is going to read.

Specifically, we consider sequences of news items s = 〈n1,n2, ...,nl 〉, ni ∈ N ,s ∈ S read by

anonymous users. The sequences and the news items in each sequence are sorted by in-

creasing order of visiting time. When an anonymous user starts to read a news item n1, the

system generates 5 recommendations. As soon as the user reads another news item n2, the

system updates its model with the past observations n1 and n2, and generates a new set of

recommendations. Hence the training set and the testing set are split based on the current

time: at time t , the training set contains all news items accessed before t , and the testing set

has items accessed after t .

We consider three metrics. The first is the Success@5 (s@5). For a given sequence s =
〈n1,n2, ...,nt , ...,nl 〉, a current news item nt in this sequence, and a set of recommended

news items R, s@5 is equal to 1 if nt+1 ∈R, 0 otherwise.

The second metric is personalized s@5, where we remove the popular items RT from the set

R, to get a reduced set RP =R \RT . This metric is important because it filters out the bias

due the fact that data is collected from websites which recommend the most popular items by

default.

The final metric is novelty, defined by the ratio of unseen and recommended items over the

recommended items: novel t y = |R∩F |/|R|. This metric is essential because users want to

read about something they do not already know.

40

3.5. Offline Evaluation

0 100 200 300 400 500
0

5

10

15

20

25

30

35

size of candidate pool

s@5 (%)

std

std + fresh

std + pop

std + pop + fresh

MostPopular

Figure 3.4: VMM recommender system: different mixtures of experts (Bayesian update, |F | =
10).

0 100 200 300 400 500
5

10

15

20

25

30

35

size of candidate pool

s@5 (%)

VMM

MinHash

Z−1

Z−2

Z−3

Z−4

(a) Non-personalized news items

0 100 200 300 400 500
0

5

10

15

size of candidate pool

s@5 (%)

VMM

MinHash

Z−1

Z−2

Z−3

Z−4

(b) Personalized news items

Figure 3.5: Accuracy for personalized and non-personalized news items.

3.5.3 Results

Sensitivity Evaluation

For all systems, we use a prior α0 = 1/|N | for the Dirichlet models, and the initial weights

for the experts as wk = 2−k , where k is the depth of the node. We evaluated experimentally

the optimal number of topics in the range of 30 to 500, and found that 50 topics bring the

best accuracy. We varied the size of candidate pool: number of popular items |P | from 10

to 500, and fresh items |F | from 10 to 100. When the candidate set is small, the experts

consider only the most recent read stories. We report averages over all recommendations with

confidence intervals at 95%. We omit figures for the TDG dataset because we witnessed the

same behaviours.

41

Chapter 3. Recommending News Articles

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ω

Utility (%)

VMM

CVMM

HVMM

kCT

MinHash

Z

MostPopular

(a) Tuning: 24H dataset

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

ω

Utility (%)

VMM

CVMM

HVMM

kCT

MinHash

Z

MostPopular

(b) Testing: TDG dataset with optimal parame-
ters from 24H dataset.

Figure 3.6: Expected performance curves: accuracy and novelty trade-off.

Although naïve, the approach of recommending the most popular stories is actually used very

often on newspaper websites. This strategy does not pay off when the size of candidate pool

increases. ”Good" recommendations are drowned in popular items. This can also be seen by

the fact that mixture of expert models integrating the popularity model are very sensitive to

the number of popular items while others are more robust (e.g. Figure 3.4 for VMM recsys).

We noticed that, when using the Dirichlet priors to update the mixture probabilities, the

prediction was mostly made by the popularity model, resulting in the same behaviour as the

most-popular recommender system as the size of candidate pool increases. However, as the

Bayesian update (Equation 3.10) adapts the probabilities based on the performance of each

expert model, it is more robust when we increase the candidate set. We also observed that as

the number of fresh items increased, CT models were getting slightly better.

When we look at the general accuracy of CT recommender systems (Figure 3.5(a)), their

performance is close to the existing techniques. However when we consider only personalized

items (Figure 3.5(b)), CT recommender systems outperform current techniques, showing that

the order of the model is important. Indeed, we observed that the weights of the experts are

well distributed over the space even for long sequences. If the sequence is not important, the

weights of the experts would have been 0 except for the root expert, resulting in a performance

similar to Z-1.

We have seen that recommending popular news is easy and relatively accurate. However, a

recommender system with a high accuracy on an offline evaluation does not imply that in

practice it will give useful recommendations to the users. In the context of news, novelty plays

a crucial role, and the users expect both personalized and novel recommendations. In the

next section, we study this trade-off.

42

3.6. PEN Recsys Framework

Comparison

In practice, we may be interested in some particular mix of accuracy and novelty. We formalize

this by defining a utility function: U (ω|D, A) =ω∗s@5+(1−ω)∗novel t y , whereω specifies the

trade-off between accuracy and novelty, D is the dataset (24H or TDG) and A is an assignment

of parameters. For CT systems, the parameters are the number of popular |P | and fresh |F |
items, whether the probabilities are computed via a Bayesian update or not, the mixture of

experts (standard, popularity and/or freshness). It might be the case that different parameters

are optimal for different utilities. The same holds for the parameters of the other methods we

compare against.

To perform the comparison, we simulate the process of a designer who is going to tune

each system on a small dataset (24H), before deploying the recommender online (on the TDG

dataset). For any value ofω, we find the best parameters for the 24H dataset, and then measure

the performance on the other dataset. This gives the Expected Performance Curve (EPC) [5],

which provides an unbiased evaluation of the performance obtained by different methods.

Figure 3.6 illustrates the EPCs for 24H and TDG datasets. Figure 3.6(a) shows the optimal

utility U (ω|D, A∗(ω,D)) with A∗(ω,D) = argmaxA U (ω|D, A) for D = 24H dataset. Figure 3.6(b)

shows the corresponding utility U (ω|D ′, A∗(ω,D)) achieved on the test dataset D ′ = TDG using

the parameters found for the tuning dataset. First, we observe that all methods are robust

in that they have similar performance in the testing dataset. Second, we observe that the

purely content-based method (CVMM) performs poorly both with respect to novelty and

accuracy. The hybrid approach (HVMM) is significantly better. Third, the approaches that

disregard the content (VMM and Z) perform similarly in terms of accuracy, but only the VMM

has a reasonable novelty. Finally, the k-d tree approach (kCT) has a much higher novelty than

anything else. Thus, if one were to select a method based on performance on the tuning set,

one should choose kCT for smaller values of ω and VMM for larger values.

3.6 PEN Recsys Framework

We are interested in online evaluation of state-of-the-art algorithms for news recommenda-

tions. Unfortunately, it is not possible to use current open-source platforms because they are

not tailored to the specific needs of news recommendations and thus are difficult to adapt to

the news domain [32].

The most important challenge of news recommendation is that news items are evolving very

quickly. Stories and topics emerge and vanish rapidly and outdated stories are no longer

interesting. Hence the recommender system must take into account these changes.

To this end, we present the PEN recsys framework for online evaluation of news recommender

systems. PEN recsys is designed with 4 criteria in mind. First, it has to be fast. The framework

must provide real-time recommendations as soon as possible, without making the users wait.

43

Chapter 3. Recommending News Articles

Second, it must be reliable. It is not acceptable for a newspaper website to suffer from crashes.

Third, a flexible design is important. It should be easy to add new components or extend

recommender systems. Finally, it must be scalable. News websites are subject to unpredictable

visit peaks and the framework must be able to handle them by delivering recommendations

on time and without problems.

Implementing a recommender system for production websites is challenging [78]. In the

following, we describe our framework and explain our design choices. We discuss important

factors to take into account when conducting online evaluation and report on our experience

when deploying recommendations with a live-traffic website. The PEN recsys framework

is currently in use by the news website swissinfo.ch4 for evaluating various recommender

systems.

3.6.1 Architecture

The PEN recsys framework consists of 6 main components. Figure 3.7 gives a brief overview of

these components and their interactions.

The dispatcher randomly assigns a recommender system to a user, performing A/B or multi-

variate testing. The recsys 1,2,3, ...,k are the different algorithms to evaluate. Some algorithms

rely on click statistics. The component statistics gathers click statistics about the stories.

Other recommender systems need the content of news articles, or more specifically its topic

distribution.

The component topic model is in charge of keeping the topic model up-to-date. We use the

Latent Dirichlet Allocation (LDA) method as probabilistic topic model [9, 44]. Building a topic

model takes time and resources. We implemented the offline LDA [9] in which we build the

topic model at regular intervals and based on the number of new items. This option is useful

in the case of a small corpus of news items or when the number of new items per day is small.

In the case of a larger corpus or when the number of new items per day is more important, we

also implemented an online version [44] which is useful for news items arriving in a stream.

Candidate items for recommendations are provided by the candidates component. This

component periodically queries the news website for fresh, unseen items and keeps track

of the clicked ones. Let F be the set of fresh items and P the set of clicked items such that

F ∩P =;. We define the candidate set C as C =F ∪P . It thus contains fresh items but also

old ones. It is possible to control the size of C thanks to two parameters: the size of the fresh

set F and the size of the clicked set P . The clicked set contains the latest |P | clicked news

items.

The performance component generates periodically performance reports of the algorithms

under evaluation. The database stores the clicks, statistics and performance reports for offline

4www.swissinfo.ch

44

3.6. PEN Recsys Framework

recsys 1

database

dispatcher

PEN Recsys Framework

clicks recommendations

backup performance statistics topic model

recsys 2 recsys 3 recsys k

...

newspaper website

users

candidates

Figure 3.7: System architecture and components

analysis. It provides a simple abstraction so that algorithms can access useful information

such as the user history, preference or item statistics.

Finally, the backup component periodically triggers backup to the hard disk of the various

states of the system such as the current topic model and click statistics. This is useful if we

want to roll back to a previous set of parameters.

It is important to deliver recommendations to the user as soon as possible. With that in

mind, the platform is designed to reduce this latency to the minimum. Hence tasks that are

not essential for generating recommendations are run in the background. For instance, the

database is known to be a bottleneck. Thus statistics are first cached in memory and later

stored in the database when resources are available.

When a reader clicks on a news item, the website sends to the PEN recsys a token id represent-

ing the reader and the respective item id. Note that the token id can be the reader id when

the reader logs into the website or a completely anonymized string representing the current

session of a non-logged reader. In our case, the website sends the latter.

The PEN recsys framework follows the software-as-a-service paradigm and is implemented

45

Chapter 3. Recommending News Articles

user news website PEN recsys server

click

token id, item id

<item id 1, …>

web page

(a) Synchronous

click

token id, item id

<item id 1, …>

web page

user news website PEN recsys server

async. call

recommendations

(b) Asynchronous

Figure 3.8: Two possible solutions to deliver news recommendations.

using Java EE technologies. It scales very well since each component can be physically located

on different sites.

3.6.2 Real-time Recommendation and Latency

In a highly-dynamic domain such as news, providing real-time recommendations is crucial

and challenging. Most of the standard recommender algorithms cannot be applied directly to

the news domain [8, 38]. They are designed for product recommendations where updating a

model once a day or week is acceptable. However, in our case the models need to be reactive

and updated on-the-fly as fresh news stories come in.

We paid careful attention to optimize the PEN recsys framework in such a way that it generates

recommendations very quickly. From a server-side perspective, it is important to remove

any system bottleneck. For instance, storing information into a database is a known bottle-

neck. It is thus better to use caching methods which allow to keep information in memory

first, and save them in a database when resources are available later. Moreover, the PEN

recsys framework relies on threads and concurrent data structures. This allows to generate

recommendations simultaneously to multiple readers.

A naïve solution to deliver a news content to the user is to use a synchronous approach.

In Figure 3.8(a), the user clicks on a news item. Then, the swissinfo.ch’s server queries the

PEN recsys server. The PEN recsys generates recommendations and sends them back to the

swissinfo’s server, which encapsulates them in the web page. The swissinfo.ch’s server sends

the page with the recommendations back to the user. As a result, the user has to wait to see

the content of the page until the recommendations are ready. This approach is not efficient.

We choose an asynchronous solution depicted in Figure 3.8(b). When a user clicks on a news

item, swissinfo.ch’s server sends the content of the page to the user’s browser and at the

same time queries the PEN recsys server. At that moment, the PEN recsys server generates

46

3.6. PEN Recsys Framework

Figure 3.9: Screenshot of the main panel

recommendations and sends them back to the swissinfo.ch’s server. The browser makes an

asynchronous call, i.e. with Ajax technology, to the swissinfo.ch’s server in order to fetch these

recommendations. swissinfo.ch forwards the recommendations to the browser as soon as

they are ready. If they are ready before the asynchronous call, the swissinfo.ch’s server stores

them temporarily. The advantage of this approach is that the original content of the page is

not blocked while the recommendations are generated.

swissinfo.ch had another requirement: deliver recommendations within 1 second. When

this threshold expires, no recommendations are displayed. So far, we never witnessed such

behaviour.

For our online evaluation, the PEN recsys framework is running on a standard workstation

with a dual-core CPU @ 2.6Ghz and 4GB of RAM. At the time of writing, the current memory

usage is 48% with a CPU load of 51%. It handles visit peaks smoothly and recommendations

are always delivered on time in less than 30ms (including connection overhead).

Consequently, we believe that standard news websites do not need an heavy system such as

Apache Mahout [2] but special cares must be taken by the researcher when designing and

implementing the system.

3.6.3 Interfaces

The PEN recsys framework has a web-based control panel (Figure 3.9) allowing the researcher

to configure the general behaviour of the framework, enable/disable an algorithm or fine tune

47

Chapter 3. Recommending News Articles

its parameters. In Figure 3.10(a), some recommender systems are enabled for an online mul-

tivariate evaluation (random articles, most popular recommender and VMM recommender

[32]), and the specific options of the VMM recommender are displayed.

The researcher can also check the performance of the enabled algorithms. Figure 3.10(b)

shows the performance panel with 3 metrics: success@k, mean average precision and the

average clicks per visit.

3.7 Live Evaluation at swissinfo.ch

Since July 2013, we are evaluating CT-based recommender systems with live traffic on the

news website swissinfo.ch. swissinfo.ch is a 10-language news website owned by the Swiss

broadcasting corporation. Its content is produced specifically for an international audience

with interests in Switzerland. swissinfo.ch gives priority to in-depth information on politics,

society, business, culture and science & technology. It has more than 1.7 million clicks per

month. We have deployed recommendations only on the English version of the website, which

accounts for more than 25% of the total traffic.

3.7.1 Baselines

In addition to context-tree recommender systems, we consider for the evaluation at swiss-

info.ch the following baselines:

Most Popular recommends a set of stories with the highest number of clicks among the last

read news items. This strategy is commonly implemented on most newspaper websites.

It does not recommend any new items, but only the ones that a reader would have

already seen on the front page.

Random recommends a set of stories at random. This strategy has the advantage of recom-

mending very diverse and potentially novel items.

Although the literature on news recommender systems is rich [7, 11, 1, 48, 64], we decided

to select only these baselines for the following reasons. First, the most popular and ran-

dom strategies are de-facto standards, very easy to implement and compare performance.

Researchers can easily compare their results to ours relative to these baselines. Second, repro-

ducing previous research takes time and correctly implementing an existing approach is tricky,

notwithstanding it is well described. Third, most of these algorithms have not been tested on

live traffic websites and thus there is no guarantee of scalability and if they meet real-time

requirements. Last, we need to limit ourselves to compare simultaneously 3 to 4 algorithms.

More algorithms would dilute the clicks and would not guarantee statistical significance of the

evaluation.

48

3.7. Live Evaluation at swissinfo.ch

(a) Setting panel (partial)

(b) Performance panel

Figure 3.10: Screenshots of settings and performance panels

49

Chapter 3. Recommending News Articles

0 500
1000

1500
2000

2500
3000

number of candidates

0

2

4

6

8

10

12

14

16

18
success@3 (%)

most popular
random
CT (std)
CT (std + pop)

Figure 3.11: Offline predicted accuracy for different sizes of candidate set.

3.7.2 Offline

Only a small set of recommender systems can be evaluated on a live website, and it has to be

carefully selected. The offline evaluation of Section 3.5 helped us to select the recommender

systems and their parameters that are the most likely to bring good recommendations. How-

ever, the evaluation of Section 3.5 was conducted on two different newspaper websites, and

not on swissinfo.ch. Thus, we had access to a 3-weeks “recommendations-free” clicks log from

swissinfo.ch. During these 3 weeks, the website did not have any recommender systems de-

ployed such as popularity-based methods (“top 10 popular items”). The log contains 227’831

clicks on 28’525 stories.

For a given recommender system and some fixed set of parameters, we imitated the online

environment by sending clicks in the same sequence as saved in the log to the PEN recsys

framework, and recorded the performance. When the recommender system receives a click on

some article, it generates 3 recommendations. The performance is measured as the success@3,

i.e. whether the next clicked article is in the recommendation set or not.

There are many different metrics to assess the performance of a recommender systems [42, 22].

For this offline evaluation, we selected the success@3 because we want to compare it with the

actual click-through rate of the live evaluation.

In addition to the baselines that recommend most popular and random items, we imple-

mented a context-tree system with the std model, and one with a mixture of std and pop

models. We were not able to add the fresh model because the log does not contain information

about freshness.

50

3.7. Live Evaluation at swissinfo.ch

Figure 3.11 illustrates the predicted accuracy for various sizes of the candidate set. When

the number of candidates increases, the performance of the random strategy drops because

interesting stories are diluted in the set. There is an optimal size for recommending the most

popular items around 200 candidates. Increasing the number of candidates after this point

does not improve the performance for the most popular strategy. However, CT recommender

systems take advantage of more candidates to bring better recommendations. In the rest of

the evaluations, we decided to pursue a conservative approach where we select parameters

such that baselines are optimal, and we pick 200 as size of candidate set. This conservative

choice of parameters is not in favour of CT recommenders but in that way, the performance of

CT recommenders can only be improved.

Figure 3.12(a) shows the predicted accuracy over time. In this figure, we only implemented the

std model in the CT recommender as it performs equally good as when we add the popular

model. It takes about one week to stabilize the performance. As expected, recommending the

most popular items outperforms other strategies. The random strategy is the poorest with an

accuracy close to 1%.

3.7.3 Online

All recommender systems are deployed with the PEN recsys framework, specifically designed

to conduct multi-variate online evaluation of news recommender systems. With the online

evaluation, we want to address the following questions:

Question 1. Do context-tree recommender systems bring an improvement in click-through rate

over baseline methods?

Question 2. Do recommendations in general, and recommendations made by context-tree

systems in particular, increase the page views by the user on the news website?

Question 3. Among all CT-based recommender systems, which version and set of parameters

are optimal?

The answers to these questions are not trivial, and are specific to each website. Similar to

our study, the results and conclusion of the evaluation on Forbes.com [57] are unique to this

website. In addition, the reasons behind each study are not the same.

The online evaluation is split in two phases where we test different strategies against each other.

The first phase consists of comparing a standard context-tree system against the baselines,

and aims at answering Questions 1 and 2. The second phase investigates Question 3.

For each evaluation phase, we bootstrapped the recommender systems during one week, and

evaluated them on the next two weeks. We estimated this time frame based on the previous

offline evaluation, the expected traffic volume, and the time required to learn the model. It is

crucial to run as many methods as possible in parallel to avoid biases in the evaluation due to

51

Chapter 3. Recommending News Articles

0 5 10 15 20
days

0

5

10

15

20

25

30

35

40

45
success@3 (%)

most popular
random
CT

(a) Offline predicted accuracy

0 5 10 15 20
days

4

6

8

10

12

14

16

18

20

22
success@3 (%)

most popular
random
CT

(b) Online actual accuracy

0 5 10 15 20
days

0

2

4

6

8

10

12

14
CTR (%)

most popular
random
CT

(c) Online actual CTR

Figure 3.12: CTR of online (bootstrap + phase 1) and offline evaluations.

trends and variations in the candidate set. However, we had to split the evaluation because

we could not run more than 4 recommender systems in parallel in order to get statistical

significant results.

The PEN recsys framework assigned randomly one recommender system to each visit, in the

matter described in Section 3.6, performing a multivariate evaluation. Note that visits are

anonymous and we were not able to track a user across multiple visits. For all recommender

systems, the candidate set was composed of the last 200 clicked items and 50 fresh items.

We chose these conservative parameters based on our previous offline analysis. When a

recommender system receives one click, it returns 3 recommendations.

As opposed to the offline setting, we report for the online evaluation the click-through rate

(CTR) on the recommendations, i.e. the number of clicks on recommendations over the

number of impressions. Note that in the live evaluation, the CTR is computed with the actual

clicks of the users on the recommendations, and is not a prediction.

52

3.7. Live Evaluation at swissinfo.ch

2 3 to 5 6 to 10 all
0

2

4

6

8

10

12

14

16
CTR (%)

most popular

random

CT

Figure 3.13: Online actual CTR over visit length, with confidence intervals at 95%.

Phase 1

For the first phase, we selected the context-tree recommender system with the standard model.

For the baselines, we implemented the strategies that recommend the most popular stories

and that recommend stories at random. The overall click-through rate of recommendations

was 8.4%. Figure 3.12(c) illustrates the bootstrap phase required by the context-tree system. It

takes about one week to reach a comparable CTR to the one of random. Figure 3.13 shows

the click-through rate per recommender system and over the length of the visit. Context-tree

recommenders slightly outperform the baseline methods in general. When the visits are very

short (exactly 2 articles), recommending random stories hardly increases the click-through

rate (7.7%). However, for medium and long visits, the context-tree system greatly improves the

CTR. For medium-length visits, the CT system has a 10.8% CTR while the random baseline is at

8.9%. For long visits, CT system is at 13.1% while the random baseline is at 9.7%. The strategy

of recommending the most popular articles is definitely not the best solution: regardless of

the visit length, the click-through rate stays below 7%. This is because users will have already

read these stories elsewhere.

When the visit length increases, CT recommenders outperform baseline methods because

they take advantage of the personalized sequence of each user to create an accurate profile.

No matter what the user’s interest is, the baseline strategies will always perform the same.

Overall, context-tree recommender system brings a 11% improvement over recommending

random items, and more than a 20% improvement when considering medium to long visits

(21% and 35% for medium and long visits respectively).

To address Question 2, we measure the impact on the visit length by looking at the difference

in the number of articles clicked. We break the visits into two groups: visits containing at least

one click on a recommendation, and visits without any click on recommendations. Table 3.2

summarizes our findings. The length of the visits without taking a recommendation averages

1.25 clicks, while visits with at least one click on a recommendations jumped by more than 2.5

53

Chapter 3. Recommending News Articles

Table 3.2: Average visit length with and without recommendations
Recommender system w/o recommendations w/ recommendations

Most Popular 1.25 3.36
Random 1.25 3.93
CT 1.25 3.96

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

clicks

#visits

Most Popular

Random

CT

(a) Online only.

5 10 15 20
clicks

10-3

10-2

10-1

100

101

102
% of visit

offline
online

(b) Online and Offline (in percent of the total number
of visits).

Figure 3.14: Distribution of visit length.

clicks, with an overall average at 3.75 clicks.

As depicted in Figure 3.14, most sessions are very short. Users reach the website through a

search engine or a news aggregator, read one article, and leave. If we remove such behaviour

by considering visits of length at least 3, the visit length increases by about 1 click, from 4.31

to 5.22 clicks. 90.4% of the visits have only one click, while with recommendations it drops

to 85.0% of the visits. It is possible that users who click on recommendations are more likely

to have longer visits. Since we are not tracking the users, but only their current session, it is

difficult to answer this question. In Forbes.com for instance, this tendency exists [57].

Phase 2

For the second phase, where we compare different versions of CT recommenders (Question 3),

the overall click-through rate of recommendations was slightly lower than during the first

phase at 5.0%. Figure 3.15 illustrates the click-through rate with different mixtures of models.

Again, we need a bootstrap phase of roughly one week until the model is correctly learnt.

Incorporating the popularity model decreases the click-through rate, except when the visit is

very short. This is not surprising since users with a very short visit are mostly interested in

what is displayed on the main page of the website, thus reinforcing popular stories. However,

when the length increases, users are no longer interested in popular stories. It is not clear

whether the fresh model improves recommendations. However, this might be due to the fact

54

3.8. Discussion

0 5 10 15 20
days

0

2

4

6

8

10

12

14

16

18
CTR (%)

std
std + pop
std + pop + fresh
std + fresh

(a) bootstrap + phase 2

all 2 3 to 5 6 to 10
0

2

4

6

8

10

12
CTR (%)

std

std + fresh

std + pop

std + pop + fresh

(b) Phase 2 only, with confidence intervals at 95%.

Figure 3.15: Online actual CTR of different mixtures of experts for phase 2.

that the number of fresh items considered here (30) is not optimal. We believe that tuning this

parameter will improve the accuracy of recommenders with the fresh model.

3.8 Discussion

We discuss here important factors that influence directly the recommendations, and report

on our experience in developing and deploying the PEN recsys framework on swissinfo.ch

website.

3.8.1 Online vs Offline Evaluations

We used the offline evaluation to select the recommender systems and their parameters

that could most likely generate good recommendations in a live environment. However, the

difference between online and offline evaluations is striking (Figures 3.12(c) and 3.12(a)). In

the offline setting, it is difficult to do better than recommending most popular articles because

the recommendations do not directly influence the users. This method mimics the best the

behaviour of the readers when no recommender systems are in place because items on the

front page attract the most clicks. In the live evaluation, the popularity-based strategy is clearly

not the most interesting because users do not want to read articles they have already seen on

the front page.

Some recommender systems could have been ruled out of the live trial due to their poor

performance during the offline evaluation. However, the conclusion would not have been the

same in a live setting. In an offline setting, the predicted accuracy alone is thus not enough

to glimpse the possible live performance. We believe that when evaluating recommender

systems in an artificial environment, researchers should study more than one metric. In

55

Chapter 3. Recommending News Articles

particular, diversity and novelty are important factors that influence recommendations in a

live setting.

Figure 3.12(b) illustrates the actual accuracy in an online setting. In this figure, the accuracy

incorporates clicks on recommendations but also on predicted articles. The actual CTR

in Figure 3.12(c) is approximately equal to the difference between the online actual and

offline predicted accuracies (Fig. 3.12(c) = Fig. 3.12(b) - Fig. 3.12(a)). Indeed, the online actual

accuracy incorporates both offline and online performances. However, this observation does

not hold for the popularity-based strategy. The reason behind might be that there is a major

shift in reading behaviour between the offline dataset and the live website.

We conjecture that a random strategy works better for short visits because users want to have

diverse items. When the visit length increases, users might be less interested in diversity, and

tend to read more about the same topic [38].

Although there exist many metrics [42, 94] to assess the performance of a recommender system,

the click-through rate is a de-facto standard in the industry because it is often correlated

to the revenues generated by the news website. Indeed, these revenues come from either

advertisements (ads) displayed on the website or paid articles (or sometimes both). In general

for online advertisement, there are two revenue models: pay per impression or pay per click.

With the former, the news website receives monetary compensation for displaying ads while

with the latter every time a user clicks on the ad. In all cases, news websites are incentivized

in increasing page views. So one way to justify the performance of a recommender system is

through its generated revenue, or click-through rate.

The difference in performance between online and offline for the popularity-based method is

explained by the fact that offline dataset does not capture user preferences. Instead, offline

datasets have a very strong bias towards popular items. These items are displayed on the front

page of the website, and attracts most of the clicks. Thus, it would be interesting to modify the

recommender algorithms to take into account aspects of the page design [63].

3.8.2 Page Layout

A recommender system is a small piece of a bigger and complex environment. In our case, we

have little to no control over the other elements of the environment such as the presentation

layer.

swissinfo.ch’s website has two types of news items: stories and tickers. The former are in-depth

news articles written by swissinfo.ch’s journalists. The latter are unedited news items coming

from press agencies. Of course, swissinfo.ch wants to recommend their content instead of

third-party items. Unfortunately, it was not possible to have different layouts for stories

because stories are of highest importance than tickers for swissinfo.ch (they receive 7 times

more clicks) and it would have decreased the content quality of the page. However, we were

able to test different placements on ticker pages. Note that the generated recommendations

56

3.8. Discussion

HEADER

NEWS STORY TITLE

FOOTER

DYNAMIC RECOMMENDATIONS

RELEVANT
IMAGE

STICKY
MENU

USERS COMMENTS

MANUAL RECOMMENDATIONS

NEWS CONTENT

(a) story

HEADER

NEWS STORY TITLE

FOOTER

DYNAMIC RECOMMENDATIONS

REUTERS FEED

NEWS CONTENT

(b) ticker (bottom)

HEADER

NEWS STORY TITLE

FOOTER

DYNAMIC
RECOMMENDATIONS

REUTERS FEED

NEWS CONTENT

(c) ticker (top right)

Figure 3.16: swissinfo.ch’s page layout for a story and a ticker. For a story, dynamic (blue-
dashed) and manual (blue-dotted) recommendations are at the bottom of the page. For a
ticker, the position of dynamic recommendations (red-dashed) changes: bottom or top right.

are always composed of stories.

For a story, the web page is split into several areas, sketched in Figure 3.16(a). The header has

the menu buttons to browse the website and jump to different sections and topics, while the

footer contains information about swissinfo.ch, links to social media sites, links to swissinfo.ch

mobile applications and legal notices. Below the header, the title of the news story is displayed,

then follows the content with one relevant image.

The layout of the page is extremely important [82, 13]. Most of the news stories are very long

and do not fit on the displayed area of the screen (see Figure 3.17). Thus, the placement of

recommendations on the page plays an important role in drawing users’ attention. Although

there is a direct link in the sticky menu pointing to the recommendations, users need to scroll

down the page to see the recommendation box, and we believe that users tend not to read

articles down to the end.

For a ticker, the web page is similar to the one of a story (Figure 3.16). Nonetheless, we have

the opportunity to alter the page in such a way we can have two different placements of

the dynamic recommendation box: top right and bottom (see Figure 3.18). The top-right

version allows us to display more recommendations (6 stories) than the bottom version (3

stories). Figure 3.19 illustrates the difference in click-through rate between the two placements.

When the recommendations are at the top-right corner of the page, the CTR is more than

double (2.25) the one at the bottom. Hence, displaying recommendations at the top-right is

significantly (χ2-test with p < 0.01) better than at the bottom. The placement might not be the

only reason of this improvement. The width of the page limits the bottom recommendation

box to only three items, while the top-right version contains 6 recommendations. So the larger

choice available to the user might also play a role. An easy way to verify this claim would

57

Chapter 3. Recommending News Articles

Figure 3.17: A swissinfo.ch’s story of average length (2758 characters)

58

3.8. Discussion

(a) bottom (stories and tickers) (b) top right (only tickers)

Figure 3.18: swissinfo.ch’s dynamic recommendation boxes: bottom and top-right position.
Note that the number of recommendations is not the same.

bottom top right
0

2

4

6

8

10

12
CTR (%)

Figure 3.19: Click-through rate on tickers for the two different placements, with confidence
intervals at 95%.

be to place the bottom version at the top of the page, but this solution has been rejected by

swissinfo.ch.

Recommendations generated by the PEN recsys framework are displayed in the dynamic

recommendations box. The original design of the page limits to three recommended items

due to aesthetic constraints (see Figure 3.18(a)). We believe that three recommendations

restrain the user’s choice. We do not know what is the optimal number of recommendations,

but would be an interesting future direction.

The author of a story can select related stories and place them in the manual recommendations

box situated below the dynamic recommendations. We discuss the differences between

manual and dynamic recommendations in the next Section.

59

Chapter 3. Recommending News Articles

3.8.3 Manual and Dynamic Recommendations

Manual recommendations are constructed by the author of the current news item. They take

into account only the current article, but not the history and preferences of the reader. It is

desirable to have an automatic way to create more personalized recommendations.

When generating dynamic recommendations, the system can take into account the set of

manual recommendations in order to refine its recommendations. We believe that manual

recommendations can be replaced by a simple content-based recommender or a content

retrieval system that do not rely on user’s preferences. However, dynamic recommendations

are more challenging to design and implement.

Manual recommendations might attract more users than personalized recommendations.

Researchers should take into consideration the fact that one might drives more click than the

other. However, it does not mean that the recommendations are bad, but that the interest of

the users are different. To study this issue, it would be interesting to look at the click ratio of

manual versus the click ratio of dynamic recommendations.

3.9 Conclusion and Future Work

News recommendation is challenging due to the rapid evolution of topics and preferences.

We introduced a class of recommender systems based on context trees that accommodate

a dynamically changing model. We considered context trees in the space of sequences of

news, sequences of topics, and in the space of topic distributions. We defined expert models

which consider the popularity and freshness of news items, and examined ways to combine

them into a single model. We proposed an incremental algorithm that adapts the models

continuously, and is thus better suited to such a dynamic domain as the context tree evolves

over time and adapts itself to current trends and reader preferences. Our approach requires

only one tree (the context tree), and thus scales very well. Our work is not restricted to the

history of logged-in users, but considers a one-time session for recommendation, where users

do not log in. Surprisingly, we do not know of any existing research that considers context-tree

models for recommender systems.

Each proposed variant has its strengths and weaknesses. To evaluate them in an offline setting,

we used the expected performance curve methodology, whereby each method is tuned in

a training set according to a parametrized utility metric. In doing so, we showed that if we

are interested in accuracy in a static dataset, a context tree that implements a variable-order

Markov model is ideal, while novelty is best served with a k-d tree on the space of topics. In

addition, we showed that a large order is mainly important when we are not interested in

recommending highly popular items.

The online evaluation on the newspaper website swissinfo.ch does not show the same be-

haviour than in an offline setting. In particular, recommending most popular items is definitely

60

3.9. Conclusion and Future Work

not the best strategy. In an online setting, context-tree recommender systems improve by

up to 35% the click-through rate over the best baseline. The visit length more than double

when readers click on recommendations. As expected, the placement of recommendations is

crucial: the click-through rate more than double when recommendations are displayed at the

top-right corner of the article.

At the time of writing, the evaluation is still ongoing. For instance, we are missing results about

content-based methods. An interesting future direction would be to extend the set of expert

models to take into account social and demographic data.

61

4 Predicting Outcomes of Events

4.1 Introduction

The outcome of many important events depends on detailed information that is only known

to certain individuals. For example, the outcome of a vote depends on the sympathies of

voters for different options, the success of a project depends on a combination of details, and

the sales of a new product are determined by how much an average consumer likes it.

Such questions are typically answered by polling a significant number of people who each

provide a different judgement based on their perception of these details. Such polls provide

the best results when they are carried out on an unbiased sample. However, this requires that

every member of the sample makes the effort to answer the questions, which is not easy to

enforce. Thus, most online polls are based on voluntary participation or even self-selection,

where people respond to a poll out of their own initiative. Responses are often given for ulterior

motives, resulting in biased and questionable results. For example, in product review websites

most reviews have either a positive or negative bias [45, 54], so that it is not clear whether the

average rating actually reflects the true quality as we have discussed in Chapter 2.

One way to encourage participation by a broader sample of the population is to reward

participants for their response. However, this raises a question of quality control: if random

answers carry the same rewards as honest answers, why would anyone make an effort to give

a correct answer?

This question has been addressed extensively in AI research but has not been applied very

much in practice. In this chapter, we report on an experimental platform, swissnoise1 (Fig-

ure 4.1), for conducting opinion polls on questions of public interest. Swissnoise experiments

with two different models: prediction market [40, 41, 15] and peer prediction [51, 103, 104, 83].

To our knowledge, it is the first platform to implement a peer prediction scheme in a public

opinion poll. Peer prediction is a new scheme that can be applied more broadly than predic-

tion markets. The goal of our platform is to show that it can be practically implemented and

1http://go.swissnoise.ch

63

Chapter 4. Predicting Outcomes of Events

Figure 4.1: swissnoise’s homepage.

achieve performance that is comparable to prediction markets.

4.1.1 Contributions

In this chapter, we study the practical implementations of two aggregation mechanisms to

elicit private information. First, we show that the peer prediction scheme can be practically

implemented in an online public opinion poll. Second, we discuss the design choices and

variations made to such mechanisms when implementing them. Finally, we show that peer

prediction achieves a comparable performance to prediction markets.

4.1.2 Related Work

The simplest mechanism to measure the accuracy of predictions is a scoring rule [93]. The

score (or payment) rewards participants based on their predictions such that it incentivizes

truthful reporting. Hanson et al. [40, 41] build on these scoring rules and proposed a family of

rules known as Market Scoring Rules (MSR). MSR and in particular the logarithmic MSR are

the most commonly used prediction market algorithm. As a results, they gave birth to a very

rich literature on prediction markets [15, 100].

There are a lot of commercial online prediction market platforms. Among the non-profit

64

4.2. Prediction Mechanisms

platforms, the Iowa Electronic Markets2 is probably the first and most famous. More recently,

Scicast3 is another non-profit platform targeted to prediction of scientific topics. Tziralis

et al. [100] provide an extensive survey of the literature on prediction markets until 2006.

The literature on this subject continued to grow. Recently, Dudik et al. [27] implemented a

combinatorial version of prediction market for the 2012 US election.

Miller et al. [72] proposed the original peer prediction mechanism, but their scheme re-

lies on strong assumptions about the common knowledge of the participants. A stream of

researches [80, 104, 83] improved this version by relaxing some assumptions. Prelec [80] intro-

duced the Bayesian Truth Serum (BTS) which assumes that participants share a common prior,

but the scheme does not need to know it. However, participants need to make two reports: one

about their own information and one on the prediction of the overall population. Witkowski et

al. [104] defined a robust version of the BTS by rewarding participants based on how well their

own information report is used to update the overall prediction report. Radanovic et al. [83]

improved the BTS such that the information and prediction scores are mutually independent.

This results also apply to the robust BTS.

4.2 Prediction Mechanisms

The goal of a prediction mechanism is to aggregate information in order to predict outcomes

of future events. We introduce here two types of mechanisms: prediction market and peer

prediction.

4.2.1 Prediction Market

The idea behind prediction markets [40, 41, 15] is to encourage self-selection of individuals

who are the most knowledgeable about a topic, and pay more for information that makes

the outcome more accurate. Participants answer a poll with respect to the already known

information. They trade securities linked to each possible outcome. When one outcome

materializes, the securities for that outcome pay a reward of 1, whereas those that did not

realized pay nothing. Thus, a participant can expect to gain by

• buying securities at a price that is below the probability of the associated outcome, and

• selling securities at a price that is above this probability.

If all participants evaluate the outcomes in the same way, a prediction market is thus in

equilibrium whenever the price of the securities is equal to the predicted probability of the

outcome.

2http://tippie.uiowa.edu/iem
3www.scicast.org

65

Chapter 4. Predicting Outcomes of Events

Another function provided by a prediction market is that of aggregating information. When

participants do not agree on a single probability - and usually they will not - the aggregation is

determined by how much money they are willing to risk on their prediction: as buying and

selling securities changes the price, a participant may need to buy a large number of shares to

move the price to her believed probability. If other participants have a strong opposite belief,

they will readily sell their shares so that the price moves only very slowly. In practice, there

are often not enough simultaneous participants, and thus this liquidity is simulated by an

automated market maker. An automated market maker is based on a scoring rule and adjusts

the price of securities so that the expected reward for changing the probability of an outcome

is proportional to the difference of what a logarithmic scoring rule (Equation 4.1) would pay

for the new probability and for the old probability. The scaling factor b that determines the

actual amount is called the liquidity parameter and an important element of the design of the

prediction market.

A major issue with practical deployment of prediction markets on public platforms is that at

least when real money is used, many countries consider them a form of online gambling that

is illegal. This is because participants have to place bets on particular outcomes that may or

may not pay off. This could be overcome by just using scoring rules, so that payoff occurs

only at the end, but this would mean that rewards are only paid very much later and make the

market less interesting.

Definition

The simplest prediction mechanism that rewards participants in return to their accurate

information is a proper scoring rule [93]. More formally, let X be a discrete random variable

to be predicted with N mutually exclusive outcomes. A participant submits a probability

estimate r = 〈r1,r2, ...,rN 〉 of the value of X .

A scoring rule S = {s1(r), s2(r), ..., sN (r)} assigns a score si (r) to the participant who reports r

if outcome i is realized. A proper scoring rule enforces truthful reporting for risk-neutral

participant. A widely used proper scoring rule is the logarithmic scoring rule:

si (r) = a +b log(ri) (4.1)

where a and b are constant with b > 0.

Hanson [40, 41] proposes an automated market maker mechanism based on this scoring rule,

called the market scoring rule. This mechanism can be seen as a sequential and shared version

of the proper scoring rule. The market maker starts the market with some initial probability

estimate r0 over the outcomes. Every participant can change the current estimate r to a new

estimate r′ as long as she pays si (r) and receives si (r′).

We present here an equivalent formulation of the market maker based on a cost function [14].

Let qi be the total quantity of security i held by all participants, and q = 〈q1, q2, ..., qN 〉 be the

66

4.2. Prediction Mechanisms

vector of all quantities. The cost function C (q) defines the total amount of money spent as a

function of the total number of shares held of each security. A participant who buys or sells

any security will change the total number of securities from q to q′. Thus, the market maker

charges her C (q′)−C (q). Note that a negative value represents a sell order, or a payment from

the market maker to the participant.

The cost function C (q) for the market maker with the logarithmic scoring rule (Equation 4.1)

is

C (q) = b log(
N∑

i=1
eqi /b) (4.2)

where b is the liquidity parameter of the market. The larger the liquidity is, the more shares a

participant can buy without affecting too much the price. If the liquidity is too small, the price

swings dramatically after a small number of shares is bought.

The corresponding instantaneous price function is

pi (q) = ∂C

∂qi
= eqi /b∑N

j=1 eq j /b
(4.3)

Note that this price applies for buying a infinitesimal number of shares. As soon as the

participant starts buying, the price immediately increases.

4.2.2 Peer Prediction

Besides the legal issues, another problem that is common to both scoring rules and prediction

markets is that they can only be applied when the predicted outcome can be verified with

certainty. This makes it impossible to collect predictions for outcomes that will never be

verified, such as product quality or appeal.

Peer prediction [72] solves this issue. The idea is to consider the reports of other agents

that observed the same variable, or at least a stochastically relevant variable, as the missing

ground truth. A proper scoring rule is then used for the incentives. Provided that other agents

truthfully report an unbiased observation of the variable, such a reward scheme makes it a best

response to provide truthful and unbiased reports of the observations, and truthful reporting

thus becomes a Nash equilibrium. Miller et al. [72] describe such a mechanism and several

variants, and Jurca and Faltings [52] discuss further optimizations and variants.

An important limitation of peer prediction methods based on proper scoring rules is the

need to know the agents’ posterior probability distributions after each measurement. Zohar

and Rosenschein [109] investigate mechanisms that are robust to variations of these distribu-

tions, and show that this is only possible in very limited ways and leads to large increases in

payments.

67

Chapter 4. Predicting Outcomes of Events

The Bayesian Truth Serum [80, 104, 83] is a mechanism that elicits both the estimate itself as

well as the beliefs about other’s estimates. This elicitation of extra information eliminates the

need to know the prior beliefs, but also requires participants to provide more information

than just the answer to the question, which makes their task cognitively more difficult and too

complex to implement.

We therefore took inspiration from prediction markets to implement a peer prediction scheme

that assumes a common prior probability given by the current poll result. Similar to a predic-

tion market, we display a current probability for each outcome. This probability is obtained

by Bayesian updating from the reports received from different participants so far. Periodically,

new reports are integrated into the current prediction to make it more accurate.

Definition

A reward is paid whenever the report matches a peer report that is randomly chosen among

the reports that have been received in the same time period between updates of the public

distribution. The amount of the reward is scaled so that it is inversely proportional to the

currently estimated probability of this outcome. More formally, let rt = 〈r1,r2, ...,rN 〉 be the

public prior probability distribution over N outcomes at time t . The reward function for

reporting outcome x, given the reference report y is

τ(r, x, y) =
{

min(θ, a + b
rx

) if x = y,

a if x 6= y
(4.4)

where a and b > 0 are constants to scale the reward, and θ is an upper bound on the reward. We

call this reward scheme the peer truth serum: as the Bayesian Truth Serum, it does not require

knowledge of prior probabilities, but rather than requiring extra reports from participants, it

takes this prior probability from the poll itself.

This reward scheme will reward accurate reports whenever the participant a) believes that

the current probabilities reflect the true prior distribution of other participants’ reports, and

b) believes that the true distribution of other participants’ answers is actually shifted in the

direction of her own opinion so that:

Prx (x)

Pr (x)
> Prx (y)

Pr (y)
(4.5)

where Pr (x) is the prior probability of outcome x while Prx (x) and Prx (y) are the posterior

probabilities for the outcomes x respectively y , when the agent believes the true outcome

should be x. This condition is satisfied for example if the participant performs Bayesian

updating to combine its own belief with the current poll outcome. This can be shown easily

by considering that the probability of outcome x matching that of another randomly chosen

participant is equal to Prx (x), and the reward is equal to rx = Pr (x) - the condition is then

equal to the incentive-compatibility condition.

68

4.3. Swissnoise

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200
Reward

Probability rx

1 / r

x

min(θ, a + b / r
x
)

Weber−based

current

Figure 4.2: Different reward schemes for peer prediction (a = 50,b = 1).

A major issue with the original scheme (1/rx) proposed by Jurca et al. [53] and the generalized

version (Equation 4.4) is that the difference of rewards between one outcome and another

is so small that participants are indifferent (Figure 4.2). As a result, the participants opt for

the less risky outcome. This risk-averse behaviour is naturally explained among individuals:

in a noisy environment, we need to shout to be heard, while a whisper is enough in a quiet

room. Actually, the perception of sound is proportional to log10. In psychophysics, this effect

is known as Weber’s law.

To compensate this behaviour, we modify the reward scheme by taking into account Weber’s

law:

τ(r, x, y) =
{

min(θ, a +e
b

rx) if x = y,

a if x 6= y
(4.6)

Unfortunately, this modification created risk-seeking behaviours because when rx < 0.4 the

reward is maximum. In order to decrease such behaviours, we average Equation 4.4 and

Equation 4.6 such that

τ(r, x, y) =
 min(θ, a +

b
rx
+e

b
rx

2) if x = y,

a if x 6= y
(4.7)

4.3 Swissnoise

We designed a platform called swissnoise4 with the goal of predicting results of Swiss ballots.

However, swissnoise contains now more diverse events ranging from sports, entertainments

to politics. Swissnoise was open to the public on April 22nd 2013. As of Jan 27th 2014, the

4http://go.swissnoise.ch

69

Chapter 4. Predicting Outcomes of Events

(a) Prediction market. (b) Peer prediction.

Figure 4.3: swissnoise’s event description panels.

platform had 200+ active users with a total of 132 events (20 are currently open). The platform

is free to signup and use. Each user starts with π5000. π is our virtual currency on the platform.

Every week, we assign one gift card of USD20 to the user who achieves the highest profit during

that week.

Swissnoise implements two mechanisms to elicit information from the crowd: prediction

markets and peer prediction. Since we are interested in comparing these two schemes, for a

given event each user is assigned randomly to one of them.

4.3.1 Implementation and Design

Prediction Markets

We implemented the logarithmic market scoring rule [40, 41]. We determined the liquidity

parameter b = 100 empirically in such a way that it allows newcomers to still be able to

influence markets although their starting amount is lower than advanced users. We also scaled

up the payments (by 10) to make it more attractive to the users.

Due to the way we rewarded the users, strategic behaviours emerged. Some users clear their

trading positions at the last moment, on Sunday night, right before we determine the weekly

winner in order to cash their profit. Figure 4.3(a) illustrates these dramatic price swings for

one event.

Peer Prediction

Since swissnoise is the first platform to implement a peer prediction scheme for public opinion

polls, it was not clear a) how to implement the peer truth serum, and b) what are the best

70

4.3. Swissnoise

design choices.

In swissnoise, the peer truth serum is implemented as a “lottery”. This analogy has the

advantage of being well-understood among the majority of the users. However, we had to

adapt it slightly to match the peer prediction scheme.

The key idea behind our implementation of the peer truth serum is that the user controls an

agent which plays for her. Every day at midnight, we collect the statistics of the current day

about an event and run a lottery. We randomly match a user’s lottery ticket (report) to another

user’s ticket (peer report), and if their opinions are the same, the user is rewarded according to

Equation 4.7.

For a given event, the user selects first the number of days the agent is going to play, and

buys lottery tickets accordingly. One lottery ticket is used per day. Then, the user selects the

outcome she thinks is the best. She can update her choice at any time, but only the most

updated information is taken into account for matching the tickets.

In the initial phase of the implementation, the potential reward of the lottery was very low

(Equation 4.4), and it was making the peer prediction not interesting compared to the predic-

tion market (Figure 4.3(b)). So we had to scale up the reward in such a way that the probability

of winning the lottery would bring about the same reward as the average reward on a pre-

diction market event. The popularity of peer prediction events increased, but a risk-seeking

behaviour emerged among our users. Users started to choose the less likely outcome in order

to get the highest reward (Equation 4.6). This behaviour resulted in daily oscillation around

the 0.5 probability of the outcome. We observed this behaviour only for events with binary

outcomes. Indeed, collusion/synchronization of behaviours among users on events with more

than 2 outcomes is difficult because it requires to observe more than one signal.

To tackle this issue, we adjusted the reward for the peer prediction (Equation 4.7) and, instead

of taking the current statistics, we computed a running statistics over 5 days. As a result, it

decreased the oscillation effect.

Another issue was that some users did not update their votes, and the peer truth serum

contained stale opinions. Thus, we decided to limit the number of possible tickets that a user

can buy to 5. A user needs first to buy 5 tickets, and comes back after 5 days to buy again more

tickets, and at the same time, update her opinion if necessary.

The additional π earned on lottery events can be used to buy shares in prediction market

events or tickets in peer prediction events. The profit made during one week with the peer

prediction and prediction market determines whether she is the winner of the week or not.

71

Chapter 4. Predicting Outcomes of Events

−2 −1 0 1 2 3

x 10
4Profit

(a) Profit of each user displayed by ascending or-
der. Dashed lines are min, median and max profit,
respectively.

−200 −100 0 100 200
0

5

10

15

20

25

return (%)

percentage of users

(b) Distribution of return across the user population.

Figure 4.4: Profits and returns.

4.4 Results

The performance of the users on the prediction market is depicted in Figure 4.4. The revenue

is defined as the total amount received from selling shares and from payouts when a market

is closed. The spending is the total amount spent in buying shares of events. The profit of a

user is her revenue minus her spending, and her return is her profit over her spending. The

profit and return indicates how good a user is on the platform. Note that the return has a

lower bound at -100%, but the profit does not have a lower bound because users can get extra

π by the means of lottery. For Figure 4.4(a), the minimum profit is -12051, the maximum

profit is at 20000. The median profit is slightly positive at 1.47 which shows that the median

user improved the market’s forecast accuracy. Figure 4.4(b) illustrates the distribution of

users’ return. The first peak at -100% corresponds to users whose predictions did not happen.

The second peak on the right hand side of 0% is for users who slightly improved the market

accuracy. A third smaller peak exists at around 50% showing that a small portion of users has

improved the prediction more than the median user. Finally, another peak lies after 100%

which could corresponds to risk-seeking users whose risky predictions actually paid off. These

curves are similar to the ones reported recently by Dudik et al. [27].

To illustrate that peer prediction achieves a forecast accuracy comparable to the one by the

prediction market, we focus our study on three events about the Swiss ballots because we

can also compare our results with the ones from a traditional opinion poll company, named

gfs.bern5.

On November 24th 2013, Swiss citizens voted on 3 items6: two items where popular initiatives

5www.gfsbern.ch
6More informations on the Swiss government portal https://www.ch.ch/en/federal-vote-of-the-24th-of-

72

4.4. Results

Apr 26 Jun 15 Aug 04 Sep 23 Nov 12 Jan 01
0

20

40

60

80

100

120

140

160
Trades per day

buy

sell

(a) Number of trades on prediction market events.

Apr 26 Jun 15 Aug 04 Sep 23 Nov 12 Jan 01
0

50

100

150

200

250
votes per day

(b) Number of votes on peer prediction events.

Figure 4.5: User activity on swissnoise.

proposed by some eligible persons or a group of persons, and one was a mandatory referendum

proposed by the Swiss Federal Assembly. At ballot stage, voters vote yes or no. The item comes

into force if it is accepted by a double majority: majority of votes and majority of Swiss states.

The 3 items are

Initiative on fair wages. This initiative asks that the highest salary paid in a company should

not exceed twelve times the amount of the lowest salary. The question asked was Are

you in favour of the initiative on fair wages? This item has been rejected at 65.5%.

Initiative for families. This initiative asks that parents who look after their children could

deduct the same or a higher amount from their taxes as parents who pay for childcare.

The question asked was Are you in favour of the initiative on tax deductions for families?

This item has been rejected at 58.5%.

Amendment on tax for highways. This amendment aims at increasing the charge for using

the highways from CHF40 to CHF100 a year, and introduce a two-month highway

tax sticker costing CHF40. The extra revenue will be used to finance the running,

maintenance and expansion of around 400km of roads. The question asked was Are you

in favour of the amendment on tax for highways? This item has been rejected at 60.5%.

We posted these three items on swissnoise and asked what would be the outcome of the final

vote.

We analyse the choice of the liquidity parameter by running a counterfactual simulation and

following the same protocol as described by Dudik et al. [27]: we transform buy/sell transac-

november-2013

73

Chapter 4. Predicting Outcomes of Events

10
1

10
2

10
3

10
4

10
5

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
log score

liquidity

(a) Initiative on fair wages.

10
1

10
2

10
3

10
4

10
5

−1

−0.8

−0.6

−0.4

−0.2

0
log score

liquidity

(b) Initiative for families.

10
1

10
2

10
3

10
4

10
5

−1.5

−1

−0.5

0
log score

liquidity

(c) Act on highway tax.

Figure 4.6: Forecast accuracy for different liquidity parameters. The dashed and dotted lines
represent the log score for the initial probabilities and the actual market, respectively.

tions into a sequence of limit orders, and execute this sequence with different parameters. We

then compute accuracy as the log score, i.e. the log of the probability of the realized outcome.

Figure 4.6 presents the forecast accuracy (average over 5 runs) for different liquidity parameters.

Although the market accuracy for the first item (Figure 4.6(a)) was very close to the optimal

performance, the optimal liquidity is around 25 which indicates a low activity. Actually, the

users knew at an early stage that this item would be rejected and it is also reflected by gfs.bern’s

opinion poll (Figure 4.7(a)). Among the three items, the first item was the most certain to

be rejected. On the other hand, for the last two items, our choice of liquidity parameter was

suboptimal. The optimal liquidities were around 480 and 1250 for the second and third item,

respectively. This high liquidity reflects a higher activity for these two items. The gfs.bern’s

opinion polls (Fig. 4.7(b) and 4.7(c)) show that these two items were very uncertain.

Other factors influencing the user activity on the platform are: a) the number of open events,

b) the popularity of these events, and c) how close we are to determine the winner of the week.

In addition, we see in Figure 4.5 a decrease in activity during the summer vacation.

The accuracy of both schemes are depicted in Fig. 4.7 and 4.8. For the first item (Fig. 4.7(a) and

4.8(a)), they both predicted correctly the outcome, while the opinion poll is more balanced.

On Nov 7th, the forecast by peer prediction dropped to the same level as the opinion poll,

and then increased until the end of the event, following the trend of the opinion poll. We

believe that participants of the peer prediction scheme have been aware of this opinion poll

and adapted their opinion, while users on the prediction market did not.

Regarding the second item, both schemes and the opinion poll predicted that the item would

be accepted. The closer we get to the realization of the event, the better we get to the actual

prediction. One day before the event, the peer prediction touched the opinion poll. The price

swings on the prediction market might be due to the strategic behaviours reported in the

previous section. The peer prediction is better for the third item.

Both mechanisms have similar behaviour and accuracy, but it is difficult to compare them to

74

4.4. Results

Oct 08 Oct 18 Oct 28 Nov 07 Nov 17 Nov 27
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

probability

peer prediction

prediction market

gfs.bern

(a) Initiative on fair wages

Oct 08 Oct 18 Oct 28 Nov 07 Nov 17 Nov 27
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

probability

peer prediction

prediction market

gfs.bern

(b) Initiative for families

Oct 08 Oct 18 Oct 28 Nov 07 Nov 17 Nov 27
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

probability

peer prediction

prediction market

gfs.bern

(c) Amendment on highway tax

Figure 4.7: Reject probability of the 3 items.

Oct 08 Oct 18 Oct 28 Nov 07 Nov 17 Nov 27
−1

−0.8

−0.6

−0.4

−0.2

0
log score

peer prediction

prediction market

(a) Initiative on fair wages.

Oct 08 Oct 18 Oct 28 Nov 07 Nov 17 Nov 27
−3

−2.5

−2

−1.5

−1

−0.5

0
log score

peer prediction

prediction market

(b) Initiative for families.

Oct 08 Oct 18 Oct 28 Nov 07 Nov 17 Nov 27
−2

−1.5

−1

−0.5

0
log score

peer prediction

prediction market

(c) Amendment on highway tax.

Figure 4.8: Average log score of the 3 items.

traditional opinion polls for three reasons. First, the question asked to the users on swissnoise

fundamentally differ from the one asked by the opinion poll company. Indeed, gfs.bern asked

what you are going to vote, while on swissnoise we ask what you think the outcome is going to

be.

Second, it is not clear how gfs.bern samples the population and handles selection bias. Swiss-

noise’s users might not be representative of the Swiss population. However, most users are

related to Switzerland and follow local media. So they have a feeling of what could be the

outcome.

Third, although anonymous, traditional opinion polls face the fact that people might still lie

and do not reveal what they are going to vote. With this in mind and considering Switzerland’s

strong privacy awareness, we designed swissnoise in such a way that it is not possible for a user

to check the current or past opinions of other users. Thus, contrary to most implementations

of prediction market platforms, swissnoise preserves the privacy of its users.

75

Chapter 4. Predicting Outcomes of Events

4.5 Conclusion and Future Work

Prediction markets have been applied with success for predicting events with a verifiable

outcome. Recent research has developed the alternative technique of peer prediction which

allows incentives without a verifiable final outcome. We have described how to adapt the peer

prediction schemes developed in AI research to online opinion polls using the analogy of lot-

teries. This has been tested in the first experimental platform that implements peer prediction

for online polls, called swissnoise. It shows that peer prediction has comparable performance

to prediction markets, and thus constitutes a viable alternative. We are continuously collecting

data about an increasing number of events.

An interesting direction for future work would be to study users’ behaviour about hypothetical

questions when rewarded with the peer prediction mechanism, and explore the possibility of

an adaptive liquidity parameter for prediction markets.

76

5 Conclusion

In this thesis, we selected three applications to illustrate the possibilities offered by aggregating

information from the crowd. The applications that we explored were the aggregation of

explicit ratings for review websites, the aggregation of implicit feedback for personalized news

recommendations, and the aggregation of opinions for predicting outcomes of events.

In the first application, we considered the aggregation of ratings from users of review websites.

We proposed a new methodology based on a game to study users’ rating behaviour. We have

restricted our study to users who are well-intentioned and act so as to make the aggregate

reflect the true value, either through altruism or through incentives based on the success with

other users. An interesting future avenue for research would be to lift this restriction, and

study users with different motives.

The second application focused on the aggregation of implicit feedback in order to generate

personalized recommendations of news articles. We introduced a new class of recommender

systems based on context trees that adapts the models continuously and is thus better suited to

such a dynamic domain. We demonstrated that context-tree recommender systems generate

accurate recommendations in an offline setting as well as live on the newspaper website

swissinfo.ch. One obvious future direction would be to explore other domains than the news.

In the last application, we addressed the problem of eliciting private information to predict out-

comes of events. We developed an experimental platform called swissnoise which implements

prediction market and peer prediction mechanisms. We demonstrated that peer prediction

achieves a performance comparable to that of prediction markets. During this evaluation, we

only considered events with observable outcomes. An interesting future direction would be to

study users’ behaviour when rewarded on hypothetical events.

Selecting what to aggregate and how to aggregate it is crucial and changes from one application

to another. Organizations should carefully analyse their needs and define their requirements

prior to process any data. Once they are able to target the right informations and aggregation

technique, they will create meaningful knowledge and possibly a competitive edge.

77

Bibliography

[1] J. Ahn, P. Brusilovsky, J. Grady, and D. He. Open user profiles for adaptive news systems:

help or harm? In International Conference on World Wide Web, pages 11–20, 2007.

[2] Apache Software Foundation. Apache mahout. http://mahout.apache.org.

[3] D. Ariely, W. Tung Au, R. Bender, D. Budescu, C. Dietz, H. Gu, T. Wallsten, and G. Za-

uberman. The effects of averaging subjective probability estimates between and within

judges. Journal of Experimental Psychology: Applied, 6(2):130–147, 2000.

[4] R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order markov models.

Journal of Artificial Intelligence Research, pages 385–421, 2004.

[5] S. Bengio, J. Mariethoz, and K. M. The expected performance curve. In International

Conference on Machine Learning, pages 9–16, 2005.

[6] J. Bentley. Multidimensional binary search trees used for associative searching. Com-

munication of the ACM, 1975.

[7] D. Billsus and M. Pazzani. A hybrid user model for news story classification. In Confer-

ence on User Modeling, pages 99–108, 1999.

[8] D. Billsus and M. Pazzani. Adaptive news access. In The adaptive web, pages 550–570.

Springer, 2007.

[9] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine Learning

Research, 3:993–1022, 2003.

[10] P. Bone. Word-of-mouth effects on short-term and long-term product judgments. Jour-

nal of Business Research, 32(3):213–223, 1995.

[11] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and

User-Adapted Interaction, 12:331–370, November 2002.

[12] R. Burnkrant and A. Cousineau. Informational and normative social influence in buyer

behavior. Journal of Consumer research, pages 206–215, 1975.

[13] L. Chen and P. Pu. Eye-tracking study of user behavior in recommender interfaces. In

User Modeling, Adaptation, and Personalization, pages 375–380, 2010.

79

http://mahout.apache.org

Bibliography

[14] Y. Chen and D. Pennock. A utility framework for bounded-loss market makers. In

Conference on Uncertainty in Artificial Intelligence, 2007.

[15] Y. Chen and D. Pennock. Designing markets for prediction. AI Magazine, 31(4):42–52,

2010.

[16] M.-C. Chiu, S.-P. Chang, Y.-C. Chang, H.-H. Chu, C. C.-H. Chen, F.-H. Hsiao, and J.-C. Ko.

Playful bottle: a mobile social persuasion system to motivate healthy water intake. In

International Conference on Ubiquitous Computing, 2009.

[17] R. Clemen and R. Winkler. Combining probability distributions from experts in risk

analysis. Risk Analysis, 19:187–203, 1999.

[18] J. Cohen and E. Golden. Informational social influence and product evaluation. Journal

of Applied Psychology, 56(1):54, 1972.

[19] M. d. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues

à la pluralité des voix. Paris: L’Imprimerie Royale, 1785.

[20] V. Conitzer, M. Rognlie, and L. Xia. Preference functions that score rankings and maxi-

mum likelihood estimation. In International Joint Conference on Artificial Intelligence,

pages 109–115, 2009.

[21] V. Conitzer and T. Sandholm. Common voting rules as maximum likelihood estimators.

In Conference on Uncertainty in Artificial Intelligence, pages 145–152, 2005.

[22] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on

top-n recommendation tasks. In International Conference on Recommender Systems,

pages 39–46, 2010.

[23] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online

collaborative filtering. In International Conference on World Wide Web, pages 271–280,

2007.

[24] M. Deshpande and G. Karypis. Selective markov models for predicting web page ac-

cesses. ACM Transactions on Internet Technology, 4(2):163–184, 2004.

[25] S. Deterding, R. Khaled, L. E. Nacke, and D. Dixon. Gamification, toward a definition. In

CHI 2011 Gamification Workshop, 2011.

[26] C. Dimitrakakis. Bayesian Variable Order Markov Models. In International Conference

on Artificial Intelligence and Statistics, pages 161–168, 2010.

[27] M. Dudik, S. Lahaie, D. M. Pennock, and D. Rothschild. A combinatorial prediction

market for the us elections. In Conference on Electronic Commerce, pages 341–358, 2013.

[28] M. Ekstrand, M. Ludwig, J. Konstan, and J. Riedl. Rethinking the recommender research

ecosystem: reproducibility, openness, and lenskit. In International Conference on

Recommender Systems, pages 133–140, 2011.

80

Bibliography

[29] S. Feng, L. Xing, A. Gogar, and Y. Choi. Distributional footprints of deceptive product

reviews. In International Conference on Weblogs and Social Media, 2012.

[30] F. Galton. Vox populi. Nature, 75:450–451, 1907.

[31] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Mymedialite: A free

recommender system library. In International Conference on Recommender Systems,

pages 305–308, 2011.

[32] F. Garcin, C. Dimitrakakis, and B. Faltings. Personalized news recommendation with

context trees. In International Conference on Recommender Systems, pages 105–112,

2013.

[33] F. Garcin and B. Faltings. Pen recsys: A personalized news recommender systems

framework (extended). In News Recommender Systems Workshop, 2013.

[34] F. Garcin and B. Faltings. Pen recsys: A personalized news recommender systems

framework (short). In International Conference on Recommender Systems, pages 469–

470, 2013.

[35] F. Garcin, B. Faltings, and R. Jurca. Aggregating reputation feedback. In International

Conference on Reputation: Theory and Technology (ICORE), 2009.

[36] F. Garcin, B. Faltings, R. Jurca, and N. Joswig. Rating aggregation in collaborative filtering

systems. In International Conference on Recommender Systems, 2009.

[37] F. Garcin, L. Xia, and B. Faltings. How aggregators influence human rater behavior? In

Workshop on Social Computing and User Generated Content, 2013.

[38] F. Garcin, K. Zhou, B. Faltings, and V. Schickel. Personalized news recommendation

based on collaborative filtering. In International Joint Conferences on Web Intelligence

and Intelligent Agent Technology, pages 437–441, 2012.

[39] E. Giladi and Y. Klar. When standards are wide of the mark: nonselective superiority

and inferiority biases in comparative judgments of objects and concepts. Journal of

Experimental Psychology: General, 131(4):538, 2002.

[40] R. Hanson. Combinatorial information market design. Information Systems Frontiers,

5(1):107–119, 2003.

[41] R. Hanson. Logarithmic market scoring rules for modular combinatorial information

aggregation. Journal of Prediction Markets, 1(1):3–15, 2007.

[42] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating Collaborative Filtering

Recommender Systems. ACM Transactions on Information Systems, 22:5 – 53, 2004.

[43] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering

recommender systems. ACM Transactions on Information Systems, 22:5–53, 2004.

81

Bibliography

[44] M. Hoffman, F. Bach, and D. Blei. Online learning for latent dirichlet allocation. In

advances in neural information processing systems, pages 856–864, 2010.

[45] N. Hu, P. A. Pavlou, and J. Zhang. Can online reviews reveal a product’s true quality?:

empirical findings and analytical modeling of online word-of-mouth communication.

In Conference on Electronic Commerce, pages 324–330, 2006.

[46] N. Hu, J. Zhang, and P. A. Pavlou. Overcoming the j-shaped distribution of product

reviews. Communications of the ACM, 52(10):144–147, 2009.

[47] P. Huber. Robust statistics. Springer, 2011.

[48] W. IJntema, F. Goossen, F. Frasincar, and F. Hogenboom. Ontology-based news recom-

mendation. In Workshop on Data Semantics, 2010.

[49] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on amazon mechanical turk.

In Human Computation Workshop, 2010.

[50] H. J. Jung and M. Lease. Improving consensus accuracy via z-score and weighted voting.

In Human Computation Workshop, 2011.

[51] R. Jurca and B. Faltings. Using chi-scores to reward honest feedback from repeated

interactions. In Conference on Autonomous Agents and Multiagent Systems, pages 1233–

1240, 2006.

[52] R. Jurca and B. Faltings. Mechanisms for making crowds truthful. Journal of Artificial

Intelligence Research, 34(1):209, 2009.

[53] R. Jurca and B. Faltings. Incentives for answering hypothetical questions. In Workshop

on Social Computing and User Generated Content, 2011.

[54] R. Jurca, F. Garcin, A. Talwar, and B. Faltings. Reporting incentives and biases in online

review forums. Transactions on the Web, 4(2):1–27, 2010.

[55] H. Kajino, Y. Tsuboi, I. Sato, and H. Kashima. Learning from crowds and experts. In

Human Computation Workshop, 2012.

[56] B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz. The plista dataset. In News Recommender

Systems Workshop, pages 16–23, 2013.

[57] E. Kirshenbaum, G. Forman, and M. Dugan. A live comparison of methods for person-

alized article recommendation at forbes.com. In Machine Learning and Knowledge

Discovery in Databases, pages 51–66, 2012.

[58] A. Kumar and M. Lease. Learning to rank from a noisy crowd. In Human Computation

Workshop, 2011.

[59] K. Lang. Newsweeder: Learning to filter netnews. In International Conference on

Machine Learning, pages 331–339, 1995.

82

Bibliography

[60] R. Larrick and J. Soll. Intuitions about combining opinions: Misappreciation of the

averaging principle. Management Science, 52(1):111–127, 2006.

[61] M. Lease. On quality control and machine learning in crowdsourcing. In Human

Computation Workshop, pages 97–102, 2011.

[62] C. Leberknight, S. Sen, and M. Chiang. On the volatility of online ratings: An empirical

study. In Workshop on eBusiness, 2012.

[63] K. Lerman and T. Hogg. Using a model of social dynamics to predict popularity of news.

In International Conference on World Wide Web, pages 621–630, 2010.

[64] L. Li, W. Chu, J. Langford, and R. Schapire. A contextual-bandit approach to personalized

news article recommendation. In International Conference on World Wide Web, 2010.

[65] J. Liu, P. Dolan, and E. Pedersen. Personalized news recommendation based on click

behavior. In International Conference on Intelligent User Interfaces, pages 31–40, 2010.

[66] N. Liu, M. Zhao, E. Xiang, and Q. Yang. Online evolutionary collaborative filtering. In

International Conference on Recommender Systems, pages 95–102, 2010.

[67] T.-Y. Liu. Learning to Rank for Information Retrieval. Springer, 2011.

[68] P. Lops, M. Gemmis, and G. Semeraro. Content-based recommender systems: State of

the art and trends. In Recommender Systems Handbook, pages 73–105. Springer, 2011.

[69] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. Graphlab: A

new parallel framework for machine learning. In Conference on Uncertainty in Artificial

Intelligence, 2010.

[70] A. Mao, A. Procaccia, and Y. Chen. Better human computation through principled

voting. In Conference on Artificial Intelligence, 2013.

[71] M. McGlohon, N. Glance, and Z. Reiter. Star quality: Aggregating reviews to rank

products and merchants. In International Conference on Weblogs and Social Media,

2010.

[72] N. Miller, P. Resnick, and R. Zeckhauser. Eliciting informative feedback: The peer-

prediction method. Management Science, 51(9):1359–1373, 2005.

[73] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams. Toward trustworthy recommender

systems: An analysis of attack models and algorithm robustness. ACM Transactions on

Internet Technology, 7(4):23, 2007.

[74] A. Montgomery, S. Li, K. Srinivasan, and J. Liechty. Modeling online browsing and path

analysis using clickstream data. Marketing Science, 23(4):579–595, 2004.

[75] H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35:437–455,

1980.

83

Bibliography

[76] D. Oleson, A. Sorokin, G. Laughlin, V. Hester, J. Le, and L. Biewald. Programmatic

gold: Targeted and scalable quality assurance in crowdsourcing. Human Computation

Workshop, 2011.

[77] T. Pfeiffer, X. Gao, A. Mao, Y. Chen, and D. Rand. Adaptive Polling and Information

Aggregation. In Conference on Artificial Intelligence, pages 122–128, 2012.

[78] J. Picault, M. Ribière, D. Bonnefoy, and K. Mercer. How to get the recommender out of

the lab? In Recommender Systems Handbook, pages 333–365. Springer, 2011.

[79] J. Pitkow and P. Pirolli. Mining longest repeating subsequences to predict world wide

web surfing. In Proc. of USITS, page 13, 1999.

[80] D. Prelec. A bayesian truth serum for subjective data. Science, 306(5695):462–466, 2004.

[81] A. Procaccia, S. Reddi, and N. Shah. A maximum likelihood approach for selecting sets

of alternatives. In Conference on Uncertainty in Artificial Intelligence, 2012.

[82] P. Pu, L. Chen, and R. Hu. A user-centric evaluation framework for recommender

systems. In International Conference on Recommender Systems, pages 157–164, 2011.

[83] G. Radanovic and B. Faltings. A robust bayesian truth serum for non-binary signals. In

Conference on Artificial Intelligence, 2013.

[84] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized markov

chains for next-basket recommendation. In International Conference on World Wide

Web, pages 811–820, 2010.

[85] S. Rendle and L. Schmidt-Thieme. Online-updating regularized kernel matrix factor-

ization models for large-scale recommender systems. In International Conference on

Recommender Systems, pages 251–258, 2008.

[86] Research Studios Austria Forschungsgesellschaft mbH. easyrec. http://www.easyrec.org.

[87] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open

architecture for collaborative filtering of netnews. In Proc. of CSCW, pages 175–186,

1994.

[88] J. Rissanen. A universal data compression system. Transactions on Information Theory,

pages 656–664, 1983.

[89] J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and B. Tomlinson. Who are the crowdwork-

ers?: shifting demographics in mechanical turk. In International Conference on Human

Factors in Computing Systems, 2010.

[90] A. Said, A. Bellogin, J. Lin, and A. de Vries. Do recommendations matter?: News recom-

mendation in real life. In CSCW, pages 237–240, 2014.

84

http://www.easyrec.org

Bibliography

[91] A. Said, J. Lin, A. Bellogin, and A. de Vries. A month in the life of a production news

recommender system. In Workshop on Living Labs for Information Retrieval Evaluation,

pages 7–10, 2013.

[92] R. Sarukkai. Link prediction and path analysis using markov chains. Computer and

Telecommunications Networking, 33(1-6):377–386, 2000.

[93] L. Savage. Elicitation of personal probabilities and expectations. Journal of the American

Statistical Association, 66(336):783–801, 1971.

[94] G. Shani and A. Gunawardana. Evaluating recommendation systems. In Recommender

Systems Handbook, pages 257–297. Springer, 2011.

[95] G. Shani, D. Heckerman, and R. Brafman. An mdp-based recommender system. Journal

of Machine Learning Research, 6:1265–1295, December 2005.

[96] X. Su and T. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in

artificial intelligence, pages 4:2–4:2, January 2009.

[97] M. Sun. How does the variance of product ratings matter? Management Science,

58(4):696–707, 2012.

[98] S. Suri, D. Goldstein, and W. Mason. Honesty in an online labor market. In Human

Computation Workshop, 2011.

[99] J. Surowiecki. The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How

Collective Wisdom Shapes Business, Economies, Societies and Nations. Knopf Doubleday

Publishing Group, 2004.

[100] G. Tziralis and I. Tatsiopoulos. Prediction markets: An extended literature review. The

journal of prediction markets, 1(1):75–91, 2012.

[101] D. Vengroff. Reclab: a system for ecommerce recommender research with real data, con-

text and feedback. In Workshop on Context-awareness in Retrieval and Recommendation,

pages 31–38, 2011.

[102] Y. Wang, L. Zhou, J. Feng, J. Wang, and Z. Liu. Mining complex time-series data by

learning markovian models. In Proc. of ICDM, pages 1136–1140, 2006.

[103] J. Witkowski and D. Parkes. Peer prediction without a common prior. In Conference on

Electronic Commerce, pages 964–981, 2012.

[104] J. Witkowski and D. Parkes. A robust bayesian truth serum for small populations. In

Conference on Artificial Intelligence, 2012.

[105] L. Xia and V. Conitzer. A maximum likelihood approach towards aggregating partial

orders. In International Joint Conference on Artificial Intelligence, pages 446–451, 2011.

85

Bibliography

[106] Y. Yan, R. Rosales, G. Fung, M. Schmidt, G. Hermosillo, L. Bogoni, L. Moy, J. Dy, and

P. Malvern. Modeling annotator expertise: Learning when everybody knows a bit of

something. In International Conference on Artificial Intelligence and Statistics, volume 9,

pages 932–939, 2010.

[107] M. Zaki, C. Carothers, and B. Szymanski. Vogue: A variable order hidden markov model

with duration based on frequent sequence mining. Transactions on KDD, 4:1–31, 2010.

[108] A. Zimdars, D. Chickering, and C. Meek. Using temporal data for making recommenda-

tions. In Conference on Uncertainty in Artificial Intelligence, pages 580–588, 2001.

[109] A. Zohar and J. Rosenschein. Robust mechanisms for information elicitation. In Confer-

ence on Autonomous Agents and Multiagent Systems, pages 1202–1204, 2006.

86

Florent Frédéric GARCIN
florent@garcin.ch (as of April 2014) Swiss

EDUCATION

since Jul. 08 PhD student at the Artificial Intelligence Lab, EPFL, Switzerland
Advisor: Prof. Boi Faltings

• Information Aggregation / Reputation Systems
Studied optimal solutions to aggregate information from the crowd, in
particular product reviews and ratings.

• Human Computation & Crowdsourcing
Developed and implemented (Java/Spring/SQL) prediction markets
and peer prediction as web platform (http://go.swissnoise.ch) to elicit
private information from the crowd in order to predict future events.

• Recommender Systems
Developed and implemented (Java/Spring/SQL) new algorithms for
personalized news recommendation. Deployed on swissinfo.ch.

2012 Visiting researcher at Harvard University, Cambridge, USA
Center for research on computing and society. Host: Lirong Xia

2008 Master of Science in Computer Science, EPFL, Switzerland
Diploma Supplement in Internet Computing

2007 Visiting researcher at Tsinghua University, Beijing, China
Master thesis: “Cooperation in Underwater Sensor Networks”
Full scholarship from the Chinese government, Host: Fengyuan Ren

2006 Minor in Management of Technology, EPFL, Switzerland

PROFESSIONAL EXPERIENCE

since Jul. 08 Research assistant at the Artificial Intelligence Lab, EPFL
Teaching assistant: Artificial Intelligence, Computational Game Theory and
Applications, Managing Multicultural Teams and Negotiation Techniques.
Supervised 10+ bachelor/master projects. In charge of the IT
infrastructure of the lab, setup new computational-intensive servers.

2006 Internship in information security management, UBS AG, Zürich

LANGUAGES

French native speaker German intermediate (B1)
English fluent (C2) Mandarin-Chinese intermediate (B1, HSKIII)

ACTIVITIES AND INTERESTS

Sports ski (instructor JS-1), telemark, squash, badminton, running, cycling
Travels strong interests in Asian culture
Associative Balélec Festival: team leader of transport and traffic group, stalls group.

87

PUBLICATIONS

Conference & Workshop Papers
• Swissnoise: Online Polls with Game-theoretic Incentives

Florent Garcin and Boi Faltings
Conference on Innovative Applications of Artificial Intelligence, 2014

• How Aggregators Influence Human Rater Behavior?

Florent Garcin, LiRong Xia, and Boi Faltings
Workshop on Social Computing and User Generated Content, 2013
Workshop on Crowdsourcing and Online Behavioral Experiments, 2013

• PEN RecSys: a Personalized News Recommender Systems Framework

Florent Garcin and Boi Faltings
short: Conference on Recommender systems, 2013
extended: News Recommender Systems Workshop, 2013

• Personalized News Recommendation with Context Trees

Florent Garcin, Christos Dimitrakakis, and Boi Faltings
Conference on Recommender Systems, 2013

• Personalized News Recommendation Based on Collaborative Filtering

Florent Garcin, Kai Zhou, Boi Faltings, and Vincent Schickel
Conference on Web Intelligence and Intelligent Agent Technology, 2012

• Rating Aggregation in Collaborative Filtering Systems

Florent Garcin, Boi Faltings, Radu Jurca, and Nadine Joswig
Conference on Recommender Systems, 2009

• Aggregating Reputation Feedback

Florent Garcin, Boi Faltings, and Radu Jurca
Conference on Reputation: Theory and Technology, 2009

• Cooperation in Underwater Sensor Networks

Florent Garcin, Mohammad Hossein Manshaei, Jean-Pierre Hubaux
Conference on Game Theory for Networks, 2009

• A Study of Forward Error Correction Schemes for Reliable Transport in
Underwater Sensor Networks

Florent Garcin, Bin Liu, Fengyuan Ren, and Chuang Lin
Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2008

Journal Papers
• Reporting Incentives and Biases in Online Review Forums

Radu Jurca, Florent Garcin, Arjun Talwar, and Boi Faltings
Transactions on the Web, Volume 4 Issue 2, April 2010

88

	Cover page

	Acknowledgements
	Abstract (en/fr/de/cn)
	Contents
	List of Figures
	List of Tables

	Introduction
	Aggregating Ratings
	Introduction
	Contributions
	Related Work

	Aggregators
	Rating Model
	Gamification
	Metrics

	Results
	Static Experiment
	Dynamic Experiment

	Discussion
	Applications
	Ranking of Uniform Recommendations
	Personalized Recommendations

	Conclusion and Future Work

	Recommending News Articles
	Introduction
	Contributions
	Related Work

	Context Trees
	Sequence Context Tree
	Topic Distribution Context Tree
	Experts
	Combining Experts for Predictions

	Expert Models
	Standard Model
	Popularity Model
	Freshness Model
	Mixing the Expert Models

	Context-tree Recommender Systems
	General Algorithm
	Recommender Systems

	Offline Evaluation
	Datasets
	Metrics
	Results

	PEN Recsys Framework
	Architecture
	Real-time Recommendation and Latency
	Interfaces

	Live Evaluation at swissinfo.ch
	Baselines
	Offline
	Online

	Discussion
	Online vs Offline Evaluations
	Page Layout
	Manual and Dynamic Recommendations

	Conclusion and Future Work

	Predicting Outcomes of Events
	Introduction
	Contributions
	Related Work

	Prediction Mechanisms
	Prediction Market
	Peer Prediction

	Swissnoise
	Implementation and Design

	Results
	Conclusion and Future Work

	Conclusion
	Bibliography
	Curriculum Vitae

