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Abstract
The Distributed Constraint Optimization (DCOP) framework can be used to model
a wide range of optimization problems that are inherently distributed. A distributed
optimization problem can be viewed as a problem distributed over a set of agents,
where agents are responsible for finding a solution for their part of the problem. In the
DCOP framework, the decisions the agents need to take are modeled using decision
variables, and both the local problems and the inter-dependencies are modeled using
constraints. In this thesis, we attack two problems related to the DCOP framework.

In the first part of this thesis, we look at coordination problems with complex, non-
trivial preferences. In the DCOP literature, the notion of complex is used for problems
where agents need to take multiple-decisions and thus own multiple decision variables.
To express the fact that agents preferences are hard to obtain, we introduce the notion
of a non-trivial local problem. The present DCOP literature has largely ignored the
origin of preferences, i.e. algorithms assume that the constraints are known a-priori.
In coordination problems with complex, non-trivial preferences this assumption no
longer holds. In order to investigate the behavior of existing DCOP algorithms on such
coordination problems, we first introduce a new DCOP model for such coordination
problems, where we make an explicit distinction between the coordination part of
the problem, and the local preferences of the agents. We then introduce two new
benchmarks with complex, non-trivial local subproblems, and perform an evaluation
of several complete and non-complete DCOP algorithms. Our results show that the
O-DPOP algorithm, which elicits preferences from agents in a best-first order, outper-
forms both other complete approaches as also local search approaches. We show that,
despite the fact that a best first order cannot always be guaranteed when dealing with
non-trivial local problems, O-DPOP still finds solutions that are either better, or on par
with, local search algorithms.

In the second part of this thesis, we introduce a new sampling based approach to
solving DCOPs. Existing DCOP algorithms are either complete, but do not scale well,
or scale well but are not guaranteed to find a solution. Our approach, inspired by the
application of the UCB algorithm for the multi-armed bandit problem on trees, aims
to provide method that scales well. Furthermore, given certain assumptions on the
problem structure, our method is guaranteed to find good solutions. We introduce the
Distributed UCT (DUCT) algorithm, that uses bounds similar to those used in the UCT
algorithm, which is an adaptation of the UCB approach on trees. We introduce and
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evaluate four different variations of the DUCT algorithm, DUCT-A, DUCT-B, DUCT-C
and DUCT-D, that differ in the bounds that they use. To evaluate our algorithms, we
compare them with existing DCOP approaches on three different types of problems,
both with and without hard constraints. Our results show that, compared with other
DCOP algorithms, the DUCT-D variant consistently performs well on the problems
used, with respect to both solution quality and runtime. Furthermore, it consistently
sends less information than the state-of-the-art DCOP algorithms, and is thus shown
to be a suitable and practical algorithm for solving DCOPs.

Keywords: Distributed Constraint Optimization, Multi-agent Coordination, Sampling,
O-DPOP, DUCT
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Résumé
Le formalisme de l’optimisation distribuée sous contraintes (DCOP) peut être utilisé
pour modéliser une large gamme de problèmes d’optimisation qui sont intrinsèque-
ment distribués. Un problème d’optimisation distribué peut être vu comme un pro-
blème qui est distribué parmi un ensemble d’agents, qui sont responsables de trouver
une solution à leurs parties respectives du problème. Dans le formalisme de DCOP, les
décisions que les agents doivent prendre sont modélisées par des variables de décision,
et leurs problèmes locaux ainsi que leurs inter-dépendances sont modélisés par des
contraintes. Dans cette thèse, nous nous attelons à deux problèmes qui concernent le
formalisme de DCOP.

Dans la première partie de cette thèse, nous considérons des problèmes de coordina-
tion avec des préférences complexes et non-triviales. Dans la littérature, l’adjectif com-
plexe est utilisé pour décrire des problèmes dans lesquels chaque agent doit prendre
des décisions multiples, et donc contrôle plusieurs variables de décision. Pour expri-
mer le fait que les préférences des agents sont difficiles à obtenir, nous introduisons
le concept d’un problème local non trivial. La littérature actuelle a largement occulté
l’origine des préférences, c’est à dire que les algorithmes supposent que les contraintes
sont connues a priori. Cette hypothèse ne tient pas en présence de problèmes de
coordination avec des préférences complexes et non triviales. Pour étudier le compor-
tement des algorithmes de DCOP existants sur de tels problèmes de coordination, nous
introduisons tout d’abord un nouveau modèle DCOP pour ces problèmes de coordina-
tion, dans lequel nous faisons la distinction explicite entre la partie du problème qui a
trait à la coordination, et les préférences locales des agents. Nous introduisons ensuite
deux classes de problèmes avec des sous-problèmes complexes et non-triviaux, sur
lesquelles nous évaluons plusieurs algorithmes de DCOP complets ou non complets.
Nos résultats montrent que les performances de l’algorithme O-DPOP, qui extrait les
préférences des agents par ordre décroissant d’utilité, dépassent à la fois celles des
autres approches complètes ainsi que des approches basées sur la recherche locale.
Nos montrons que, malgré le fait que cet ordre d’extraction ne puisse pas toujours être
garanti dans le cas de problèmes locaux non triviaux, O-DPOP trouve quand-même
des solutions de qualité supérieure, ou au moins comparable, à celle des algorithmes
de recherche locale.

Dans la deuxième partie de cette thèse, nous introduisons une nouvelle approche de
résolution de DCOP basée sur l’échantillonnage. Les algorithmes de DCOP existants
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sont soit complets, mais incapables de résoudre des problèmes de grande taille, soit
sont capables de résoudre de tels problèmes, mais ne sont pas garantis de trouver
une solution. Notre approche, inspirée de l’algorithme UCB pour la résolution de
problèmes de machines à sous à plusieurs leviers basés sur des arbres, vise à produire
une méthode qui permette à la fois de résoudre de grands problèmes, tout en étant
garantie de trouver des solutions de bonne qualité, sous certaines hypothèses quant à
la structure des problèmes. Nous introduisons l’algorithme distribué UCT, ou DUCT,
qui utilise des bornes comparables à celles de l’algorithme UCT, qui est une adaptation
de l’approche UCB à des arbres. Nous introduisons et évaluons quatre variantes de
l’algorithme DUCT : DUCT-A, DUCT-B, DUCT-C et DUCT-D, qui se différencient par
les bornes qu’ils utilisent. Pour évaluer nos algorithmes, nous les comparons à des
approches DCOP existantes sur trois différentes classes de problèmes, tant avec que
sans contraintes rigides. Nos résultats montrent que, comparée aux autres algorithmes
de DCOP, la variante DUCT-D a systématiquement de bonnes performances sur les
problèmes utilisés, tant en ce qui concerne la qualité de la solution que le temps de
calcul. De plus, elle échange systématiquement moins d’information que les meilleurs
algorithmes de DCOP existants, ce qui démontre son intérêt pratique pour résoudre
des DCOPs.

Mots-clés : optimisation distribuée sous contraintes, coordination multi-agents, échan-
tillonnage, O-DPOP, DUCT
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Samenvatting
Het Distributed Constraint Optimization (DCOP) framework kan gebruikt worden
voor het modelleren van een grote verscheidenheid aan optimalisatie problemen die
een inherente gedistribueerde component hebben. Een gedistribueerd optimalisatie
probleem kan men zien als een probleem dat verdeeld is over een verzameling van
agenten, waar iedere agent verantwoordelijk is voor het vinden van een oplossing voor
zijn deel van het probleem. In het DCOP framework wordt iedere beslissing die een
agent kan nemen gemodelleerd door middel van een variabele. Bovendien worden
zowel het locale probleem van iedere agent, alsook de inter-agent afhankelijkheden
gevat in constraints. In deze dissertatie kijken we naar twee problemen gerelateerd aan
het DCOP framework.

In het eerste deel van deze dissertatie kijken we naar coördinatie problemen met com-
plexe, niet-triviale voorkeuren. In de huidige DCOP literatuur is het concept complex
gereserveerd voor problemen waarin agenten meerdere beslissingen moeten maken,
en dus de controle hebben over meerdere beslissings variabelen. Non-triviaal betekent
in deze context dat het moeilijk is de voorkeuren van de agent te verkrijgen. De huidige
DCOP literatuur heeft de oorsprong van voorkeuren grotendeels genegeerd, m.a.w. de
meeste algoritmes nemen aan dat de voorkeuren a-priori bekend zijn. Bij coördinatie
problemen met non-triviale locale problemen geld deze aanname niet meer. Om
het gedrag van bestaande DCOP algoritmes op dit soort problemen te onderzoeken,
introduceren we eerste een generiek DCOP model voor zulk soort problemen, waar
we expliciet onderscheidt maken tussen het coördinatie deel van het probleem, en de
locale problemen van de agenten. Daarna introduceren we twee nieuwe benchmarks
met complexe, non-triviale problemen, en evalueren verschillende complete en niet-
complete DCOP algoritmes op deze problemen. Onze resultaten tonen aan dat het
O-DPOP algoritme beter presteert dan alle andere bestaande algoritmes. Hierbij is
het vooral het feit dat O-DPOP voorkeuren opvraagt in een beste-eerst volgorde dat
O-DPOP een voordeel geeft. Bovendien kan O-DPOP, ondanks dat deze beste-eerst
volgorde niet altijd gegarandeerd kan worden, nog steeds goede oplossing vinden in
vergelijking met lokale zoek algoritmes.

In het tweede deel van deze dissertatie introduceren we een nieuw DCOP algoritme
dat gebruikt maakt van sampling. Huidige algoritmes lopen tegen verschillende pro-
blemen aan. Complete algoritmes schalen niet goed op naar grote problemen, terwijl
incomplete algoritmes niet kunnen garanderen dat een oplossing gevonden wordt.
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Wij introduceren het Distributed UCT (DUCT) algoritme, dat geïnspireerd is op het
gebruik van UCB op bomen. UCB is een succesvol algoritme voor het oplossen van het
multi-armed bandit probleem. Onder een aantal aannames op de structuur van het
probleem vind DUCT gegarandeerd goede oplossingen. We introduceren vier verschil-
lende variaties van DUCT, DUCT-A, DUCT-B, DUCT-C en DUCT-D, welke verschillen
in welke limiet ze gebruiken. Voor de evaluatie van DUCT hebben we het aan de hand
van drie verschillende problemen vergeleken met bestaanden DCOP algoritmes. Onze
resultaten laten zien dat DUCT-D, vergeleken met andere DCOP algoritmes, beter pres-
teert op zowel de kwaliteit van de gevonden oplossingen als op de snelheid waarmee
deze oplossingen gevonden worden. Bovendien wisselt het minder informatie uit dan
andere state-of-the-art DCOP algoritmes. DUCT-D is dus een goed alternatief voor
zowel complete alsook incomplete DCOP algoritmes.

Sleutelwoorden: Distributed Constraint Optimization, Multi-agent Coordination,
Sampling, O-DPOP, DUCT
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1 Introduction

In the early years of Artificial Intelligence, the field focussed on single machines, or
single agents, performing tasks traditionally done by humans. The first programs
operated in very stylistic and simplified worlds. The real world, however, is complex
and messy. Among other things, this complexity comes about because agents are not
alone in the world. At times, an agent must cooperate with other agents to solve a
problem it cannot solve by itself. At other times, it has to compete with other agents
over scarce resources. In this thesis, we assume that agents are cooperative, and share
a common goal. The main focus of this thesis, is thus on the problem of coordination.

Examples of problems that require coordination abound. Take a logistics company
where different trucks need to coordinate their actions to deliver goods from A to B.
Or a meeting scheduling problem, where people have to agree on when to hold which
meeting. These are problems where there is a common goal, that cannot be guaranteed
to be obtained without the participants coordinating their actions. If truck drivers
ignored the existence of other truck drivers, they might end up trying to pick up a
packet that has already been picked up. Closer to home, when people would show up
for meetings when they seem fit, chaos would ensue, and no meeting would ever be
held.

The Distributed Constraint Reasoning (DCR) framework, has been introduced to tackle
cooperative coordination problems as described above. Initially conceived for solving
Distributed Constraint Satisfaction (DCSP) problems, the decisions agents can take
are modeled using decision variables. An outcome is an assignment of values to these
variables. The (in)feasibility of an outcome is captured by constraints on subsets
of decision variables. A constraint assigns true to feasible assignments and false

to infeasible assignments. In a more general approach, feasibility constraints are
replaced by functions assigning costs or utilities to variable assignments, transforming
the problem to an optimization problem. The latter approach is called Distributed
Constraint Optimization (DCOP).
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Chapter 1. Introduction

1.1 Contributions of this Thesis

The contribution of this thesis is twofold. The first part of this thesis focuses on
what we call coordination problems with complex, non-trivial preferences. In the
DCOP literature, the concept of "complex" is reserved for problems where agents own
multiple decision variables. By non-trivial preferences, we mean preferences that
are hard to obtain. In many coordination problems, a clear distinction can be made
between the coordination constraints on the one hand, and preferences on the other,
where each agent has a local problem that models its preferences. In many situations,
this local problem is difficult to solve, and thus non-trivial. A good example of a
problem with a non-trivial local problem can be found in the logistics setting. Agents,
in this case truck drivers, need to coordinate over who is assigned which packets. The
goal is to minimize the cost incurred when delivering the packets. To calculate the
cost for a local packet assignment, however, agents need to solve a Vehicle Routing
Problem (VRP) problem, which is known to be NP-complete. What is more, the driver
also has preferences over which route to take. It can be that he prefers route A over
route B because it takes him past his favorite restaurant for lunch. In general, such
preferences are more difficult to formalize. We describe a DCOP model of coordination
problems with preferences, that makes an explicit distinction between the preferences
of the agents, and the inter-agent coordination constraints. This distinction allows the
agents to use their own local solvers to generate their preferences.

We introduce two coordination problems with preferences. The first takes its inspi-
ration from the logistics domain. Trucks must decide who picks up which packet, in
order to maximize their combined profit. The local problem of each agent is both
complex, and non-trivial. It is complex because an agent can be offered more than one
packet, and non-trivial because calculating the utility for a particular packet assign-
ment involves solving a VRP. The second benchmark is an adaptation from the Meeting
Scheduling problem, that introduces preferences over combinations of meetings.

In the DCOP literature, the difficulty of solving local problems has largely been ignored.
Early on it had been recognized that agents often need to take multiple decisions, and
thus own multiple decision variables, constituting a complex local problem. The values
that represent the constraints, however, are assumed to be known a-priori. In many
settings this is not a realistic assumption. When users report preferences, for example,
it is not reasonable to expect them to report preferences for all possible outcomes.
How an algorithm elicits preferences from agents is thus an important consideration
when evaluating algorithms.

From the preference elicitation literature, it is know that for certain types of problems,
incremental elicitation, i.e. asking agents to report outcomes in a best-first order,
minimizes the the amount of computation the agents have to perform. Generating
such an order, however, is an NP-complete problem for many different preference

2



1.1. Contributions of this Thesis

representations. Agents often have limited resources, which makes it impossible for
them to give correct preferences on all possible solution, let alone provide a best-first
order.

In this first part, we study the influence of the existence of non-trivial local problems
on the performance of existing DCOP algorithms. More specifically, we want to know
whether incremental elicitation provides efficiency improvements in the presence
of preferences, even when a best-first order cannot be guaranteed. To that end, we
evaluate an existing incremental elicitation algorithm (O-DPOP) on three types of
problems. The first has preferences that are non-trivial to obtain, the second has easily
computable preferences, and the third has no preferences at all.

In the second part of this thesis, we present a novel approach to solving DCOPs. The
currently available algorithms can be divided in search-based, inference-based, and
local-search-based algorithms. The first two are guaranteed to find an optimal solution,
but pay for it in memory usage or runtime. The local-search-based algorithms use less
resources, but are not guaranteed to find a solution or even to converge. In this thesis,
we introduce a fourth type of algorithm, based on sampling.

When searching for an optimal solution, the balance between exploration and exploita-
tion is important. If the scale tips in the direction of exploration, the algorithm runs
the risk of walking away from the optimal solution. When the scale tips in the direction
of exploitation, algorithms may pay too much attention to bad solutions. None of the
current DCOP algorithms is able to strike a proper balance between the two. The DPOP
algorithm, for example, performs no search at all, but simply aggregates all possible
solutions. The ADOPT-based algorithms perform search, but they only disregard an
option when they can prove it is suboptimal. For these algorithms, the weight lies
fully on exploitation of already known information. Local-search-based algorithms
like DSA perform a certain level of exploration by choosing, with a certain probability,
an inferior solution. They do not, however, explore the search space in a systematic
fashion. A notable exception is the O-DPOP algorithm, that tries to get around the
need for exploration by relying on the best first order. It might still, however, perform
an exhaustive search.

We present an approach based on methods developed for solving the multi-armed
bandit problem. In the multi-armed bandit problem an agent has to play a set of
rounds, where in each round it must choose a gambling machine (one armed bandit).
In every round, the agent obtains a reward by playing the chosen machine, and the goal
is to choose bandits in such a way that the regret of the agent over the entire sequence
of plays is minimized. With regret we mean the difference between total reward of
the played sequence, and the reward given by the optimal sequence. The UCB algo-
rithm, which is proven to provide an optimal strategy for such problems, is a sampling
algorithm that makes use of confidence bounds to steer the search. It succeeds in
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providing a good balance between exploration and exploitation. Generalizations of the
algorithm to trees are shown to be successful in providing solutions to many problems,
including the problem of playing Go. In this thesis, we introduce a new algorithm for
solving DCOPs called DUCT, based on confidence bounds. Evaluations of different
variants of the DUCT algorithm are provided, as well as comparisons with existing
approaches.

1.2 Outline of the Thesis

Chapter 2 gives an overview of the most important developments in the field of Dis-
tributed Constraint Reasoning (DCR). The sub-fields of Distributed Constraint Satis-
faction (DCSP) and Distributed Constraint Optimization (DCOP), are both formally
defined. We outline the most important algorithms developed in both fields, and show
how they are linked together.

Chapter 3 deals with DCOPs with complex, non-trivial local problems. We provide
a novel DCOP model for coordination problems with preferences. Two benchmark
problems with non-trivial local problems are introduced, and for both a DCOP model is
given. We provide a thorough evaluation of existing DCOP approaches in the presence
of non-trivial local problems.

Chapter 4 introduces a new, confidence-based algorithm for solving DCOPs, called
DUCT. We give a motivation for the algorithm, and formally define it. We provide an
experimental evaluation in which we compare different variants of our algorithm with
state-of-the-art DCOP approaches.

Chapter 5 provides details on the FRODO platform. FRODO is a platform for distributed
constraint optimization, specifically designed for experimental purposes. This Chapter
discusses the motivations we had for designing the platform, and gives its general
architecture. Furthermore, some more detailed implementation issues are discussed
for some of the algorithms used in this thesis. Finally, Chapter 6 concludes.
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2 Distributed Constraint Reasoning

The field of Distributed Constraint Reasoning (DCR) evolved from a particular subfield
of Distributed AI called Cooperative Distributed Problem Solving (CDPS) (Durfee et al.,
1989). A CDPS problem is a loosely-coupled distributed network of semi-autonomous
problem-solving nodes that perform sophisticated problem solving, and cooperatively
interact with other nodes to solve a single problem (Lesser, 1990). Lesser (1990) was the
first to propose to view solving a CDPS problem as a distributed state search. Based on
this Yokoo et al. (1992) attempted to model a subset of CDPS problems as Distributed
Constraint Satisfaction problems. This chapter will focus on the most important
developments in DCR, looking at both satisfaction and optimization problems.

2.1 Applications

The DCR paradigm can be used to model many different types of real world problems.
Without going into much detail, we will discuss a few of them. The traditional problem
that has been used to evaluate many DCR algorithms is the graph coloring problem. It
consists of a graph, where the nodes must be assigned different colors. The number
of colors is limited, and the nodes must be colored such that no two neighboring
nodes have the same color. This is of course a rather abstract problem, but it can
be used to model many real world problems. In (Marx, 2004), for example, different
types of scheduling problems (aircraft scheduling, processor scheduling and frequency
allocation) are modeled as graph coloring problems.

The DCR paradigm is also well suited to model distributed scheduling problems. The
Nurses Time Tabling and Transportation (NTTT) problem is one instance of a schedul-
ing problem that has been modeled as a DCR (Solotorevsky and Gudes, 1996). The goal
is to schedule the shifts of nurses, such that their availability constraints, as well as the
regulations on what type of nurse should be present at what time are satisfied. The
meeting scheduling problem is another instance of a distributed scheduling problem
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that lends itself well to the DCR paradigm. The basic problem consists of a set of
agents, which need to schedule meetings between each other. Several different types
of models have been studied in (Maheswaran et al., 2003).

Sensor networks are a much studied application in the field of multi agent systems.
Vinyals et al. (2010) provide an overview of most of the work done on sensor networks.
The DCR community has mostly focussed on sensor networks where the sensors are
directional, i.e. they can only sense in a certain direction. (Modi et al., 2001; Béjar
et al., 2005; Zhang et al., 2005) propose a sensing problem where sensors need to
track objects. Zhang et al. (2005) assume that one sensor is enough to track an object,
allowing a graph coloring model of the problem. In (Modi et al., 2001; Béjar et al., 2005),
however, each object must be assigned at least 3 sensors. Béjar et al. (2005) define a
model where the objects to be tracked are the agents, while Modi et al. (2001) model
the sensors as agents. In (Zivan et al., 2009), a sensor network is used to completely
cover a geographical area. Again, in their model the sensors are the agents.

Other applications are Combinatorial Auctions (Petcu, 2007), Take off and Landing Slot
Allocation (Petcu, 2007) and the Distributed Multiple Depot Vehicle Routing Problem
(DisMDVRP), as introduced in (Léauté et al., 2010).

2.2 Distributed Constraint Satisfaction (DCSP)

Distributed Constraint Satisfaction as defined in (Yokoo et al., 1992) is a first attempt to
use Constraint Satisfaction Programming (CSP) (Dechter, 2003) techniques to model
distributed multi-agent environments. A formal definition can be found in Definition 1.

Definition 1 (Distributed Constraint Satisfaction Problem). A Distributed Constraint
Satisfaction Problem (DCSP) is a tuple 〈A,M,X ,D ,F〉.

• A , {a1, . . . , ak} is a set of agents;

• X , {x1, . . . , xn} is a set of variables, where each variable is owned by a single
agent;

• M : A 7→ P(X ) is a function such thatM(ai) ∩M(aj) = ∅whenever i 6= j, and⋃
a∈AM(a) = X ;

• D , {D1, . . . , Dn}, is a collection of finite domains, with product space D =∏n
i=1Di, such that xi ∈ Di;

• F , {f1, . . . , fm}, with fi : Di1 × . . .×Din(i) → {true, false} is a function ranging
over the variables {xi1 , . . . , xin(i)}, assigning true to feasible assignments, and
false to infeasible assignments.
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Figure 2.1: A constraint graph

A solution is an assignment to the variables x ∈
∏
Di∈D Di such that ∀fi ∈ F fi([x]f) =

true, where [x]f is the projection of x to the variables in the scope of fi.

It must be said that solving a DCSP is not equivalent to parallel/distributed solving of a
CSP. Solving a CSP using parallel/distributed methods is done from an efficiency point
of view. The problem is distributed in such a way as to most efficiently solve the global
problem. In a DCSP, however, the distribution is fixed, and cannot be changed. The
main goal of the DCSP community is thus to investigate how to solve a problem, given
a pre-defined distribution.

The agents inA are assumed to be autonomous entities that can only communicate
with each other through the sending of messages. Importantly, they are assumed to
have full knowledge of all the constraints they participate in. Messages between agents
are delivered within a finite amount of time, and in the order in which they have been
sent. For ease of exposition, most algorithms discussed in this section have added the
assumption that each agent controls only a single variable, i.e. ∀a ∈ A |M(ai)| = 1.

The structure of a DCSP is captured by the constraint graph. The constraint graph
represents the connectivity of the problem, i.e. it shows which variables are directly
connected to which other variables through constraints.

Definition 2 (Constraint Graph). Given a DCSP 〈A,M,X ,D ,F〉, its constraint graph
〈X , E〉 is such that each node represents a variable, while there is an edge (xi, xj) ∈ E
between two variables if they share a constraint.

Take as an example a problem consisting of the variables x1 ∈ {1, 2, 3}, x2, x3 ∈ {1, 2}
and x4 ∈ {3, 4}, with the constraints x1 6= x2, x1 6= x4, x2 6= x4 and x3 6= x4. The
corresponding graph is shown in Figure 2.1. The constraint graph is an important
concept in the DCR literature, and many approaches use it to structure their search
for a solution. The different approaches for solving DCSPs can be roughly divided
into three different types: backtracking-based methods, negotiation-based methods
and local-search methods. The first two are, in general, complete methods while the
local-search methods are not necessarily guaranteed to find a feasible solution.
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Figure 2.2: Asynchronous Backtracking

2.3 Complete DCSP Methods

In this Section we discuss several complete DCSP methods. A DCSP method is com-
plete when it is guaranteed to find a solution, if it exists. We start with the Asyn-
chronous Backtracking algorithm Yokoo et al. (1992). It is the first complete and
distributed algorithm for solving DCOPs. The algorithm is based on the Backtracking
(BT) method (Mackworth, 1987), and is in many ways the backbone for most of the
DCSP algorithms that have been developed.

2.3.1 Asynchronous Backtracking (ABT)

ABT allows agents to run concurrently, and asynchronously make decisions on their
variable’s values. Each variable x is assigned priority value p(x). These priority values
define a total order on the variables, such that xi � xj if p(xi) > p(xj). Take, as an
example, the problem defined in Figure 2.1, and assume the following order x1 � x2 �
x3 � x4. Each agent starts by choosing a value for its variable, and reports it to all
neighbors with a lower priority value using an ok? message (Figure 2.2(a)).

An agent stores the values reported by the ok? messages in its agent_view. Whenever
an agent receives a new ok? message, it checks, based on the constraints it controls,
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whether its current value is consistent with its the current agent_view. A constraint is
controlled by the lowest priority variable participating in the constraint. If the current
value is consistent, it simply sends out an ok? message containing this value to all its
lower priority neighbors. Otherwise, it tries to find a new value for its variable that
is consistent, and reports this new value to its lower priority neighbors using an ok?

message. If such a value does not exist, it means that one of the higher priority agents
needs to change its value, i.e. the algorithm needs to backtrack. An agent initiates a
backtrack by reporting its current agent_view as a no-good to the lowest priority agent
in the no-good (Figure 2.2(b)).

When an agent receives a no-good, it considers it as a new constraint between it and
the other variables in the no-good. If the no-good contains a variable that is not known
by the receiving agent, i.e. there is no link between the variable controlled by the
receiving agent and the variable in the no-good, a new link is added (Figure 2.2(c)).
Over each new link an ok? message is sent to update the agent’s agent_view.

The algorithm was shown to be sound and complete. When an agent finds an empty no-
good, it knows that there is no solution to the problem and the algorithm can terminate.
When a solution has been found, none of the agents will be sending messages. In this
case, a distributed termination algorithm (Chandy and Lamport, 1985) must be used
to recognize the situation.

2.3.2 Improvements on ABT

The ABT algorithm has been the starting point for many of the subsequent algorithms
developed for DCSP problems. This section looks at the different improvements that
have been made.

Dynamic Orderings

The main disadvantage of the ABT algorithm is that its variable ordering is fixed.
Because of the fixed order, the algorithm might have to perform a full search before it
finds the variable that is responsible for the constraint violation. The Asynchronous
Weak Commitment (AWC) algorithm (Yokoo, 1995), inspired by the Weak Commitment
(WC) algorithm (Yokoo, 1994), tries to remedy this by introducing a dynamic order. It
does this by dynamically changing the priory order p() as follows; whenever a variable
xi discovers a no-good, it sets the variable’s priority value to k + 1, where k is the
maximal priority value among the variables occurring in its agent_view. In (Yokoo,
1995; Armstrong and Durfee, 1997), the AWC algorithm is extended to agents with
complex local problems, where a complex local problem is a problem where agents
own multiple variables.
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Zivan and Meisels (2005) introduces a different approach to dynamically ordering the
variables. Their algorithm ABT_DO allows agents to propose a reordering of lower
priority variables. They tested different heuristics, and found that changing the order
whenever a no-good is received provided the best results..

No-good Learning

Both ABT and AWC use a very crude way to generate no-goods. In (Yokoo and Hirayama,
2000), a new method for no-good-learning is introduced, called resolvent learning,
that combines a set of no-goods to a single no-good, thus saving space. Whenever a
variable xi reaches a dead-end, it finds, for each possible value in its domain, a no-good
that prohibits this value. It then aggregates these no-goods into a single no-good. If a
value is prohibited by multiple no-goods, the smallest no-good is chosen, and ties are
broken by choosing the no-good with the highest priority. The selected no-goods are
combined by removing references to xi, and taking the union of the remaining variable
assignments.

It has been shown that resolvent-based learning not only speeds up AWC, but it also
greatly reduces the number of constraint checks that must be performed. However,
AWC with resolvent learning is still susceptible to what is called the no-good-explosion.
For some problems, many no-goods must be generated, putting both a big burden
on memory usage, and making it more difficult to evaluate new variable assignments.
One way to reduce the burden, is to only store no-goods of a certain size. Which size
works well, however, depends on the problem at hand. A smaller size might reduce the
number of no-goods stored, but it can also increase the number of cycles needed to
find a solution.

Preventing the Addition of Links

Whenever an agent in ABT receives a no-good that contains a variable it does not
know, it must request a link with this variable to maintain consistency, adding to
the complexity of the problem. Different attempts have been made to remove the
need to make connections between agents that are not connected in the original
problem. In (Hamadi, 1998), a partial ordering is used to overcome the need to add
new links. Although the algorithm they describe (DIBT ) has been shown not to be
complete (Bessière et al., 2003), the idea of using a partial order is an important idea
that has been used in subsequent algorithms, both for DCSPs and their optimization
variants.

The partial order is constructed as follows. They start with a total ordering on the
variables, and each variable splits its neighbors into a set with higher priority values
(parents) Γ+, and a set with lower priority values (children) Γ−. When two nodes have
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Figure 2.3: A partial ordering of the variables

the same priority value, their identifiers are used to break the tie. Next, each variable
with Γ+ = ∅ assigns itself to level 1. All other variables set themselves to the maximal
level of their children plus 1. If we take p() to be the number of connections a variable
has, the problem as defined in Figure 2.1 is ordered as shown in Figure 2.3.

Note that nodes in the same level are independent from each other. DIBT then uses a
backtracking mechanism without no-good-learning, which is memory efficient, but
unfortunately makes the algorithm incomplete. The Distributed Dynamic Backtrack-
ing (DDB) algorithm (Bessière et al., 2003, 2005) attempts to fix this, by adding a
no-good learning strategy. The basic idea is to create a no-good for every value that is
inconsistent with the current agent_view. Whenever a variable reaches a dead-end,
the no-goods are resolved into a single no-good, and reported to the lowest priority
ancestor of the variable.

Concurrent Search

ABT allows concurrency search by allowing the agents to asynchronously change
their values. In order to remain complete, agents need to store no-goods that are
discovered while searching. In Zivan and Meisels (2006) another form of concurrency
is introduced, in the form of the ConcDB algorithm. Multiple different search processes
are run concurrently on the agents, exploring different parts of the search space. Each
search process is represented by a single, consistent partial assignment (CPA). This
CPA then moves through the constraint network as a token. This means that for each
search process, only a single agent at a time is allowed to add a value. This removes
the need to store no-goods, and experiments show that ConcDB uses less constraint
checks and sends less messages than ABT.

Forward Checking

In backtracking-based algorithms, a constraint is evaluated by the lowest agent that par-
ticipates in the constraint, for the simple reason that a constraint cannot be evaluated
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until all variables have been assigned values. This means, however, that when an agent
chooses a value, it has no way of knowing whether it will be compatible with variables
further down the hierarchy. In order to assure completeness and termination, agents
have to store no-goods. In the centralized case, the Forward Checking (FC) (Haralick
and Elliott, 1979) algorithm has been developed to counter this. Distributed Forward
Checking (DIFC) (Brito and Meseguer, 2003) attempts to use forward checking for
solving DCSPs. DIFC uses the same ordering as in DIBT. However, it gives control of
the constraints to the highest priority variable in the ordering, and instead of sending
a value assignment for its own variable, it reports the influence of its decisions on
domains of its lower priority neighbors. The main disadvantage of DIFC is that calcu-
lating the domains of lower priority variables is an expensive operation. Experiments
have corroborated this.

Dynamic Ordering Distributed Forward Checking (DODFC) (Meisels and Razgon, 2001)
takes another approach to using forward checking. It assumes, contrary to most other
DCSP algorithms, that all agents communicate with all other agents from the start.
One variable is selected, and the controlling agent is to function as a so called DECID-
ING_AGENT (DA) at the beginning of the algorithm. Whenever an agent becomes the
DA, it sends the domain values that are consistent with its agent_view to all agents
that share constraints with it. Each agent then computes, for each reported value, an
evaluation, and reports this to the DA. The DA then aggregates these evaluations into a
single number for each value, selects the best value and reports this to the other agents.
Agents then refine the domains of their variables, and based on some predefined
heuristic make a suggestion to the DA as to which variable should become DA next. An
example of such a heuristic is to propose the variable with the smallest domain. The
DA then selects the next variable, and makes this variable the new DA.

Asynchronous Forward Checking (AFC) (Meisels and Zivan, 2007) is very similar to
DODFC, in that at any time there is only one agent that decides on the value of its
variable. The idea is to maintain a CPA, which is used as a token that is sent over the
network. An Initial Agent (IA), initializes the CPA, and based on a heuristic it then
sends it to a first agent. Whenever an agent receives a CPA, it updates its agent_view,
chooses a value and then sends a FC_CPA to all unassigned variables. The FC_CPA
is an exact copy of the current CPA. When an agent receives an FC_CPA, it checks
whether it is consistent with its constraints, and if not it returns a Not_Ok message and
a new value is chosen. Whenever an agent is not able to choose a consistent value, the
agent backtracks by sending the CPA up to the last agent that has assigned a variable.
For bigger, more complex problems AFC outperforms both ABT and DDB both in
terms of the number of constraint checks performed and the number of messages sent.
Distributed Dynamic BackJumping (DDBJ) (Nguyen et al., 2004) improves on AFC by
introducing more concurrency in the algorithm.
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Private Constraints, Shared Variables

In the general DCSP model, the variables are controlled by the agents, while the con-
straints are shared. That is, each agent controls its own variables, but it has full knowl-
edge of each constraint in which at least one of its variables participates. In (Silaghi
et al., 2000a) it is argued that this assumption does not hold in negotiation settings,
where it is the constraints that are private, while the decisions are not. They introduce
the Asynchronous Aggregation Search (AAS) algorithm to deal with such situations. In
AAS, each agent is responsible for a set of constraints, and different agents can propose
values for the same variable.

AAS assumes an ordering over the agents, and each agent is only connected with
agents with which it shares a variable. A backtrack search is performed, but instead of
propagating single values, agents in AAS propagate aggregated tuples of values, where
the messages are sent from agents with lower priorities to agents with higher priorities.
These aggregated tuples of values are proposals for the domains of variables, and each
agent’s agent_view now contains a set of possible values for each variable the agent
has to coordinate over. Whenever an agent finds that no combination of values for the
variables satisfies its constraints, it reports a no-good to the relevant agents. As in ABT,
when receiving a no-good an agent might add links to other agents whose variables it
has become interested in. Three instantiations of the algorithm (AAS0, AAS1 and AAS2)
are proposed, that differ in the way they deal with no-goods. AAS2 is similar to ABT
in that it records all no-goods while AAS1 and AAS0 forget some no-goods when new
information on variable domains is received. Furthermore, AAS0 performs a merge of
all known no-goods by using a simple relaxation rule. Experiments, however, showed
no significant difference with ABT. MHDC (Silaghi et al., 2000b) improves the AAS
approach by combining it with a distributed bound-consistency approach.

2.3.3 Negotiation Methods

Mailler and Lesser (2003) introduced a mediation-based approach to solving DCSPs,
called Asynchronous Partial Overlay (APO). In backtrack-based algorithms like ABT
and AWC agents are only aware of their own constraints, although they can learn new
constraints with non-neighboring variables through no-goods. They are thus to learn
that certain value combinations are not allowed, but not why they are not allowed.
In APO agents are allowed to gather more information on the constraints of their
neighbors.

An order is assumed over the variables, although this order is not used in the same
way as in ABT or AWC. Agents communicate the values for their variables to all their
neighbors. Whenever a conflict arises that an agent cannot solve by changing its value,
and this agent has the highest priority of all agents participating in the constraint,
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the agent starts a mediation with all its neighbors to minimize the number of con-
straint violations. During the mediation, the agent that started the mediation collects
information on the values of other variables. That is, each value of the variables in its
agent_view must report whether it is consistent with the current agent_view, and if not,
report at least one conflicting value of another variable. It then tries to find a solution
that minimizes the number of constraint violations. Note that during mediation an
agent can discover new variables that influence its own local solution. New links are
created between such new agents and the mediator agent, which will be taken into
account in the next mediation. In (Grinshpoun and Meisels, 2008) however, it is shown
that APO is not complete. They propose a modified version, called CompAPO, that
plugs the holes in APO.

2.4 Incomplete DCSP Methods

Incomplete methods are methods that are not guaranteed to find a solution to the
problem. The main class of incomplete methods consists of local-search methods.
Local-search methods are methods that try to find better solutions by making local
changes based on only local information.

2.4.1 Distributed Iterative Improvement (DII)

Hirayama and Toyoda (1995) developed the Distributed Iterative Improvement (DII )
algorithm. Each agent picks an initial value for its variable, and then informs its neigh-
bors of this value. Agents collect value information in an agent_view, and check for
constraint violations. When a constraint violation occurs, an agent starts a negotiation
with neighboring agents in order to reduce the number of constraint violations. It
does this by communicating both the current number of violations, and the minimal
number of violations it can obtain. An agent is allowed to change the assignment
to its variable when either none of its neighbors have constraint violations, or if the
improvement it can obtain is the highest among all its neighbors (ties are broken
through comparison of the variable identifiers).

DII basically performs a distributed version of hill climbing, and it is thus possible for
DII to get stuck in a local minimum. Whenever DII encounters a situation where no
agent is able to decrease the number of constraint violations by changing its value1, it
forms a coalition of agents whose variables participate in the violated constraints. One
agent in the coalition is selected as manager of the coalition. The manager collects all
variables, domains and constraints in the coalition and solves the resulting CSP using
some strategy. They introduce two types of strategies, i.e. the selfish and the altruistic
strategy. In the selfish strategy, a manager chooses an assignment that satisfies all of

1Note that this is a necessary, but not sufficient condition for being in a local minimum
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its own constraints, and asks the other agents in the coalition if the new assignment
is ok. The altruistic strategy, on the other hand, performs a search in the full CSP of
the coalition, and chooses the assignment that minimizes the number of constraint
violations. Experiments show that the altruistic strategy works better than the selfish
strategy. However, when the local CSP becomes too complex, the altruistic strategy
becomes too expensive. Note that no new links are created between agents, as would
be the case in APO.

2.4.2 Distributed Breakout Algorithm (DBA)

The DII algorithm is able to jump out of local minima. However, when the coalitions
become too big the algorithm breaks down. Distributed Breakout (DBA) (Yokoo and
Hirayama, 1996) is inspired by the Breakout algorithm (BA) (Morris, 1993). In BA, pairs
of variable assignments are given weights, and the goal is to minimize the sum of the
weights of violated constraints. When a local minimum is encountered, the weights
for the value pairs that violate a constraint are increased, in effect removing the local
minimum.

In DBA, agents choose initial values and report them to their neighbors. Next, based
on their current agent_view, they report the possible improvements they can provide
by changing their values. As in DII, an agent is only allowed to change its value
when its improvement is higher than the possible improvements of its neighbors. A
local minimum is a property of the global assignment, and no single agent is able to
recognize a local minimum. For that reason, the notion of a quasi-local minimum is
defined. An agent is in a quasi-local minimum when it violates some constraint, and
neither it, nor any of its neighbors, is able to improve the assignment. When an agent
detects a quasi-local minimum, it increases the weights for the constraint violations.

To detect when to terminate, each agent has a termination_counter. Its value is in-
creased from d to d+1 when both its value, and its neighbors’ values are consistent, and
the termination_counter of all its neighbors is equal to or bigger than d. Whenever d
reaches the total number of variables in the problem, the agent knows it can terminate.
It is thus assumed that each agent knows an upper bound on the number of agents
present in the problem.

2.5 Distributed Constraint Optimisation

Distributed Constraint Optimization (DCOP) is a generalization of the DCSP paradigm,
where constraints do not define which solutions are feasible or not, but attach a value
to each outcome. Distributed Optimization has been first addressed in (Liu and Sycara,
1995). However, they focus on solving centralized problems in a distributed fashion,
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while in the DCOP paradigm the focus is on solving inherently distributed problems.
Yokoo (1993); Hirayama and Yokoo (2003) proposed extensions of the DCSP paradigm
to over-constrained problems. In (Yokoo, 1993) this is done by assigning importance
values to constraints, where the goal is to find a solution that minimizes the importance
of the constraints that are violated. (Hirayama and Yokoo, 2003), on the other hand,
extends the Partial Constraint Satisfaction (PCSP) domain, where there is a distance
metric defined over subproblems of the original problem, to a distributed setting.
Neither approach, however, is able to model a wide array DCOP problems.

The DCOP paradigm, as defined below, has been introduced in (Modi et al., 2003). Con-
straints are seen, not as predicates that define the feasibility of a variable assignment,
but as functions assigning a value to each variable assignment.

Definition 3 (A DCOP problem). A discrete distributed constraint optimization problem
is a tuple 〈A,M,X ,D ,F〉where

• A , {a1, . . . , ak} is a set of agents;

• X , {x1, . . . , xn} is a set of variables, where each variable is owned by a single
agent;

• M : A 7→ P(X ) is a function such thatM(ai) ∩M(aj) = ∅whenever i 6= j, and⋃
a∈AM(a) = X ;

• D , {D1, . . . , Dn}, is a collection of finite domains, with product space D =∏n
i=1Di, such that xi ∈ Di;

• F , {f1, . . . , fm} is a set of constraints where each constraint fi : Di → R ∪ {∞}
depends on n(i) variables, with Di , Di1 × . . . × Din(i) . Let x = {x1, . . . , xn},
then [x]fi is used to denote the projection of x to the subspace on which the i-th
constraint is defined, and var(fi) to denote the variables in the range of fi.

A feasible assignment x ∈
∏
Di∈D Di is an assignment to all variables such that

f(x) ,
m∑
i=1

fi ([x]fi) 6=∞, (2.1)

The objective is to find a feasible assignment that minimizes the sum of the constraints,
with the minimum value being f∗(D) , minx∈D f(x).

Although Definition 3 defines a DCOP as a minimization problem, this in no way
restricts the modeling power of the framework. A maximization problem can simply be
transformed into a minimization problem by flipping the sign of all constraint values.
Most DCOP algorithms, however, do take a more restricted view of DCOPs. Outside of
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the algorithms in the DPOP family, all algorithms assume values between 0 and∞, so
as to exploit the monotonicity properties that come with this assumption. Without
rescaling a problem, most algorithms are thus not able to handle problems with both
costs and utilities.

2.6 Complete DCOP Methods

This section introduces the complete DCOP methods. All methods presented in this
section are guaranteed to find the optimal solution.

2.6.1 Synchronous Branch & Bound (SynchBB)

SynchBB (Hirayama and Yokoo, 2003) has originally been developed for solving DCSPs,
although it can easily be adapted to solving DCOP problems. SyncBB is a synchronous
search algorithm, altogether not too different from AFC. It thus assumes that con-
straints relate costs to variable assignments. Variables are ordered using a linear order,
and only a single agent is active at a time. The first agent in the ordering initiates the
algorithm by sending a path to the next agent, containing a variable assignment to the
variable of the first agent (line 8, Algorithm 1). Every subsequent agent that receives a
partial path (equivalent to a CPA in AFC), chooses a value for its own variable, evaluates
its constraints and sends the path, including the cost of the path, further down the
ordering (lines 26-27). Whenever the final agent is able to assign a value to its variable,
the cost of the entire path is broadcasted to all the agents as the best value found so far
(lines 20-24). Agents now use this value as an upper bound to prune partial paths that
already have a higher cost.

Whenever an agent is not able to assign a value to its variable, i.e. the costs of all values
is above the upper bound, a BACK message is sent (lines 24 and 29).

2.6.2 Asynchronous Distributed Optimization (ADOPT)

The ADOPT algorithm (Modi et al., 2003) is the first asynchronous, complete algorithm
that is able to solve DCOP problems. ADOPT is a distributed, asynchronous, search
algorithm. Similar to SynchBB, ADOPT assumes that the values of all constraints are
between 0 and∞, and it tries to find the variable assignment that minimizes the sum
of constraints.

ADOPT uses a variable hierarchy similar to what is used in DIBT. Given the constraint
graph of a problem, ADOPT finds a so called pseudo tree, and uses this as a partial
order on the variables.

Definition 4 (Pseudo Tree). Given a graph 〈V, E〉, a pseudo tree is a spanning tree 〈V, E ′〉
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Algorithm 1: SynchBB for variable xi
input :A fixed, known linear order on the variables x1 � x2 � . . . � xn

1 D′i ← Di;
// The sum of the constraints controlled by i;

2 `i(xi, ·)←
∑

f∈{f ′∈F|xi∈var(f ′)∧∀x′∈(c′)x′�xi} f(xi, ·);

3 f i ← 0// the cost of the current partial assignment;
4 f∗ ←∞// the cost of the best assignment found so far;
5 a∗ ← null// the best assignment found so far;
6 ā← null// The current assignment;

7 if i = 1 then // x1 starts the search
8 d1 ← first element from D′i that is feasible;
9 if d1 6= null then send((CPA, d1, `1(d1))) to x2;

10 else broadcast(INFEASIBLE)

11 while there is a message M to process do
12 if M is (UB, a, c) then
13 f∗ ← c,a∗ ← a;
14 else
15 if M is (CPA, a, c) then
16 D′i ← Di, ā← a, f i ← c;
17 else if M is BACK then
18 D′i ← D′i \ {di};

19 if i = n then
20 di ← arg mind′∈Di `

i(d′, ā);
21 a∗ ← (â, xi), f∗ ← f i + `i(a∗);
22 broadcast((UB, a∗, f∗));
23 if f∗ = 0 then broadcast(TERMINATE);
24 else send(BACK ) to xn−1;
25 else
26 di ← value from D′i such that f i + `i(xi, â) < f∗;
27 if di 6= null then send((CPA, (a, di), f i + `i(di, a)));
28 else if i = 1 then send(TERMINATE);
29 else send(BACK ) to xi−1;

such that whenever (a, b) ∈ E and (a, b) /∈ E ′, a and b must be in the same branch.

Using the pseudo tree, ADOPT can search different parts of the problem concurrently.
An example is given in Figure 2.4. The solid lines represent the spanning tree of the
original constraint graph, while the dotted lines represent back edges. A back edge
is an edge that is present in the original graph, but not part of the spanning tree. A
pseudo tree must be such that a back edge exists only between a node and one of its
descendants or ancestors. The separator of a node i in the tree is the set of ancestor
nodes that must be removed from the problem to completely separate the problem
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Figure 2.4: From a constraint graph to a pseudo tree

rooted at i from the rest of the problem. The separator of x3, for example, consists of
{x1, x2}. The width of a pseudo tree is the size of the largest separator.

Algorithms for finding a pseudo tree can be found in (Hamadi, 1998; Léauté, 2011), and
generally consist of two phases. The first phase selects a root, while the second phase
performs a depth-first traversal of the constraint graph, starting from the root. During
construction of the pseudo tree, the following information is gathered for each node i:

• parenti, the parent of i;

• childreni, the children of i;

• pseudo_childreni, the pseudo children of i, i.e. all lower priority neighbors of i
that are not children;

• pseudo_parentsi, the pseudo parents of i, i.e. all higher priority neighbors of i
that are not its parent;

• sepi, the separator of i.

Each variable in ADOPT starts the search at the same time, by selecting the domain
value that minimizes the constraints it is responsible for. A variable is assigned the
constraints in which it is the lowest participating variable. Each agent then sends this
value to its children and pseudo children using a VALUE message. A VALUE message
contains only a single variable assignment. Upon receiving a VALUE message, an agent
responds by sending a COST message to its parent, that contains both a lower bound
and an upper bound on the actual cost for the current agent view. Since all agents
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change their values asynchronously, a COST message also contains the agent view
for which it has been generated. Whenever an agent receives new VALUE or COST
message, it resets all lower and upper bounds collected under an incompatible context.
In order to prevent the algorithm from having to rediscover parts of the search space
that are known not to be interesting, a backtrack threshold is used. This threshold is
communicated between agents using a THRESHOLD message.

Using the upper bound and the threshold, ADOPT is able to recognize when the optimal
solution has been found, and thus when it is to terminate. Although experiments have
shown that ADOPT outperforms SynchBB, the asynchronous nature of ADOPT can still
result in the generation of a large amount of messages. In fact, the number of messages
exchanged by the ADOPT algorithm is exponential in the depth of the tree. Algorithms
like BnB-ADOPT (Yeoh et al., 2010) and ADOPT-ng (Silaghi and Yokoo, 2006), improve
ADOPT in different aspects.

2.6.3 Dynamic Programming Optimization Protocol (DPOP)

Where all previously described algorithms attempt to solve problems using search,
DPOP (Petcu and Faltings, 2005a), see Algorithm 2, uses Dynamic Programming meth-
ods. DPOP is an adaptation of the general bucket elimination scheme (Dechter, 2003)
to a distributed setting. Similar to ADOPT, it operates on a pseudo tree, allowing it
to solve separate parts of the problem concurrently. After generating a pseudo tree,
DPOP proceeds in two distinct phases. In the first phase, the UTIL propagation phase,
cost information is collected in a bottom up fashion. In the second phase, the VALUE
propagation phase, variables are assigned values in a top-down manner. Do note that,
contrary to SynchBB and ADOPT, DPOP also supports maximization problems and
puts no restrictions on the signs of the constraint values.

UTIL Propagation

In the UTIL propagation phase, agents collect cost information from their children,
combine it with their own local problems, and then report this to their parents. This
phases is started by the variables on the leaf nodes of the pseudo tree. They create
UTIL messages by summing up (joining ) all their constraints, and then projecting out
their own variables (line 3). In general, ifmj is a UTIL message received by child j, then
xi calculates mi as follows

mi(·) = min
d∈Di

[
∑
f∈Fi

f(d, ·) +
∑

j∈childreni

mj(d, ·)]

where Fi = {f ′ ∈ F|xi ∈ var(f ′) ∧ var(f ′) ∪ childreni ∪ pseudo_childreni = ∅}. As in
ADOPT, each variable in DPOP evaluates only the constraints in which it is the lowest
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Algorithm 2: DPOP

1 initialization
2 if childreni = ∅ then
3 mi(·)← mind∈Di

∑
f∈Fi f(d, ·);

4 send UTIL(mi) to parenti;

5 when received(UTIL(mj))
6 Store mj ;
7 if all children reported a UTIL message then
8 mi(·)← mind∈Di [

∑
f∈Fi f(d, ·) +

∑
j∈childrenimj(d, ·)];

9 if i is the root then
10 d∗ ← mind∈Dimi(d);
11 send VALUE({xi = d∗}) to all children;
12 else
13 send UTIL(mi) to parenti;

14 when received(VALUE(a))
15 d∗ ← mind∈Dimi(d, a);
16 to every child j, send VALUE([a ∪ {xi = d∗}]sepj );

priority variable. An example can be found in Figure 2.5, based on the problem as
defined in Figure 2.4(a). The size of a UTIL message sent by variable xi depends on
the size of its separator. In fact, the size of a UTIL message is exponential in the size
of the separator. So even though DPOP sends only a linear number of messages, the
sizes of these messages are exponential in the numbers of variables that occur in the
messages. The complexity of DPOP is thus determined by the width of the pseudo
tree it finds. Unfortunately, finding the pseudo tree that minimizes the tree width is an
NP-complete problem. Hence, approximate methods as described in (Hamadi, 1998;
Léauté, 2011) can be used to generate a pseudo tree.

VALUE Propagation

When the root node has received UTIL messages from all children (line 9), it knows,
for each of its domain values, the minimal global cost the entire problem can achieve
given the current agent_view. It chooses the value that minimizes the global cost,
and reports this to its children using a VALUE message, in effect starting the VALUE
propagation phase. Upon receiving a VALUE message, an agent assigns the value to
its variable that minimizes the cost of its subproblem, and reports this, together with
the context in the VALUE message it received, to all its children. This way all variables
are able to make optimal decisions, and at the end of the VALUE propagation phase a
solution has been found.
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Figure 2.5: UTIL propagation in DPOP

2.6.4 Open DPOP (O-DPOP)

Although DPOP sends only a linear number of messages, the UTIL messages can still
be large. Furthermore, many of the entries in the UTIL messages are not needed for
finding the optimal solution. In (Petcu and Faltings, 2006), the O-DPOP algorithm
is introduced. O-DPOP is based on the open constraint programming paradigm
introduced in (Faltings and Macho-Gonzalez, 2005). The basic idea is that the agents
do not need to have information on all possible assignments in their separators to
find the optimal solution, if they receive assignments in a best first order. This best
first order is used to calculate upper bounds on unseen assignments, which can then
be used to recognize the optimal solution. Similar to DPOP, O-DPOP works with a
pseudo tree and consists of a UTIL propagation phase, where utilities are propagated
in a bottom up manner, and a VALUE propagation phase to find an optimal variable
assignment. The VALUE propagation phase is equal to the VALUE propagation phase
in DPOP.

UTIL Propagation

The UTIL propagation (Algorithm 3) phase is initiated by the root node. It starts by
sending an ASK message to its children. Every node, whenever it receives an ASK
message, either reports the best assignment to the variables in its separator it has
not yet sent (lines 19 - 20), or, if it does not know what this assignment is, it sends an
ASK message to all its children (line 24). When it has reported all assignments in its
separator, it sends a DONE message to its parent (line 22).
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Algorithm 3: O-DPOP UTIL propagation

1 initialization
2 replied = true;
3 initialize goodStore;
4 if xi is the root variable then
5 send an ASK message to all children;

6 when received(ASK )
7 reply();

8 when received(GOOD(good, child))
9 goodStore.store(good);

10 if ¬replied then
11 reply();

12 when received(DONE(child))
13 goodStore.childFinished(child);
14 if ¬replied then
15 reply();

16 procedure: reply()
17 good← goodStore.next();
18 if good 6= null then
19 send GOOD(good, xi) to parent;
20 replied← true;
21 else if All feasible goods have been reported then
22 send a DONE(xi) message to parent;
23 else
24 send an ASK to the children;
25 replied← false;

A new assignment is reported using a UTIL message, containing a variable assignment
and the corresponding utility the subtree rooted at the sending variable can obtain
for that assignment. We call this a good. The goodStore is a data structure that stores
the received goods, and is able to provide new goods in a best first order. In order
to do this, it assumes that the variables’ children report goods in a best first order. It
can then compute a lower bound on the unreported assignments of each child, which
can be used to calculate the lower bound on unseen, and partially seen assignments.
Whenever a child is finished, i.e. it submitted all assignments, the goodStore is notified
of this (line 13).

2.6.5 Asynchronous Forward Bounding (AFB)

AFB (Gershman et al., 2006a) is a adaptation of AFC to the DCOP setting. The search
part is similar to the search of SynchBB. A partial assignment (CPA) is forwarded from
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agent to agent, and only one agent at a time is in possession of the CPA. The forward
checking, however, is performed in parallel. Using a lexicographic ordering on the
variables, AFB is shown to outperform both SynchBB and ADOPT in terms of the
number of concurrent constraint checks (Gershman et al., 2006b) and the number of
messages. Olteanu et al. (2011), however, showed that when smarter ordering heuristics
are used, AFB is outperformed by both SycnhBB and ADOPT. ConcFB (Netzer et al.,
2010) is another FB algorithm. In ConcFB, different parts of the search space are
investigated concurrently. This is achieved by allowing multiple CPAs to exist in the
network at the same time.

2.6.6 No-Commitment Branch and Bound (NCBB)

NCBB is a branch and bound algorithm that allows variables to submit different vari-
able assignments to different children. Unlike SynchBB, NCBB operates on the pseudo
tree. It is shown to significantly outperform ADOPT in both the number constraint
checks performed and the number of messages sent, although Yeoh et al. (2006) showed
that BnB-ADOPT outperforms NCBB. DPOP outperforms NCBB in terms of runtime,
but the advantage of NCBB over DPOP is that its space complexity is polynomial (as
opposed to exponential for DPOP).

2.7 Incomplete DCOP Methods

This section deals with incomplete DCOP methods, that are thus not guaranteed to
find the optimal solution.

Algorithm 4: DSA

1 initialization
2 d← a random value from Di;
3 send VALUE(xi, d) to all neighbors;

4 when received(VALUE(xj , d))
5 add xj = d to the agent_view;
6 if All neighbors have submitted a VALUE message then
7 d←select a new value and assign it;
8 send OK(xi, d) to all neighbors;

2.7.1 Local-Search Algorithms

As in the DCSP paradigm, local-search algorithms for DCOPs face the problem of get-
ting trapped into a local minimum. The Distributed Stochastic Algorithm (DSA) (Fitz-
patrick and Meertens, 2001), has originally been developed for Max-DisCSPs, and
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Algorithm 5: MGM

1 initialization
2 d← a random value from Di;
3 send OK(xi, d) to all neighbors;

4 when received(OK(xj , d))
5 add xj = d to the agent_view;
6 if All neighbors have submitted a OK message then
7 d̂←select a new value;
8 δ is the improvement xi can obtain by selecting d̂;
9 send IMPROVE(δ) to all neighbors;

10 when received(IMPROVE(δj))
11 store δj ;
12 if All neighbors have submitted an IMPROVE message then
13 if ∀j ∈ childreniδi > δj then
14 set own value to d̂;
15 send OK(xi, d̂) to all neighbors;

is a very simple local-search algorithm that introduces stochasticity to escape local
minima. Whenever an agent cannot perform a move that decreases its local cost, with
probability p it chooses another value for its variable (several variants to this heuristic
are discussed in (Fitzpatrick and Meertens, 2001)). Zhang et al. (2005), showed that
both DSA and DBA can be modified to work in a DCOP setting. The general algorithm is
shown in Algorithm 4. Zivan (2005) introduces a framework for local search algorithms
that allows for anytime behavior, and to retain the globally best solution found so
far. The framework requires a bottom-up cost propagation phase to collect all cost
information, after which a top-down propagation allows agents to recognize their
currently best assignment.

The Maximum Gain Message (MGM ) algorithm (Maheswaran et al., 2004), see Algo-
rithm 5, is a simplification of the DBA algorithm. MGM2 is a generalization of MGM,
allowing for 2-coordinated solutions. An agent is not only allowed to change its own
value, but also to propose value changes to another agent’s variable.

2.7.2 Max-Sum Algorithm

Where the above algorithms operate on the constraint graph of the DCOP, the Max-Sum
algorithm (Teacy et al., 2006) operates on the factor graph representation of the prob-
lem. A factor graph is a bi-partite graph, containing both variable nodes and function
nodes, where function nodes represent constraints. Each variable node is connected
with every function node representing a constraint in which it participates, and each
function node is thus connected with the variables in the scope of its constraint. The
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Max-Sum algorithm is an instance of the family of Generalized Distributed Law al-
gorithms (Aji and McEliece, 2000). It is complete for tree-structured factor graphs,
but incomplete for factor graphs containing cycles. The algorithm is initiated by the
variable nodes, which send a zero-utility function q(x) over their domain to their neigh-
boring function nodes. The function nodes combine this information with their own
constraints into a function q′(x), and send a message to each variable x, containing a
function r(x) representing the marginal, minimal cost obtainable for each assignment
to x. These variable nodes collect the messages from the factor nodes, and create a
new message for each of their neighbors. This process continues until it converges.
For tree structured graphs, this process is guaranteed to converge, while for graphs
containing cycles no guarantees can be given.
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3 Multi-Agent Coordination with
Complex, Non-Trivial Local Prefer-
ences
Coordination is an important aspect of modern day live. Due to globalization, many
companies need to coordinate their actions with each other, or even within the same
company. Take for example a logistics company that operates world wide. To ensure
efficient pickup and delivery, the schedules of trucks, boats and airplanes from different
parts of the world must be coordinated to make sure they fit well together. Another
example of the need of coordination can be found in the electricity grid. When a failure
occurs, badly coordinated local decisions can cause a blackout of the entire network.
Scheduling meetings, both within one company and between several companies can
quickly become a challenging task.

A common aspect of all problems mentioned above is their distributed nature. Infor-
mation on the problem is distributed over agents, and agents often have no, or limited,
information on the problems of the other agents. Furthermore, in many coordina-
tion problems, agents are not only in need of well coordinated solutions. They have
preferences over the different solutions, and want to find a solution that maximizes
their preferences. In the logistics problem, for example, the different agents (especially
within a single company) want to have an allocation of tasks that minimizes their
combined cost of driving. An agent’s preferences are captured by its local problem.
Such local problems are often difficult to solve. Furthermore, in many settings agents
have only limited resources. They thus prefer to iterate over only a small subset of all
possible solutions.

This Chapter deals with such coordination problems with preferences, where the
agents local problems are non-trivial to solve. We assume that the agents have limited
resources, and thus use local solvers that are not necessarily complete. Coordination
problems can quite naturally be modeled using the Distributed Constraint Optimiza-
tion (DCOP) framework. In fact, the main motivation for the field has been to model
Cooperative Distributed Problem Solving (CDPS) problems (Durfee et al., 1989), of
which many coordination problems are instances. In the DCOP framework decisions
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are modeled as variables, and dependencies between decisions are modeled as func-
tions over these variables, assigning a value to each possible variable assignment. How
the values of the functions are obtained, however, is left open. This allows agents to
use their own preferred method for solving their local problems. As argued by (Lesser,
1998), this is an important property to have, because it allows agents to adjust their
local solvers to the environment they currently reside in.

Armstrong and Durfee (1997) and Yokoo and Hirayama (1998) are the first to recognize
that agents have complex local problems, by which they mean that agents control
multiple variables. However, they stay in the realm of constraint satisfaction, and
thus do not deal with preferences. Solotorevsky and Gudes (1996) make a separation
between the agents’ local problems and the coordination problem, but use a separate
agent for solving this coordination problem. Burke and Brown (2006) provide the
first comparison of DCOP methods under the assumption of complex local problems.
Again, however, the difficulty of solving local problems is not taken into account. Jain
et al. (2009) and Taylor et al. (2010) look at situations where the utility values are
not known a-priori, and need to be discovered online. They look at situations where
complete algorithms are not applicable, and focus only on local search algorithms.

The main contribution of this Chapter is twofold. 1) First, we show how coordination
problems with preferences are naturally modeled as DCOPs, creating an explicit dis-
tinction between the coordination part of the problem and the local preferences of the
individual agents. We give a general model, and introduce two benchmark coordina-
tion problems. 2) Secondly, we show that on coordination problems with preferences,
O-DPOP, using incremental elicitation, outperforms other complete methods in terms
of runtime. Furthermore, even when the agents’ local solvers cannot guarantee the
best-first order, O-DPOP still finds better solutions than the incomplete local solvers.
Finally, O-DPOP is shown to require the least amount of queries to the local problems
to find a solution.

The rest of this Chapter is structured as follows. In Section 3.1 coordination problems
are defined in more detail, and a DCOP model is presented. Section 3.2 takes two
typical coordination problems, and shows how to model them as DCOP problems.
Section 3.3 evaluates different DCOP algorithms on three different benchmarks, and
Section 3.4 concludes.

3.1 Coordination Problems with Complex Local Preferences

Coordination is an inherent part of any multi-agent problem. Many definitions exist,
but in this Chapter we use the following definition (Lesser, 1998)

Definition 5 (Coordination problem). Coordination of agent activities becomes neces-
sary when there are interdependencies among agent activities.
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Such dependencies can take many different forms. However, in this Chapter we are
interested in dependencies that create constraints between the different sub-problems
of the different agents. To allow agents to adapt to the environment in which they need
to solve their local problems, Lesser (1998) argues for a separation between the agents’
local problems and the overall coordination problem. This separation not only allows
agents to adapt the way they solve their local problems, but also enables better privacy
protection (Léauté, 2011) and it allows agents to have preferences that are difficult to
express formally. We thus define a coordination problem with preferences as follows:

Definition 6 (Coordination Problem with Preferences). A coordination problem con-
sists of a set of agents A, each owning one or more decision variables X . A set of
dependencies (Dep) between the decision variables determine the set of feasible out-
comes, while each agent has preferences (Pref) over the different outcomes. A solution to
the coordination problem is an assignment to the variables in X that maximizes some
aggregation function of the individual agent preferences.

When people solve coordination problems, they generally go through only a limited
number of solutions before agreeing on a global solution. Furthermore, they start
with proposing solutions that are best for them. Only when their own, most preferred
solutions are not attainable do they suggest less preferred solutions. For example,
when scheduling a meeting, people propose their most preferred times, and only when
not everybody agrees do they start looking for other solutions. In a combinatorial
auction, nobody will generate a large amount of alternate price quotes. They will
only generate a set of most preferred quotes. It is thus natural for agents to provide
preferences in a best-first order. In many problems, the preferences are provided by
real people. To make sure not too big a burden is put on them, it is important to pay
attention to how a coordination algorithm elicits preferences from them.

The field of preference elicitation deals with the problem of when to ask which question
to which agent so as to minimize the number of preferences elicited from the user.
Preferences exist in many different types of problems and forms. In decision support
systems (Chen and Pu, 2004), users report their preferences over different outcomes to
a decision maker. In Combinatorial Auctions (Conen and Sandholm, 2001), bidders
reveal their preferences in the form of bids, while in Constraint Programming they
take the form of soft constraints (Meseguer et al., 2006). However, in all settings a
combinatorial explosion of possible outcomes exists, and hence one has to be careful
when which preferences are elicited from the user.

To simplify the elicitation procedure, one can make assumptions on the preference
structure. For example, one can assume additive independence (Keeney et al., 1979),
where the utility of an outcome is the sum of the utilities of the individual attributes of
the solution. In many problems, including coordination problems, this assumption
does not hold. Alternatively, one can use the conditional additive independence
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assumption (Boutilier et al., 1997, 2004), where the utility of certain attributes X are
independent of other attributes Y , given an assignment of attributes Z. Such relations
can, for example, be captured using a CP-net (Boutilier et al., 1997). In Combinatorial
Auctions, restrictions on the preference structure are introduced through the use of
bidding languages (Nisan, 2006). A bidding language restricts the types of bids a bidder
can make, thereby simplifying the elicitation process. Coordination problems are often
loosely coupled, meaning that dependencies occur only between subsets of all the
agents. This fits with the conditional additive independence assumption.

Assumptions on the preference structure generally reduce the number of queries that
are posed to the agents, but the question of which queries are used to elicit an agent’s
preferences is as important. The following types of queries can be distinguished:

• rank queries: “What is your second most preferred outcome?";
• order queries: “Is outcome A preferable over outcome B?";
• bound queries: “Is the utility of outcome A at least m?";
• value queries: “How much do you value outcome A?"

Recently, preference elicitation has received attention from the Constraint Program-
ming community (Lamma et al., 1999; Faltings and Macho-Gonzalez, 2005; Gelain
et al., 2010). Lamma et al. (1999) were the first to address the problem of elicitation in
a constraint satisfaction setting. Their goal, however, was to minimize runtime and
not the number of queries posed to the agents. Faltings and Macho-Gonzalez (2005)
introduced the concept of Open Constraint Optimization, where the solver is not as-
sumed to have full knowledge of the problem it is solving. Information is requested in
a best-first manner, i.e. only rank queries are used. In the case of optimization, they
report a two- to fivefold decline in the number of queries made to the local problem.
Gelain et al. (2010) looked at Soft CSPs with incomplete preferences. A branch and
bound approach to solving these problems is investigated, were who elicits what and at
what stage of the algorithm are parameters of the system. They show that, for weighted
CSPs, letting the user report preferences in a best-first order minimizes user effort. It
thus seems that reporting preferences in a best-first order does not only come naturally
to people, it also appears to result in efficient problem solving. Using the best-first
order, however, does come with a price. In (Brafman et al., 2010), the complexity of
finding the next best solution is investigated for different preference representations.
They show that for most problems, this is an NP-complete problem.

Coordination problems can be solved using social conventions (Shoham and Tennen-
holtz, 1992), learning (Stone and Veloso, 2000) or communication between agents.
Although each method comes with interesting problems, the scope of this Thesis is
limited to methods using communication. One of the first attempts to solve coor-
dination problems using communication is the Contract Net protocol (Smith, 1988;
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Sandholm, 1993). The Contract Net protocol is a negotiation-based approach and part
of the family of market-based mechanisms (Wellman, 1996). The inability of the Con-
tract Net protocol to backtrack decisions, however, makes it unable to guarantee the
optimal outcome. The Generalized Partial Global Planning (GPGP) protocol (Decker
and Lesser, 1995) is another instance of a negotiating protocol that allows agents to
coordinate their decisions. It consists of different modules, that deal with different
types of coordination needs. The DCOP framework fits well to the types of coordi-
nation problems described above. Many algorithms are designed to make use of the
conditional independency property, and the methods allow for agents to use their
own local solvers. In the next Section, a general model for coordination problems with
preferences is introduced.

3.1.1 DCOP Model of Coordination

We introduce a new DCOP model for coordination with preferences, where there
is a clear distinction between the coordination problem and the local problems of
the agents. We assume that the local problems are complex, both in their structure
(agents own multiple variables), and in solving them. As described in Burke and Brown
(2006), there are three main ways of dealing with local problems ranging over multiple
variables. One can decompose the problem, i.e. run a virtual agent for each variable.
One can compile the local problems by combing all variables belonging to a single
agent in one variable, or one can create a specialized algorithm. In this thesis, as
in most of the DCOP literature, we make use of the decomposition approach. The
main reason being that the compilation approach fails to scale to more complex local
problems. Furthermore, we are interested in developing a general framework for
coordination, in effect excluding the creation of a specialized algorithm for particular
instances.

It is important to note that we define the problem as a maximization problem. If
〈A,X ,Dep,Pref〉 is a coordination model, we assume the following structure on the
set of decision variables. Let j represent some coordination need, where such a need
can deal with some shared resource (computing time), task (delivering a packet in a
logistics problem), or common goal (a meeting), that agents need to coordinate over.
Then for every agent ai ∈ A, and every coordination need j it is involved in, there exists
a variable xji ∈ X , with Dj

i its domain. A mappingM from agents to a set of variables
it owns can be defined asM(ai) , Xi = {xji |ai is involved in j}.

As stated in Definition 6, dependencies determine sets of feasible, or allowed, outcomes.
In the DCOP framework, such dependencies can be modeled as constraints. If dj ∈ Dep
represents a coordination need j, thenCj : Dj

j1
×. . .×Dj

jm
7→ {0,−∞} is a function that

assigns 0 to feasible assignments, and−∞ to infeasible assignments. More formally,
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given xj = (xjj1 , . . . , x
j
jm

)

Cj(xj) =

{
−∞ if xj is not allowed according to dj ;

0 otherwise
(3.1)

The preferences of an agent ai can be represented with a utility function li, that ranges
over all variables that i owns.

li :
∏

xji∈M(ai)

Dj
i 7→ R (3.2)

A coordination problem with preferences can now be modeled as follows

Definition 7 (DCOP Model of Coordination). Given a coordination problem
〈A,X ,Dep,Pref〉, its DCOP model is given by 〈A,M,X ,D , C ∪ L〉where

• M(ai) , Xi = {xji |ai is involved in j};

• D , {Dj
i |D

j
i is the domain of xji ∈ X};

• C , {Cj |Cj represents the dependency dj ∈ Dep};

• L , {li|li represents the preferences pi ∈ Pref of agent ai ∈ A}.

The objective is to find a feasible assignment x that maximizes the sum of the preferences

f(x) ,
|C|∑
j=1

Cj
(
[x]Cj

)
+

|L|∑
j=1

lj
(
[x]lj

)
, (3.3)

In order to determine its preferences, every agent is in possession of a local solver. This
solver can take many different forms, but in general it will not be a complete solver,
i.e. it will not be able to find the exact preferences for every set of possible decisions
that the agent can take. Take as an example a logistics problem, where agents must
decide which packets to service. For each packet assignment, the agent has to solve a
vehicle routing problem in order to determine its utility. The vehicle routing problem
is NP-complete, and no local solver exists that will always be able to give the proper
utility, in a reasonable amount of time.

Gelain et al. (2010) showed that eliciting preferences in a best-first order minimizes
the user effort in terms of the amount of queries. At the same time, however, obtaining
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this best-first order is generally also an NP-complete problem. Any algorithm solving
coordination problems must thus be able to cope with incomplete solvers that are not
able to guarantee a correct best-first order. A simple way of dealing with this is the
following. Whenever a solver, while generating solutions in a best-first order, comes
across a solution that has a higher utility than the last utility reported, the utility of the
new solution is capped, i.e. the new solution gets the (lower) utility of the previous
solution. This introduces an error in the final solution. However, due to the additivity
of the global preference function, this error can be shown to be at most the sum of the
maximal caps1.

More formally, the error introduced can be characterized as follows. Let `i be the true
utility function for agent ai, and ˆ̀i its reported reported utility function. f =

∑
ai∈A `

i

is the true global utility function, and f̂ =
∑

ai∈A
ˆ̀i the reported global utility function.

Furthermore, let δi = maxx′ (`i(x′)− ˆ̀i(x′)) be the optimality gap for local problem of
agent ai.

Proposition 1. Let x∗ be the optimal solution and x the solution given the misreported
values. Then f(x∗)− f(x) ≤

∑
ai∈A δi.

Proof. First we show that f(x∗)− f̂(x∗) ≤
∑

ai∈A δi.

f(x∗)− f̂(x∗) =
∑
ai∈A

`i(x∗)− ˆ̀i(x∗) (3.4)

≤
∑
ai∈A

maxx′ (`i(x′)− ˆ̀i(x′))

=
∑
ai∈A

δi

We also have that

f̂(x∗) ≤ maxx′ f̂(x′) = f̂(x) ≤ f(x) (3.5)

Hence, from (3.4) and (3.5) we can conclude that

1Do note, however, that in the worst case the least good solution is generated first. This means that all
other assignments will be capped to this worst utility
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f(x∗)− f(x) ≤
∑
ai∈A

δi

The intuition behind Proposition 1 is the following. Whenever agents report informa-
tion from their local problems in a best-first order, the mistakes in the order made by
one agent do not influence the orders of other agents. Therefore, a mistake made by
one agent is not enhanced by the mistakes made by other agents. That is, a utility that
is misreported by δi, results in an error in the final solution that is at most

∑
ai∈A δi.

3.2 Coordination Benchmark Problems

In this section we introduce two Benchmarks problems, the Truck Task Coordination
(TTC) problem, and an adaption of the standard meeting scheduling problem. Both
problems have complex local problems, i.e. agents own multiple decision variables. In
addition, solving the local problems of TTC instances involve solving Vehicle Routing
Problems (VRP). Solving a VRP is know to be NP-complete. For each benchmark we
give a general definition, the DCOP model, and details on the local solver.

3.2.1 The Truck Task Coordination Problem

In the Truck Task Coordination problem, we take the perspective of a single company,
consisting of a group of couriers, dispersed over a geographical area. The problem
is an adaptation of the logistics problem introduced in (Ottens and Faltings, 2008).
Each courier has its own garage, from which it operates. Customers offer packets for
pickup and delivery to the company, but there are restrictions on which couriers are
allowed to service them: packets will only be offered to couriers whose garages are
within a certain range of the pickup and delivery locations. Furthermore, the range
of the couriers will also be limited. These two restrictions together make that not all
possible packet assignments are feasible. The main differences with standard VRP
problems (Toth and Vigo, 2001; Léauté et al., 2010) are that not all couriers are able
to service all packets and that the goal is to maximize utility, not to minimize driving
distance. Utility is defined as the payment obtained from delivering a set of packets,
minus the cost incurred by driving.

Definition 8 (The TTC problem). The Truck Task Coordination problem consists of a
map Map = 〈Cities,Roads〉with the cities in Cities dispersed over the euclidian plane
and Roads ⊆ Cities × Cities, a set of couriers T = {t1, . . . , tn} and a set of packets
P = {p1, . . . , pm}. The couriers and packets are dispersed over the different cities. Each
packet can only be offered to couriers whose garages are within customer range of the
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(a) the customer range (b) the courier range

Figure 3.1: Example of a TTC problem

packet’s home cities. Couriers are only allowed to accept packets if both the pickup and
delivery city are within courier range distance from the courier. The customer range is
the same for all packets, and the courier range is the same for all couriers. Each packet
has a weight, and couriers have a maximal capacity. For each weight unit delivered, a
truck receives a certain reward. The goal is to find an assignment that maximizes the
total utility of the system, while at the same time satisfying both the range and capacity
constraints.

An example of a problem instance can be found in Figure 3.1. Figure 3.1(a) shows the
couriers that lie in the range of the packets. In this particular example both packets
can be offered to only two out of three couriers. Figure 3.1(b), shows the courier range
of all couriers. In this particular example, all couriers can service all packets that they
are offered.

We assume that all couriers have private utility information, but are still cooperative, i.e.
they are willing to participate in the algorithm and will always tell the truth. However,
their utilities are assumed not to be known a priori. That is, the solver must query
the couriers for the utility of every combination of packet assignments individually.
The idea is that individual preferences depend not only on the profit obtained from
delivering packets, but also on the preferences of the individual couriers: they might
want to stop by a shop or want to have lunch in a certain restaurant. Such preferences
make the local problem of each courier hard to formalize; hence the assumption on
querying the user for all needed preference information. Note that what preference
information is needed highly depends on the solver at hand.
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DCOP Model

The TTC problem can be modeled as a DCOP problem, where every courier is an agent.
The decisions couriers have to coordinate over, are on who picks up which packet.
Following the DCOP model given in Definition 7, each packet pj ∈ P is a coordination
need. Let Pi ⊆ P be the set of packets that has been offered to courier ti, and Tj be the
set of trucks that are offered packet pj . Then for each courier ti and every packet pj
such that pj ∈ Pi and |Tj | > 1, ti owns a binary variable xji with domain Dj

i = {0, 1}. If
xji = 1, then ti will service packet pj , and if xji = 0 it will not service it. In the example
given in Figure 3.1, there are three couriers t1, t2 and t3. Packet p1 is the packet in
the bottom left, and is offered to t1 and t2 (T1 = {t1, t2}). Packet p2 is situated on the
upper right, and is offered to t2 and t3 (T2 = {t2, t3}). We have thus that, P1 = {p1},
P2 = {p1, p2} and P3 = {p3}. This gives us the variables x1

1, x1
2, x2

2 and x2
3.

Coordination is needed to ensure that no two trucks decide to deliver the same packet.
For each packet pj , this can be modeled using a set of binary constraints between
couriers. Given two couriers ti, ti′ ∈ Tj

Cji,i′(x
j
i , x

j
i′) =

{
−∞ if xji + xji′ > 1;

0 otherwise
(3.6)

The local utility of an agent depends on the set of packets it is assigned, and on the
route that it will take. The cost of the route is provided by the local solver, which is
detailed below. A packet assignment is infeasible if it either contains a packet whose
pickup or delivery city is outside of the courier range, or when the capacity constraint
cannot be met. This is indicated by setting the cost to∞. Only packets that are within
a certain distance are to be serviced. Let distance(ti, pi) = true when both the pickup
and delivery cities of packet pi are within courier range, and false otherwise. Then
ownPacketsi = {pi|distance(ti, pi) = true ∧ |Tj | = 1 ∧ wpi ≤ capacity} is the set of
packets that only courier ti can service, and coordinationPacketsi = Pi \ ownPacketsi
is the set of packets courier ti needs to coordinate over. For every delivered packet pi, a
courier gets paid αwpi , where wpi is the weight of packet pi and α is the payment per
unit weight, hence it is guaranteed a payment of pay =

∑
p∈ownPacketsi αwp.

li(ownPacketsi, x
j1
i , . . . , x

jm
i ) = pay +

m∑
k=1

xjki αwpjk − cost of the route (3.7)

where m = |coordinationPacketsi|. A DCOP model for the TTC problem is defined as
follows
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Definition 9 (DCOP Model for the TTC problem). A TTC problem (Map, T ,P) can be
modeled as 〈T ,X ,M ,D , C ∪ L〉, with

• X , {xji |ti ∈ T and pj ∈ Pi};

• M ,M(ti) = {xji |x
j
i ∈ X};

• D , {Dj
i |x

j
i ∈ X}with Dj

i = {0, 1};

• C , {Cji,i′ |pj ∈ P ∧ ti, ti′ ∈ Tj};

• L , {li|ti ∈ T }.

Problem Generation

Problems are randomly generated according to the following paradigm. First, a grid
of predefined size is created. On the grid cities are randomly dispersed. Then, a
network of roads between cities is grown by first selecting one city in the map, and then
iteratively adding the city closest to the graph. Next, a predefined number of couriers
is each assigned a unique starting city. Finally, the packets are randomly dispersed
over the cities, with randomly chosen destination cities.

Local Solver

Every time the optimization algorithm needs the utility of a certain variable assignment,
the local solver is queried. The local solver used for the TTC problem uses a local-
search algorithm with random restarts to determine the proper utility for a certain
packet assignment (Ottens and Faltings, 2008). A fair comparison between algorithms
is ensured by making the seed for the random generator used dependent on the set of
packets carried.

Generating the best-first order for this problem amounts to solving a VRP problem
for all possible packet assignments. Since this is not desirable, some assumptions are
made that make it easier to generate an order. The correctness of the order, however,
cannot be guaranteed. It is assumed that every packet delivery is profitable, and hence
that the most preferred option is to deliver all packets. Secondly, given the previously
released solution, new solutions are generated by removing a single packet from the
list of accepted packets. Utilities for all possible new solutions are calculated and put
in an ordered list. If a newly created solution is found to have a higher utility than the
last reported utility, the utility for the new solution is capped at this utility value.
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3.2.2 The Meeting Scheduling Problem

Meeting scheduling problems (Franzia et al., 2002; Maheswaran et al., 2003) have been
much used in the evaluation of DCOP methods (Maheswaran et al., 2003; Petcu and
Faltings, 2005a; Yeoh et al., 2010). In a meeting scheduling problem, a group of people
needs to schedule meetings amongst themselves in such a way that no agent has two
overlapping meetings, while maximizing the sum of the preferences of the different
agents. The meeting scheduling problem has been intensively studied in the literature.
In (Abdennadher and Schlenker, 1999; Bakker et al., 1993), the problem is modeled
as a CSP, and solved using centralized methods. Sen (1997) uses the Contract Net
protocol to find a schedule that satisfies all availability constraints of the participating
agents. However, commitment to a certain schedule might result in some meetings not
being scheduled even though in principle they could have been scheduled. Garrido
and Sycara (1995) introduce a different negotiation approach that does not only take
the availability constraints of different agents into account, but also tries to find a
meeting time that best satisfies the agents’ preferences. However, their system is only
able to deal with one meeting at a time and is not able to guarantee a schedule when
multiple meetings are to be scheduled. Franzia et al. (2002) also use negotiation to find
a meeting time, but again only focus on single meetings with multiple agents. Hassine
et al. (2004, 2005) are able to deal with multiple meetings, using the Distributed Rein-
forcement of Arc Consistency (DRAC (Hassine and Ghédira, 2002)) approach. In their
approach, each meeting is instigated by a single agent, but only this agent’s preferences
are maximized when finding a meeting time, thus ignoring the preferences of the other
participants. Their global objective is thus different from ours.

In the DCOP literature, all models used for DCOP evaluations of meeting scheduling
problems have either ignored the preferences of individual agents, or deemed them
trivial to obtain. As in the TTC problem defined above, in general this is not the case.
People’s preferences can depend on where they live, i.e. how far they need to travel,
whether they have private engagements or simply a preference on the morning or
the afternoon. All models found in the DCOP literature model the preferences as
preferences over single meetings, where there is no dependency between the meetings.
In this Chapter we extend this to allow agents to have preferences over combinations
of meetings.

DCOP Model

Let A = {a1, . . . , an} be a set of agents, and M = {m1, . . . ,mk} the set of meetings.
Let Aj = {ai1 , . . . , ain(j)} be the set of agents that participate in the meeting mj , and
Mi = {mj |ai ∈ mj} be the meetings that agent ai participates in. Furthermore, there
are nT different time slots available for each meeting. The agents need to agree on a
meeting time for each meeting. Hence each agent ai has a variable xji for each meeting

38



3.2. Coordination Benchmark Problems

mj it participates in. The need for agreement between agents can be modeled using
an equality constraint.

Cki,j(x
k
i , x

k
j ) =

{
0 if xki = xkj ;

−∞ otherwise
(3.8)

Each agent has a preference over different meeting schedules. When dealing with real
people, preferences for different meeting times depend on which meeting is held when.
We want to capture that dependency while not making the model too involved. Each
agent ai has a most preferred time, Ti, at which it wants to schedule its meetings. Its
goal will be to minimize the total distance between its most preferred time and the
actual meeting times. We can thus define its preference function as

li(xi) =

{
−∞ if ∃xki , xk

′
i s.t. k 6= k′ ∧ xki = xk

′
i

α
∑|Ai|

k=1[di − |Ti − xki |] otherwise
(3.9)

where di = max(Ti, T − Ti) is the maximal distance to the most preferred time, and

xi = (x
ji1
i , . . . , x

j|Ai|
i ) a meeting schedule. Note that an agent will not accept any

schedule in which two different meetings it participates in have the same slot.

A DCOP model for the meeting scheduling problem is defined as follows

Definition 10 (DCOP Model for the Meeting Scheduling Problem). A meeting schedul-
ing problem 〈A,M〉 can be modeled as 〈A ,X ,M ,D , C ∪ L〉, with

• X , {xji |ai ∈ A and mj ∈Mi};

• M ,M(ai) = {xji |x
j
i ∈ X};

• D , {Dj
i |x

j
i ∈ X}with Dj

i = {1, . . . , T};

• C , {Cki,j |mk ∈M ∧ ai, aj ∈ Ak}

• L , {li|ai ∈ A}

Problem Generation

The problem generator as used in FRODO (Léauté et al., 2009) takes as input a number
of agents, a number of meetings, the number of agents per meeting and the number of
slots nT . The meetings are then randomly generated, as also the preferred time of each
agent.
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Local Solver

The local solver used in our experiments is able to generate a best-first order on the
possible schedules for a single agent without generating all possible schedules before
hand. Given a schedule, one can count the number of meetings with a certain distance.
For example, given a schedule m1 = 4,m2 = 3,m3 = 7, with in total 7 available slots
and 3 the most preferred meeting time, its count is [1, 1, 0, 0, 1], i.e. one meeting with
distance 0 (m2), one meeting with distance 1 (m1) and one meeting with distance
4 (m3). Such a count can be seen as a schedule template. All schedules satisfying
the same template have the same preference value. Given such a template, a new
template with a lower preference value can be generated by moving one meeting to
a slot with a bigger distance. Given the template [1, 1, 0, 0, 1], a possible successor is
[0, 2, 0, 0, 1]. One can define a lexicographic ordering over possible schedule templates
that ranges from left to right, i.e. the more meetings close to the preferred time the
better. Each template t has a value val(t), that indicates how far away the slots are from
the preferred slot. The value of a template t is defined as val(t) =

∑|t|
i=1 i× ti. The form

of a template is restricted. For example, there can be only one slot with distance 0, i.e.
the most preferred slot. Then, depending on the position of the most preferred slot, all
the other entries in the template have an upper bound of either 1 or 2. For example,
if there are 7 possible slots, and the most preferred time is 3, then the upper bounds
on the values of the entries is given by m = [1, 2, 2, 1, 1]. A successor succ(t) of t can be
defined as any template t′ such that val(t′) = 1 + val(t), ∀i ∈ (1, |x|) ti ≤ mi and there
is only one i such that t′i = ti − 1 and t′i+1 = ti+1 + 1.

Definition 11 (Template Generation). Starting from the template with the lowest value,
a sequence of templates t1, . . . , tk can be generated as follows. Given a template t, gener-
ate all templates such that t′ = succ(t) and ∀t′′ s.t. t′ = succ(t′′) it is the case that t � t′′

and add them to the sequence.

Proposition 2. Let t1, . . . , tm be a sequence of templates generated as described in Defini-
tion 11. Then the sequence satisfies ∀i 6= j : ti 6= tj and ∀i, j : i > j → val(ti) ≥ val(tj).

Proof. First, we prove the claim that each template occurs only once in the sequence.
Towards a contradiction, let ti , tj be the first templates such that ti = tj , while i 6= j.
Let t′i and t′j be such that ti (tj) is generated by t′i (t′j). Then by definition t′i 6= t′j ,
∀t′′ ∈ X : ti = succ(t′′) → t′i � t′′ and ∀t′′ ∈ X : tj = succ(t′′) → t′j � t′′. From this it
follows that t′i = t′j , hence ti 6= tj .

To prove that the templates are generated in the correct order, assume, towards a
contradiction, that ti and tj , with i > j, are the first templates such that val(ti) <
val(tj). Let ti (tj) be generated by t′i (t′j). Since i > j, it must by assumption be that
val(t′i) ≥ val(t′j). Since val(ti) = val(t′i) + 1 and val(tj) = val(t′j) + 1, we have that
val(ti) ≥ val(tj). Hence the templates are generated in the correct order.
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For each template, the schedules that satisfy the template can be generated in any order,
while still generating schedules in a best-first order given the preference function (3.9).
Furthermore, generating schedules in a best-first order can be done cheaply

Proposition 3. Generating a sequence t1, . . . , tm of templates as done in Proposition 2
can be done inO(md), where d = |m|.

Proof. Given a template t, generating its successors is done by iterating over all posi-
tions in the template, shifting a used slot one place to the right (if possible), and then
checking whether no smaller template could have generated this successor. This takes
2d steps at most. This must be done for each template in the sequence, arriving at
complexity ofO(md)

3.2.3 Contract Net Protocol

The Contract Net protocol (Smith, 1988) has been used extensively to solve coordi-
nation problems. We use the Contract Net protocol to solve the TTC problem as
introduced in Section 3.2.1.The Contract Net protocol is a coordination protocol for
distributed task allocation. Simply put, agents can propose tasks, and other agents can
bid for performing such tasks. In our experiments, we modeled the problem using two
types of agents. Every task (or customer) and courier is represented by a single agent. A
customer offers its task to all couriers within customer range. Upon receiving an offer,
a courier calculates its marginal utility for accepting the task using the local solver
introduced in Section 3.2.1, and reports the marginal utility as its bid. The customer
then gives its task to the courier with the highest bid.

3.3 Experimental Evaluation

The main goal of the experiments presented in this section is to investigate the in-
fluence of non-trivial local sub-problems on the performance of different DCOP al-
gorithms. We use three different benchmarks: the TTC problem and the meeting
scheduling problem introduced in Section 3.2, and the graph coloring problem.

The TTC problem involves complex local problems that are non-trivial to solve. The
meeting scheduling problem deals with complex local problems that are easy to com-
pute, while the graph coloring problem is a standard algorithm used in DCOP evalua-
tions. To simulate the non-triviality of the local problems for meeting scheduling, we
run the same algorithms with no penalty and a 30 second penalty per query to the local
solvers. Performance is measured using both simulated time (Sultanik et al., 2007)
and Non Concurrent Constraint Checks (NCCC) (Gershman et al., 2006b) as also the
amount of information exchanged. Because our experiments run on a single machine,
looking at the total runtime of the algorithm does not provide a good picture of the
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actual distributed performance of the algorithms. This is due to the fact that operations
that can be performed in parallel in a distributed run, cannot be performed in parallel
when run on a single machine. Hence the total run time on a single machine will be an
overestimation of the distributed runtime. For the NCCC count, only queries to the
local solver are counted. Queries of the coordination constraints are assumed to be
trivial and are thus ignored. Furthermore, due to the non-optimality of the local solver,
the assumptions made for the local solver used in O-DPOP and the non-completeness
of the local-search approaches, the solution quality should be compared as well. DPOP,
O-DPOP, SynchBB, AFB, ADOPT, DSA, MGM and MGM2 are evaluated on different
types of problems. In addition, for the TTC problem we also evaluate the Contract Net
approach2.

3.3.1 Experimental Setup

For the TTC experiments we used a map size of 1000 x 1000, 100 cities and 10 couriers.
The number of packets was set to 40. Each courier has a capacity of between 4 and
10 weight units, while each packet weighs between 1 and 4 units. Both the customer
range and the courier range have been taken from {300, 310, 320, 330, 340, 350, 360, 370}.
Lower ranges resulted in trivial problems while higher ranges make the problems
too complex. The reward for delivering a package is either 200 or 500. For each
combination of parameters, 99 instances have been created.

For the meeting scheduling problem, we created problems with 30 agents, between 10
and 16 meetings and 3 agents per meeting. The scaling factor αwas set to 100. For each
parameter value, 99 instances have been generated. In order to evaluate the influence
of having a non-trivial local problem, we run the algorithms both with a 30 second
penalty per constraint check of the preference constraints, and without a penalty.

For the graph coloring problem, we used a 3-coloring problem with the number of
nodes taken from {10, 12, 14, 16, 18, 20, 22, 24}, and a density of 40%(i.e. the number
of edges is 40% of the maximal number of edges). Again, 99 instances have been
generated for every number of nodes.

The local-search algorithms do not have a termination condition, but are given a
number of rounds. However, to have a fair comparison we gave them as much time
as O-DPOP. Furthermore, local-search algorithms operate poorly in the presence of
hard constraints. Hence, for the local-search algorithms, every hard constraint that is
violated results in a penalty instead of−∞ utility.

For every evaluation metric used, we plot the median value together with 95% inter-
vals. All algorithms have been written in Java, and have been implemented in the

2The Contract Net approach does not fit well in either the meeting scheduling and graph coloring
domains
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FRODO (Léauté et al., 2009) framework. Contrary to the implementation used in (Sul-
tanik et al., 2007), the FRODO implementation uses a single queue, where all messages
are ordered using timestamps. Messages are released one by one (as opposed to batch),
and the next message is released only after the previous message has been processed
by the relevant agent. All experiments have been run on a 64 core Intel xeon 3 Ghz
machine running linux, and each run was allocated 2 Gb of internal memory. Each run
was given a time-out of 30 minutes.

Not all algorithms have been able to find a solution for all problems. Therefore, Fig-
ures 3.2, 3.3 and 3.4 show, for each of the algorithms and each type of problem, the
number of feasible solutions that have been found. From the figures, you can see
that SynchBB, AFB and ADOPT solve only very few instances on the TTC and meeting
scheduling problems, and hence they are omitted from the rest of the analysis of these
problems. On the graph coloring problems their performance is better, and they are
thus still included. Also note that the Contract Net is able to find a solution for all TTC
instances. This is because the Contract Net requires only a single query to the local
problem per packet, and thus never runs into the time out. However, as we will see
later, in terms of the solution quality, the Contract Net does not perform well for all
problems.

3.3.2 Solution Quality

Figure 3.5 shows the difference in solution quality between the optimal solution and
the found solution for the TTC problem, where we use the solution found by the
complete algorithm DPOP as a reference point. We show the results for a courier range
of 300 and 330. It turns out that when the unit reward is set to 500, even with capping
utility values, O-DPOP is able to find the optimal solution. MGM, MGM2 and DSA
perform worse. Interestingly, MGM is consistently better than DSA, while MGM2 is
only able to find solutions for the smaller problems. For the problem instances with
a reward of 500, the Contract Net finds solutions that are of the same quality as the
local search algorithms, while its performance for instances with a reward of 200 is
significantly worse. The main cause of this is the value for the reward. If this value is
higher than the costs that an agent incurs by delivering a package, this reward is the
dominating factor in the final quality of the solution. Figure 3.5(c) and 3.5(d) show
the solution quality for a unit reward of 200. One can clearly see that in this case the
Contract Net algorithm performs worse than the local-search algorithms. Interestingly,
O-DPOP is not able to find the optimal solution when the reward is 200. Remember
that the local solver generates assignments under the assumption that more packets is
always better. However, with a action radius of 300/330, resulting in a maximal cost
of 600/660, a reward of 200 makes that some packages are too expensive to deliver.
Hence, the "the more the better" assumption does not hold anymore and the local
solver used by O-DPOP is not able to generate a correct best-first order.
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(b) TTC problem
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(c) TTC problem
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(d) TTC problem
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(e) TTC problem
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(f) TTC problem

Figure 3.2: Percentage of solutions found (1).
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(b) TTC problem
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(c) Meeting scheduling problem
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(d) Meeting scheduling problem
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(e) Meeting scheduling problem
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(f) Meeting scheduling problem

Figure 3.3: Percentage of solutions found (2)
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(a) Graph coloring problem
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(b) Graph coloring problem

Figure 3.4: Percentage of solutions found (3)

The local-search algorithms do not perform well on the meeting scheduling problems.
From Figures 3.3(c), 3.3(d), 3.3(e) and 3.3(f), one can see that the local-search algo-
rithms are not able to find a feasible solution to most of the problems, when given the
same amount of time as O-DPOP. Furthermore, it holds for all algorithms that the more
meetings there are, the fewer problems they are able to solve given either the available
memory or the available time. Do note that this drop is more severe for DPOP than for
O-DPOP. Since the local-search algorithms cannot find a solution for most problems,
Figures 3.6(a) and 3.6(b) show, for the local problems, the median solution quality
over the solved problems. Their median solution quality is significantly lower than the
optimal utility found by O-DPOP and DPOP. The slight drop for DPOP is caused by
the inability for DPOP to solve most of the larger problems. Note that it was possible
for O-DPOP to generate the accurate best-first order, and hence it always finds the
optimal solution.

When looking at the results for the graph coloring problem (Figure 3.7), the advantage
of MGM2 over MGM and DSA becomes clear. While DSA and MGM consistently find a
sub-optimal solution, MGM2 is able to find the optimal solution most of the time.

3.3.3 Runtime

Figure 3.8 shows the simulated runtime results in ms for the TTC problem. It is clear
that the Contract Net algorithm is very efficient in terms of runtime. O-DPOP runs con-
sistently faster than DPOP. We do not show the runtime for the local-search algorithms
because they were allocated the same amount of time as O-DPOP.

While the customer range influences the number and size of the constraints of the
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Figure 3.5: Distance to the optimal solution for the TTC problem

problem, the courier range influences the amount of coordination needed. The higher
the courier range, the more coordination is needed. This is illustrated by the runtimes
incurred by O-DPOP. The median runtime for a courier range of 330 is higher than
the median runtime for a courier range of 300. Interestingly, the runtime for DPOP is
also higher with a higher courier range, despite the fact that there is no change in the
constraint graph or the size of the UTIL messages. A higher courier range means that a
courier is able to accept more packages, which in turn means that a bigger part of its
local problem is feasible. Therefore, even though nothing changes in the constraint
structure of the problem, DPOP needs more time when it is faced with a higher courier
range. It simply needs to query a bigger part of its local problem, and thus solve more
non-trivial local problems.
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Figure 3.6: Solution quality for the meeting scheduling problem
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Figure 3.7: Solution quality for the graph coloring problem

Figure 3.9 shows the simulated runtime results for the meeting scheduling problem.
Already with no penalty for querying the local problem, O-DPOP scales better than
DPOP, and this effect is only enlarged when the penalty increases. Figure 3.9(c) shows
that when there is no complex local problem, the DPOP algorithm significantly out-
performs O-DPOP. In the graph coloring problem, an assignment either satisfies a
constraint or not. There are thus no preferences, and O-DPOP is not able to take
advantage of the best-first order. SynchBB and AFB perform similar to DPOP, although
DPOP is a bit faster. ADOPT is only able to solve instances up to 16 nodes, and thus
does not scale to bigger problems.
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Figure 3.8: Simulated time in ms for the TTC problem

3.3.4 Preference Elicitation

The number of times a local problem is queried is captured by the NCCC measure. It
measures the non-concurrent number of queries to the local problem. Figures 3.10, 3.11
and 3.12 show the results for the TTC problem, the meeting scheduling problem and
the graph coloring problem. When looking at the TTC problem, notice that the Con-
tract Net algorithm, where every agent needs to query its local problem only once per
packet it is offered, shows a very low number of preferences elicited. Compared with
the other algorithms, O-DPOP consistently performs the smallest number of queries to
the local solver. Interestingly, the difference between O-DPOP and the other algorithms
is greater for the instances with a reward of 200. This is because, with a reward of 200
the best-first order is not guaranteed any more, and O-DPOP thus believes it needs to
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Figure 3.9: Simulated time in ms for the meeting scheduling problem (a, b, c) and the
graph coloring problem (d)

collect less information from the trucks than it actually would have to.

The courier range determines the amount of coordination needed, i.e. the higher
the courier range, the more possible conflicts. This can be seen from the behavior of
O-DPOP. For a small courier range, the locally optimal solutions are more likely to be
globally optimal. Thus for smaller courier range, O-DPOP will need to go through a
smaller number of local solutions. Interestingly, although the local-search algorithms
had the same amount of time as O-DPOP, they perform a higher number of constraint
checks. Of the local-search algorithms, MGM2 performs the most number of constraint
checks.
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Figure 3.10: NCCC count for the TTC problem(1)

That incremental elicitation results in a smaller number of queries to the local problem
can clearly be seen from the graph coloring and meeting scheduling results. For
both problems, O-DPOP needs significantly less constraint checks to find an optimal
solution. The reason that the runtime for O-DPOP is still higher than DPOP for the
graph coloring problems is that O-DPOP needs to generate a best-first order. In the case
of the graph coloring problem, this has to be done by ordering all possible assignments,
giving O-DPOP a bigger overhead than DPOP. ADOPT performs a much larger number
of NCCCs than all the other algorithms, while AFB, SynchBB, DPOP and the local
search algorithms perform equally well.
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Figure 3.11: NCCC count for the TTC problem(2)

3.3.5 Messages and Information

Finally, when looking at the amount of information transmitted by the different algo-
rithms, there is not much difference between them for the TTC problem(Figures 3.13
and 3.14). Interestingly, despite the fast runtime and the low number of constraint
checks for the Contract Net, it still sends an amount of information that is similar to
the other algorithms. For the meeting scheduling problem, it is interesting to note that
O-DPOP and DPOP send the same amount of information, even though the number of
NCCCs is much smaller for O-DPOP. This is due to the fact that O-DPOP must transmit
not only the utility of an assignment, but also the assignment itself. The local-search
algorithms transmit less data when the local problem takes more time, because they
have time for fewer rounds. The spike in the information transmitted by DPOP for the
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Figure 3.12: NCCC count for the meeting scheduling and graph coloring problems

meeting scheduling problems is due to the time out.

3.4 Conclusions

Coordination problems are ubiquitous in today’s world. They come in many different
shapes and forms, and there exist as many different ways of solving them. This Chap-
ter deals with coordination problems that can be captured using constraints, both
constraints between agents, but also internal constraints of the agents themselves.

Negotiation methods, like the Contract Net, have been designed to solve such problems.
However, the Contract Net is only applicable in situations where there are services
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Figure 3.13: Amount of information sent for the TTC problem(1)

on offer. A task allocation setting is thus well suited for the Contract Net, or other
market-based approaches for that matter. In scheduling settings, however, it is not
clear who should offer what, and who bids for what. Hence, market-based approaches
are not well suited for such domains.

We have shown that the DCOP paradigm provides an intuitive model for coordination
problems. DCOP algorithms, however, have been designed with trivial local problems
in mind. Agents that participate in coordination problems generally have non-trivial
local problems. This Chapter investigated the behavior of existing DCOP methods
when confronted with such non-trivial local problems. We have introduced the TTC
problem, where each local problem is a vehicle routing problem, and evaluated a range
of both complete and incomplete algorithms. Furthermore, we also evaluated the
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Figure 3.14: Amount of information sent for the TTC problem(2)

same set of algorithms on meeting scheduling problems and graph coloring problems
that are traditionally used for DCOP evaluation. The difficulty of solving local problems
was simulated using a penalty for querying the local problem.

Previous work has shown that, in a centralized setting, using incremental elicitation of
preferences, i.e. reporting of preferences in a best-first order, results in efficient solving
of problems with preferences. The experiments on meeting scheduling problems and
graph coloring problems show that, when preferences are introduced in a DCOP setting,
the O-DPOP algorithm, which uses incremental elicitation, significantly outperforms
both complete algorithms in terms of runtime, and local-search algorithms in terms of
solution quality. In many problems, however, obtaining a best-first order is not trivial.
In the TTC problem, as introduced in Section 3.2.1, for example, generating the correct
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Figure 3.15: Amount of information sent for the meeting scheduling and graph coloring
problems

best-first order requires solving a VRP problem for each possible packet assignments.
Making some assumptions on the order of solutions, we introduced a local solver that
was able to efficiently generate solutions, albeit not in a guaranteed best-first order.
Experiments showed that O-DPOP, using incremental elicitation, outperformed other
complete algorithms in terms of runtime, while still finding solutions that are close to
optimal and significantly better than solutions found by local-search approaches.
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4 DUCT: A UCB-based Sampling
Method

Existing search algorithms for solving DCOPs systematically go through the search
space, focussing on promising parts of the search space until they are certain that no
good solution can be found in that part of the space. This can, however, lead to an
exhaustive search. In searching for an optimal solution, it is thus important to have a
good balance between exploration of unseen parts of the search space, and exploitation
of already seen solutions. In this chapter, we introduce an algorithm that attempts to
do just that. The approach is inspired by the confidence-based approaches from the
multi-armed bandits literature. A natural starting point is the UCB algorithm (Auer
et al., 2002) and its variants for tree-structured problems, such as UCT (Kocsis and
Szepesvári, 2006) and HOO (Bubeck et al., 2011). Such algorithms have been shown to
be very successful in playing Go (Gelly and Silver, 2005). These algorithms, as well as
the confidence bounds they use, assume stochasticity and smoothness. While this is
not the case in our setting, we nonetheless show that UCB-based search on DCOPs not
only significantly outperforms local-search in terms of solution quality, but is also able
to provide good feasible solutions for problems where optimal methods (in particular,
DPOP) are too complex. In addition, we provide a theoretical analysis of the proposed
algorithm, based on weak assumptions on the problem structure.

We first introduce a simple sampling algorithm, that randomly chooses paths in the
search space. Based on the random sampling algorithm, we then introduce a new
bound-based sampling algorithm that attempts to provide a good balance between
exploitation and exploration. We use bounds on the solutions seen so far, that are
inspired by the Hoeffding bound (Hoeffding, 1963) as used in the UCB algorithm. The
Hoeffding bound can be used to bound the probability that the difference between a
set of observations and its mean is smaller than some error. The bounds are then used
to determine when the algorithm can terminate, i.e. when the error is small enough.
Although the assumptions underlying the Hoeffding bound do not necessarily hold in
our setting, experiments show they still give a good indication of when to terminate.
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Figure 4.1: The constraint graph for f1(x1, x2, x3) + f2(x2, x4) and one of its possible
pseudo-trees
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Figure 4.2: And AND/OR graph with ∀iDi = {0, 1}

To the best of our knowledge, no previous work uses sampling and confidence bounds
for solving DCOPs. However, sampling has been used for solving both Constraint
Satisfaction Problems (CSP) (Gogate and Dechter, 2003) and Quantified CSPs (Satomi
et al., 2011). Furthermore, in (Léauté and Faltings, 2011b) sampling is used as a
preprocessing method when dealing with stochastic problems, while (Stranders et al.,
2012) introduces MAB-DCOPs, where stochasticity in a utility function is modeled as a
multi-armed bandit. They introduce the HEIST algorithm, which uses a UCB inspired
bound to minimize the expected regret.

The rest of this Chapter is organized as follows. Section 4.1 explains confidence bounds
and describes the DUCT algorithm. Complexity results are given in Section 4.2, the
experimental evaluation can be found in Section 4.3 and Section 4.4 concludes.
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4.1 Distributed UCT

The problem of solving a DCOP is NP-complete. Thus, although complete methods
work well for small, well structured problems, they will break down when problems
become too big. As we have seen in Chapter 2, the main objective when solving a
DCOP is to optimize a global function f . This function f is decomposable in a set
of factors, i.e. f , f1 + . . . + fm, allowing for a concurrent search of separate parts
of the problem. The structure of the search space can be captured by an AND/OR
graph (Dechter and Mateescu, 2004). Such a graph consists of alternating AND nodes
and OR nodes, where OR nodes represent alternative solutions to the problem, and
AND nodes represent a problem decomposition. Given a constraint graph and a
possible pseudo tree (Figure 4.1), a corresponding AND/OR graph of the pseudo-tree
is shown in Figure 4.2, with the squares and circles representing AND and OR nodes
respectively. Note that since the subproblem rooted at x4 does not depend on the
value of x1, we merge the two subgraphs corresponding to x1 = 0 and x1 = 1 into a
single subgraph. A path represents an assignment to all variables. At AND nodes, the
path branches to all the children, while at an OR node, the path chooses only a single
child. The bold lines in Figure 4.2 constitute a path, and represent the assignment
{x1 = 0 , x2 = 1 , x3 = 0 , x4 = 1}.

To prevent confusion between the pseudo-tree and the AND/OR graph, nodes in the
pseudo-tree are from here on called agents, while nodes in the AND/OR graph are
nodes. The algorithm described in this chapter is designed for minimization problems,
but can easily be converted to work for maximization problems.

4.1.1 Random Sampling: The RANDOM algorithm

DCOP search algorithms, such as ADOPT, operate by sending context messages down
the pseudo-tree. A context is an assignment to all the variables in the receiving vari-
able’s separator. Each constraint is enforced by the lowest priority variable that partici-
pates in the constraint. Based on the received context, variables check the constraints
that they enforce, systematically choose a value for themselves, and in this way explore
the search space. A different, but simple, approach would be to randomly sample the
search space. Lets call this algorithm RANDOM. A description of the algorithm can be
found in Algorithm 6.

The root agent starts sampling by randomly selecting a value for its variable, and
sending a CONTEXT message containing this variable assignment to all its children.
Every time an agent k receives a CONTEXT message, containing a context a, it randomly
chooses a value d ∈ Dk for its variable, appends this to a, and sends this enlarged
context to its children using a CONTEXT message. This process stops when the leaf
agents are reached. At this time, the algorithm has selected a path through the AND/OR
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tree. Based on the received context a, the leaf agents now calculate the minimal value
the sum of the constraints they enforce can take:

ytk = min
d∈Dk

`k(a, d) (4.1)

where t denotes that this is the t-th sample taken by agent k, and `k(a, d) is the sum of
the values of the constraints enforced by agent k. ytk is sent up the path using a COST
message. Every subsequent agent calculates its own COST message using the following
equation:

ytk = `k(a, d) +
∑

k′∈childrenk

ytk′ (4.2)

Here childrenk denotes the children of agent k. The cost is thus the sum of the samples
reported by its children plus the value of its local problem.

4.1.2 Termination

As a DCOP is distributed, a local termination condition is necessary. To this end, each
agent k stores, for each context a it has received, the best value for yk it has seen so far.
More formally, let atk be the context received by agent k at time t, and xtk be the value
chosen by agent k at time t, then each agent stores the following:

• µ̂ta,d: the lowest cost found for value d under context a:

µ̂ta,d , min
{
ylk

∣∣∣ l ≤ t : alk = a, xlk = d
}
, (4.3)

• µ̂ta: The lowest cost found under context a, µ̂ta , mind µ̂
t
a,d and the value with the

lowest cost d̂a , arg mind µ̂
t
a,d

An agent terminates, when the difference between the expected optimal solution
and the currently found best solution is ’small’ enough. In order to determine this
difference, a bound very similar to the Hoeffding (Hoeffding, 1963) bound is used. It is
stressed, however, that this bound is used heuristically. The Hoeffding bound can be
used to bound the error on the mean of a set of observations. Given n observations,
with probability 1− δ an upper bound on the is given by√

ln2
δ

n
(4.4)

Experiments have shown that this bounds also performs well in a DCOP setting. Hence,
taking as n the number of times a value has been sampled under a context a, repre-
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sented by

• τ ta,d: The number of times value d has been selected for variable xk under context
a:

τ ta,d ,
t∑
l=1

I
{
alk = a ∧ xlk = d

}
(4.5)

an agent k now terminates when the following two conditions are met:

• Its parent has terminated (this condition trivially holds for the root agent);

• The following equation holds for the last context a reported by its parent:

max
d∈Dk

µ̂ta − (µ̂ta,d −

√
ln2

δ

τ ta,d
) ≤ ε (4.6)

where ε and δ are parameters of the algorithm. Equation (4.6) holds when the
biggest gap between the currently best value and the minimal lower bound on all
values is smaller than ε. Note that, although the square root term has the form of
a Hoeffding bound, it is used here heuristically.

When an agent k terminates, it adds xk = d̂a to the context a, and sends a F-CONTEXT
message to its children, to signal its termination. Note that, since τ ta,d always increases,
the algorithm is guaranteed to satisfy this condition in a finite number of steps. After an
agent has terminated, its children continue sampling until their termination condition
is met. By setting its value to d̂a, upon termination the agents have reconstructed the
best global assignment seen so far.

4.1.3 Normalization

The above assumes that the range of the global cost is [0, 1]. In general DCOP problems
this is not the case. Hence a normalization procedure must be carried out beforehand.
An upper bound on the global cost can be found by summing up all the maximal values
of all the individual local cost functions. This can be done in a bottom-up procedure,
where each agent determines the highest value for its local problem, adds this value
to the sum of the values received by its children, and then reports the new value to
its parent. As soon as the root of the pseudo-tree has received this upper bound, UB,
every local constraint is shifted to the left by subtracting its minimal value, and then
divided by UB using a top-down procedure to disseminate the upper bound to all the
agents.
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4.1.4 Hard Constraints

Hard constraints, where there is some infeasible setDI ⊂ D such that ∀x ∈ DI f(x) =

∞ cause problems in two ways. Firstly, they break the normalization procedure. Sec-
ondly, the infeasible parts of the space should not be sampled.

The most straight-forward solution to both problems is to adjust the cost function
such that all costs remain finite, while ensuring that f(x) < f(x’) for every x /∈ DI ,
x′ ∈ DI , i.e. feasible assignments have lower cost than infeasible assignments. How-
ever, normalization will squeeze the set of feasible costs into a small range, making
optimization harder. As we verified experimentally, replacing infeasible costs with a
penalty resulted in the algorithm minimizing constraint violations instead of looking
for good feasible solutions.

A more promising approach is to use the infeasibility information to prune the search
space. For this reason, firstly we only normalize so that f(x) ∈ [0, 1] for x /∈ DI .
Secondly, all infeasible parts ofD are ignored as soon as their infeasibility is evident,
and a search for the next feasible solution is started. Infeasible assignments can easily
be recognized by the variable that enforces the infeasible constraint. Thirdly, when
a node a does not have an infeasible local problem, but all its children reported to
be infeasible, a is considered to be infeasible as well. The resulting sampling method
(see Algorithm 7) randomly draws elements from Dk until it has found a feasible value.
Furthermore, lines 28-31 of Algorithm 6 detail that when a child reports an infeasible
value, the value of the local problem corresponding to the current context a and the
sampled value is set to∞, after which a new (feasible) value is chosen and reported to
the children.

4.1.5 Confidence Bounds: The DUCT algorithm

When an agent receives a context, one can say the search algorithm has reached an OR
node in the AND/OR graph. In RANDOM, the next branch (variable value) on the path
to the leaf nodes is chosen randomly. However, we could instead focus the search on
more promising choices. One way to do that is by constructing a confidence bound
B such that the best value for any context is at least B, and sampling the choice with
the least bound. In fact, the problem each OR node faces is similar to a multi-armed
bandit problem, for which confidence-bound-based algorithms such as UCB (Auer
et al., 2002) are nearly optimal solutions. UCB has been extended to tree-structured
domains in the form of the UCB on trees (UCT) algorithm (Kocsis and Szepesvári, 2006)
and its variants BAST (Coquelin and Munos, 2007) and HOO (Bubeck et al., 2011). The
main assumptions in the UCT variants are that the space is metric, the cost function
is stochastic and its expected value satisfies a Lipschitz smoothness condition with
respect to the metric. Our setting is quite dissimilar, mainly because it is hard to justify
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Algorithm 6: SAMPLING algorithm for variable k

1 initialization
2 if root then
3 parentFinished = true;
4 else
5 parentFinished = false;

6 when received(CONTEXT(a)) from parent
7 if variable k is a leaf node then
8 `min = mind∈Dk `

k(a, d);
9 send(parent, COST(`min, `min))

10 else
11 d = sample(a, k);
12 for each child k′ do
13 send(k′, CONTEXT(a ∪ {xk = d}))

14 when received(F-CONTEXT(a)) from parent
15 parentFinished = true;
16 if Eq. (4.6) satisfied then
17 for each child k′ do
18 send(k′, F-CONTEXT(i ∪ {xk = d̂a}))
19 else
20 d = sample(a, k);
21 for each child k′ do
22 send(k′, CONTEXT(a ∪ {xk = d}))

23 when received(COST(ytk′), Bt
k′,) from child k′

24 if received cost message from all children then
25 if parentFinished ∧ Eq. (4.6) satisfied then
26 for each child k′ do
27 send(k′, F-CONTEXT(i ∪ {d̂i}))
28 else if parentFinished ∨ ytk =∞ then
29 if ytk =∞ then
30 `k(a, atk) =∞;
31 d = sample(a, k);
32 for each child k′ do
33 send(k′, CONTEXT(a ∪ {xk = d}))
34 else
35 send(parent, COST(ytk, Bt

k,))

Algorithm 7: sample(a, k): random sampling

1 d = random value from Dk;
2 while `k(a, d) =∞ do
3 d = random value from Dk;
4 return d
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any smoothness assumption on typical DCOPs. However, under a different set of
assumptions, we can construct a similar type of confidence bound.

When solving a general DCOP problem, little is known about the distribution of the
solutions over the space. In order to still put bounds on the optimal solution of a given
subspace, we need to assume some form of smoothness, i.e. when slightly changing the
solution we don’t change the global value too much. To this end, we put the following
bound on the number of sub-optimal choices

Assumption 1. Let λ be the counting measure onD and let f∗(A) , min {f(x) | x ∈ A},
for all A ⊂ D. There exists β > 0 and γ ∈ [0, 1] s.t. ∀A ⊂ D, ε ≥ γ1/β :

λ ({x ∈ A | f(x) > f∗(A) + ε}) ≤ λ (A) γε−β. (4.7)

This assumption is quite weak, as it does not guarantee how many choices will be
arbitrarily close to the optimal. Nevertheless, it can be used to obtain bounds on the
value f∗(A) of any set A. Assume that we have taken T samples from A, with values
(y1
k, . . . , y

T
k ). In the worst-case, these are the T worst values, and thus an upper bound

on the gap between the best-found value and the optimal value in A is:

ε ≤
(
γλ (A)

T

)1/β

. (4.8)

For a given problem, the values of γ and β are unknown. Taking β = 2, and letting γ
slowly increase over time will result in these bounds eventually holding. This results in
the following UCB style confidence bound: (Auer et al., 2002)

Lta,d =

√
2λalnτ ta
τ ta,d

, (4.9)

where

• τ ta: the number of times context a has been received:

τ ta ,
t∑
l=1

I
{
alk = a

}
(4.10)

• λa: the length of the path to the deepest leaf node.

The length of the path can be obtained during the normalization phase, when the
upper bounds on the factors are propagated up. Putting λa = 1 transforms Eq. (4.9)
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into the standard UCB bound. However, such a bound treats a node close to the root in
the same way as a node close to the leaf nodes, while the space left to explore is much
bigger for the former than for the latter. A similar observation has been made for other
optimization settings in (Coquelin and Munos, 2007; Kleinberg, 2005). We therefore
set λa to the length of the maximal path from a to a leaf node, i.e. the higher in the
tree, the more samples a node must collect before reaching the same confidence level.
Also note that when a value d is not sampled for a while, the bound slowly increases.
As a result, no region of the search space will be ignored and a good balance between
exploitation of currently known good branches and exploration of unknown parts of
the search space is achieved.

Given a context, we use the following bound, inspired by the standard UCB bound as
used in (Kocsis and Szepesvári, 2006). The bound combines the local factors with the
best value seen so far and a confidence interval

Bt
a,d , `k(a, d) + µ̂ta,d − Lta,d (4.11)

In the case of a leaf agent, Bt
a,d = `k(a, d). Due to the deterministic and finite nature

of the DCOP problems, at a certain point in time all nodes of a particular subtree
have been sampled. When such a point is reached, further sampling of the space
will not yield any new information. The bound as described in Eq. (4.11) is not able
to recognize this situation. For the parent of a leaf node, by definition this situation
already occurs after sampling it once, i.e. after sampling it once its confidence bound
is reduced to 0. The following recursive bound, which is similar to the one employed in
HOO (Bubeck et al., 2011), makes use of this information to allow agents to recognize
when a part of the tree does not need to be sampled anymore

Bt
a,d , `k(a, d) + max{µ̂ta,d − Lta,d,

∑
k′∈childrenk

Bt
k′}, (4.12)

whereBt
k′ = mind′∈Dk′ B

t
a′,d′ is the bound reported by agent k′ for context a′ = a∪{xk =

d}. For leaf agents, Bt
a,d = `k(a, d).

Bound (4.12) is an optimistic estimate of the optimal value for the sub-tree rooted
at agent k for context a and choice d. Note that, when Bt

a,d = `k(a, d) + µ̂ta,d, the
optimal cost for the subtree rooted at agent k, for context a and choice d, has been
found. After this occurs, d should be ignored under context a. More precisely, let
Sta = {d ∈ Dk|Bt

a,d 6= `k(a, d) + µ̂ta,d} be the set of allowed sample values. After trying
each value at least once (since otherwise Eq. (4.9) is undefined), the agent samples
according to:

xtk , arg min
d∈Sta

Bt
a,d, (4.13)
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with ties broken randomly. Also, the termination condition is now:

max
d∈Sta

µ̂ta − (µ̂ta,d −

√
ln2

δ

τ ta,d
) ≤ ε. (4.14)

The description of DUCT follows the algorithm skeleton as provided in Algorithm 6.
However, it uses the sampling procedure as detailed in Algorithm 8.

Algorithm 8: sample(a, k): DUCT sampling

1 if all values in Dk have been sampled at least once then
2 return arg mind∈Sta B

t
a,d

3 else
4 d = random unsampled value from Dk;
5 while `k(a, d) =∞ do
6 d = random unsampled value from Dk;
7 return d

4.2 Theoretical Analysis

A general problem-independent analysis of the DUCT algorithm for DCOP is not
possible. One can always construct a counterexample such that there exists only one
optimal solution x∗, with all remaining choices of x being either infeasible or far from
optimal.

Definition 12. Let ρ(T ) be the regret after T steps:

ρ(T ) , min
{
yt0
∣∣ t = 1, . . . , T

}
− f∗(D). (4.15)

Thus, an algorithm that samples all ofD in fixed arbitrary order has regret bounded
by Eq. (4.8) with A = D, since an adversary could manipulate the problem so that
the worst values are seen first. On the contrary, the regret of RANDOM, which selects
assignments uniformly, i.e.: xt ∼ Uni(D), does not depend on the size ofD:

Theorem 1. The expected regret of the RANDOM algorithm is E ρ(T ) ∈ O(1/βT +

γ1/(β+1)).

Proof. If Assumption 1 holds, then the probability that the regret of RANDOM after T
samples exceeds ε is bounded by:

P

(
T∧
t=1

[f(xt) > f∗(D) + ε]

)
≤
(
γε−β

)T
. (4.16)
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It follows from Eq. (4.16) and the fact that the regret and probabilities are bounded
that ∀ε, E ρ(T ) ≤

(
γε−β

)T
+ ε.

E ρ(T ) = E ρ(T |T > ε)P (T > ε) + E ρ(T |T ≤ ε)P (T ≤ ε) (4.17)

≤
(
γε−β

)T
+ E ρ(T |T ≤ ε)P (T ≤ ε) (4.18)

≤
(
γε−β

)T
+ ε (4.19)

Setting the derivative to zero, we find that ε0 =
(
βTγT

)1/(βT+1)
. Replacing to find the

tightest bound:

E ρ(T ) ≤ γT (βTγT )
− βT
βT+1 + (βTγT )

1
βT+1 (4.20)

≤ 1

βT
+ (βTγT )

1
βT+1 (4.21)

The second term can be bounded as follows. Note that maxx x
1/(1+x) < maxx x

1/x and
that

d

dx
x1/x =

d

dx
e

1
x

lnx = e
1
x

lnxx−2(1− lnx),

which has a root x = e. Consequently, (βT )1/(βT+1) < e1/e. Finally, γT/(βT+1) ≤
γ1/(β+1).

Let us now consider DUCT. Since we have no knowledge of β, γ, we slowly increase
our bounds until they hold. Then, the algorithm focuses on nearly optimal branches.

Theorem 2. Consider two disjoint sets A1, A2 ⊂ D with f∗(A1) = f∗(A2) + ∆, A ,
A1 ∪ A2. If τ is the number of times A is sampled then the number of times the sub-
optimal set A1 is sampled under DUCT is O(∆−2 ln τ + (γ/2)β/(2−β) + eγ/2).

Proof. Let µ̂ti be the best-measured value in Ai at time t. For our bounds to hold, we
must sample A at least eγ/2 times and Ai at least τi = (γ/2)β/(2−β) times. Then, we
have:

f∗(Ai) ∈ [µ̂ti − Li,t, µ̂ti + Li,t],

Since we select A1 rather than A2, we have: f∗(A2) ≥ µ̂t2 − L2,t ≥ µ̂t1 − L1,t. But
µ̂t1 ≥ f∗(A1) − L1,t. Consequently, in order to select A1 it is necessary that f∗(A2) ≥
f∗(A1)− 2L1,t. From the definition, we obtain τi ≤

(
4
∆

)2
ln τ .

To complete the analysis, we prove a lower bound on the expected regret of any algo-
rithm.
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algorithm λa sampling
DUCT-A λa = 1 Eq. (4.11)
DUCT-B λa = path length Eq. (4.11)
DUCT-C λa = 1 Eq. (4.12)
DUCT-D λa = path length Eq. (4.12)

Table 4.1: The DUCT variants

Theorem 3. E ρ(T ) ∈ Ω(γ1/2β+T/2).

Proof. It is sufficient to consider a function g in only one variable, for which Assump-
tion 1 holds with equality. Assume a random bijection h : D → D. Then function
f(x) = g(h(x)) also satisfies Assumption 1 and any algorithm is equivalent to RANDOM.
Then E ρ(T ) ≥ γT ε1−βT as Eq. (4.7) holds with equality. Selecting ε = γ1/2β completes
the proof.

4.3 Experimental Evaluation

The introduced algorithms are evaluated on the meeting scheduling domain intro-
duced in (Maheswaran et al., 2003), on randomly generated graph coloring problems
and on the channel allocation problem introduced below. We evaluate 4 different
versions of the DUCT algorithm, which are detailed in Table 4.1

The different sampling algorithms are compared against both optimal algorithms
(DPOP, O-DPOP, ADOPT, SynchBB and AFB) and non-optimal algorithms (DSA, MGM
and MGM2). For the meeting scheduling and channel allocation problems ADOPT,
SynchBB and AFB could not solve the majority of the problems within the given time,
while the performance of DPOP was consistently better than the performance of
O-DPOP. Furthermore, for the graph coloring problem, DPOP dominated all other
complete algorithms. Hence, to increase the readability of the graphs, we omitted these
algorithms from the discussion of the experimental results. Furthermore, RANDOM

is used as a baseline sampling algorithm. Comparisons are made both on solution
quality, amount of information transmitted and runtime, where runtime is measured
using the simulated time notion as introduced in (Sultanik et al., 2007).

4.3.1 The Channel Allocation Problem

WiFi access points are almost everywhere these days, and unfortunately most use the
same channel to broadcast and receive information. This leads to interference, and
thus a smaller transmission speed and lower reliability of the network. If different
access points would use different channels, the overall throughput of information can
be much higher. Traditionally, such a channel allocation problem has been modeled as
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a graph coloring problem (Balasundaram and Butenko, 2006). Access points that cause
interference to one another are considered neighbors in the graph, and the different
channels are the different colors. This is a simplification of the problem that abstracts
away many important aspects. For example, the interference between different nodes
depends not only on the channels that are chosen, but also on the power with which
both transmit, and the distance between them. Since most allocation problems are
over constraint, any solution must allow a certain amount of interference. In such
cases, modeling the strength of the interference is important in obtaining a good
solution.

The capacity of a channel is given by the Shannon-Hartley theorem, that provides a
relationship between the power of a signal, and the signal noise. The relationship has
the following form

C = W log2(1 +
S

N
) (4.22)

where C is the capacity of a channel, W is the bandwidth of the channel, S the signal
strength and N the total noise or interference power. A channel causes interference to
another channel when the power of its signal is stronger than that of the background
noise. The current WiFi standard allows for 13 channels. Two channels are overlapping,
i.e. interfering, when the distance between them is not more than three channels.
There are thus only 3 non-overlapping channels available. The allocation problem can
be modeled as follows.

Let xi ∈ Di = {1, . . . , n} denote the channel allocated to access point i, with n the
number of available channels, ∆ the maximal channel distance for which interference
can occur, Pi the signal strength of i at the source, and di,j the distance between access
points i and j. Let Api = {xj | Pjd2i,j > Nb} be the set variables representing access points

that can cause interference to the signal of i, with Nb the background noise. The
function I(xi, xj) returns 1 when xj chose an overlapping channel, and 0 otherwise

Ii(xi, xj) =

{
1 if |xi − xj | ≤ γ,
0 otherwise

(4.23)

Then, given a variable assignment x ∈
∏
xj∈Api Dj , the capacity of access point i is

modeled as

fi(xi, x) = W log2(1 +
Pi∑

xj∈Api
I(xi, xj)

Pj
d2i,j

) (4.24)

The goal is now to find an assignment x ∈
∏
iDi such that

x = arg max
y

∑
i

fi([y]fi) (4.25)
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Figure 4.3: Meeting Scheduling Results

4.3.2 Experimental Setup

All evaluated algorithms are implemented in the FRODO platform (Léauté et al., 2009).
For meeting scheduling, we used a pool of 30 agents, with 3 agents per meeting and
between 11 and 20 meetings per instance. The cost for each meeting is randomly
taken from [0, 10]. For the graph coloring problems, graphs with a density of 0.4 were
randomly generated, the number of available colors was 3 and between 10 and 30
nodes per instance. Problems were modeled as Min-CSPs. For the channel allocation
problems, the access points were randomly placed on a map of size 100x100, with a
minimal distance of 4 units. The power of an access point ranges between 490 and 510,
W = 20, the number of channels is set to 6 and Nb = 1. For each set of parameters, 99
problem instances were generated using the generators provided by FRODO, with a
time out set at 15 minutes per problem. The values of both δ and εwere set at 0.05. The
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Figure 4.4: Graph coloring

experiments are run on a 64 core linux machine, with 2Gb per run.

DSA, MGM and MGM2 do not have any termination condition, and, to be fair, were
given as much time as DUCT-D (which results show is the best performing DUCT
variant).

The median is reported, together with 95% confidence intervals. In some instances,
the optimal algorithms time out and consequently, their median can be higher than
the median for some DUCT variants.
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Figure 4.5: Channel allocation

4.3.3 Experimental Results

Figure 4.3(a) shows the performance of the different DUCT variants on the meeting
scheduling problem. It is clear that DUCT-D finds the best solution, although Fig-
ure 4.3(c) shows that in terms of runtime DUCT-D is outperformed by both DUCT-A
and DUCT-C. In general, the duct versions with λa = 1 terminate faster than the DUCT
versions with λa = path length, for the simple reason that the latter versions need more
samples to make the confidence bounds small enough. That increasing the amount
of time spent sampling does not lead to better solutions can be seen from the fact
that although RANDOM takes the most time, it doesn’t find the best solution. It is the
steering of the search using the UCB bounds that leads to a better solution. When
compared with the other algorithms (Figure 4.3(b)), one can see that DUCT-D finds
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Figure 4.6: Amount of Information Exchanged

the optimal solution most of the time. In fact, 93% of the solutions found fall within
the 5% error range set as the target for the DUCT algorithms. This means that the
assumptions underlying the bound used characterizes the search space well. Where
the DUCT variants are able to find a solution to most scheduling problems, DPOP is
only able to solve problems with up to 14 meetings, after which it times out. The local-
search algorithms, given as much time as DUCT-D, failed to find a feasible solution
in more than 50% of the instances while DUCT-D always found a feasible schedule
(See Figure 4.3(d)). To still give an idea of the performance of local-search algorithms,
Figure 4.3(b) contains only the solved solutions.

Figure 4.4 shows the solution quality and runtime for the graph coloring problem. In
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terms of the solution quality found, all DUCT variants find equally good solutions
(Figure 4.4(a)). The performance of the local-search algorithms is rather poor for
the smaller problems, but for the bigger problems they are on par with DUCT-D
(Figure 4.4(b)), with MGM2 finding better solutions than the DUCT algorithms. When
looking at runtime (Figure 4.4(c)), it is clear that the DUCT variants scale much better
then DPOP, which fails to solve problems bigger than 24 nodes in the allotted time.
DUCT-C and DUCT-D consistently run faster than DUCT-A, DUCT-B and RANDOM,
with DUCT-C being slightly better than DUCT-D (Figure 4.4(d)). In the graph coloring
setting, the influence of the value of λa is thus of less importance, while considering
the child bounds brings a significant speed up1.

For the channel allocation problem (Figure 4.5(a), 4.5(b)), note that we plot the distance
to the optimal solution. As for the meeting scheduling problem, DUCT-D finds the
best solution, and hence we only display its solution quality. One can see that for
the small problems, DUCT-D is able to find the optimal solution, while only for the
bigger problems its performance starts to deteriorate a little. As for the local-search
algorithms, their performance deteriorates as the problem instances grow. When
comparing the runtime of the DUCT variants to that of DPOP, it is clear that all DUCT
variants scale much better. In fact, as can be seen from Figure 4.5(d), while the number
of problems that DPOP solves drops rapidly, the DUCT variants are able to solve all
instances.

Figure 4.6 shows the amount of information transmitted by the different algorithms.
An interesting fact is that DUCT-D consistently sends less information than any of
the other algorithms. Given the same amount of time, the local-search algorithms
exchange up to 2 orders of magnitude more information. Furthermore, the amount of
information sent scales well to bigger problems.

4.4 Conclusions

We introduced a sampling-based approach for solving Distributed Constraint Opti-
mization Problems, inspired by Monte-Carlo tree search and the application of UCB
to tree-structured problems. The result, a Distributed UCT algorithm (DUCT), takes
advantage of the distributed and deterministic nature of the problem, as well as the
hard constraints, in order to efficiently search the solution space.

Theoretically, we show that even though DCOP is not a smooth domain, we can still
obtain meaningful bounds on the regret. However, the gap between the upper and
lower bounds indicates that even better results may be possible. It is our view that a

1Since the graph coloring problem is in fact a constraint minimization problem, showing the number
of solved solutions per algorithm does not provide any information. Hence we leave out the bar plot for
this benchmark
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more intricate analysis requires additional assumptions, which we shall investigate in
further work.

The experiments show that DUCT not only can obtain good solutions within a reason-
able amount of time, but also that for most problems it performs significantly better
than local-search within the same time constraints. From the four variants of DUCT
evaluated, DUCT-D shows the most consistent performance, both in runtime and in
the quality of the solution found. Although adjusting the number of samples taken
based on the position of the agent in the tree, and taking the child bounds into account
do not provide a big improvement in terms of solution quality, combing the two allows
for better solutions. The experiments also show that DUCT can handle much bigger
problems than optimal algorithms, and performs nearly as well for smaller domains,
while sending a much smaller amount of information, making it a very suitable al-
gorithm for practical use in distributed environments. In all, DUCT is thus very well
suited for solving DCOPs
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5 FRODO 2

All algorithms described in this thesis have been implemented in the FRODO 2 plat-
form. FRODO 2 is a java-based platform for DisCSP, DCOP and StochDCOP, and is a
complete re-design of the original FRODO platform developed by (Petcu, 2006). The
platform has been developed in collaboration with Thomas Léauté and Radoslaw
Szymanek, and has been implemented by me, Thomas Léauté and several students.

The main reasons for re-designing FRODO was that we wanted a platform that is both
reliable, easily extendible and easily maintainable. Despite the existence of frameworks,
such as FRODO, DisChoco (Ezzahir et al., 2007) or DCOPolis (Sultanik et al., 2007),
none of them exhibited all the properties that we were looking for.

We used a modular design to obtain both the wanted extendibility and maintainability.
On top of that, we forced ourselves to properly document all pieces of code. To make
sure that FRODO 2 is reliable, we wrote JUnit tests for every new piece of code, and
tested it on randomly generated problems.

Furthermore, in order to make use of a rich language to describe problem instances,
we decided to make use of the XCSP format. The XCSP format has been developed for
centralized CSP problems, and we had to adjust it to make it suitable for distributed
optimization problems. After the release of DisCHOCO 2, which uses a slightly different
adaptation of the XCSP format, we adjusted the FRODO format to make it compat-
ible with theirs, and thus allow the use of their problem generators for generating
benchmark problems.

5.1 FRODO Architecture

This section describes the multi-layer, modular architecture chosen for FRODO (Fig-
ure 5.1). We describe each layer in more detail in the following subsections.
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Communications Layer

Solution Spaces Layer

Algorithms Layer
FRODO

Figure 5.1: General FRODO software architecture.

5.1.1 Communications Layer

The communications layer is responsible for passing messages between agents. At
its core is the Queue class, which is an elaborate implementation of a message queue.
Queues can send messages to each other, in the form of Message objects. Such mes-
sages can be send either through the use of shared memory (when the queues run in
the same JVM), or via TCP. Classes implementing the IncomingMsgPolicyInterface
can process messages received by a queue, by registering to this queue. Such classes
are called modules. When a module registers to a queue, it can specify which types of
messages it wishes to be notified of.

Queues can be instantiated with their own thread, making FRODO a multi-threaded
framework. In order to allow timing measurements on a single machine, however, all
queues can run in a single thread that assigns messages to queues one-by-one.

5.1.2 Solution Spaces Layer

This layer provides classes that can be used to model and reason about constraint
optimization problems. A solution space can be seen as a constraint or a combination
of constraints that describes a subspace of solutions to a problem. A solution space
support different types of operations that can be used to reason over the spaces.
Examples of operations are

• join merges two or more solution spaces into one;

• project removes one or more variables from the space by optimizing over their
values in order to maximize utility or minimize cost;

• bestFirstIterator returns an iterator over all solutions in the space that iterates
over solutions in a best first order.

Several implementations of solution spaces are provided by FRODO for different types
of problems. Different parsers exist for different types of problem descriptions. The
XCSPparser generates hypercubes, while the XCSPparserjaCoP outputs JaCoP spaces
that serve as a bridge between FRODO and the centralized CSP solver JaCoP (JaCoP,
2011).
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The solution spaces are optimized for both speed and space use. An hypercube, for
example, is a table of values with entries for each possible variable assignment. When
joining two hypercubes, the explicit join is only calculated when the space is used to
exchange information, as in the UTIL messages send by DPOP. FRODO supports the
following types of solution spaces:

• Hypercubes: an extensional representation of a space in which each variable
assignment is associated with a utility value;

• VRP Spaces: a VRP space is a special space used in the Vehicle Routing Problem
benchmark. It is an implementation of a specialized intensional space represent-
ing a single VRP constraint;

• Meeting Spaces: a meeting space is an intensional space representing the prefer-
ences an agent has over different meeting schedules 3.2.2. In addition, it imple-
ments a best-first order generator based on the procedure discussed in 3.2.2;

• TTC Spaces: a TTC space is an intensional space used to obtain utility informa-
tion for the TTC problem 3.2.1, that implements a best-first order generator as
specified in 3.2.1

• Allocation Space: an allocation space is an intensional space used in the Channel
Allocation benchmark.

• JaCoP Space: a JaCoP space is a special space whose constraints are instantiated
in an instance of the JaCoP solver.

5.1.3 Algorithms Layer

Each algorithm is implemented as one or more modules, which listen for incoming
messages in the agent’s Queue, and exchange messages with other local and remote
modules. Typically, a module is associated with a phase of the algorithm. For example
the DPOP algorithm consists of the DFSgenerationParallel, UTILpropagation and
VALUEpropagation modules.

The advantages of such a modular design are manyfold. For instance, as several
algorithms operate on DFS pseudo-trees, the DFSgenerationParallel module can be
reused as is across algorithms. The main advantage of modularity in the context of
DPOP is that it makes it possible to easily implement numerous hybrids of the existing
versions of DPOP. Combining various modules to produce algorithms is performed by
simply declaring the modules and their parameter values in an XML agent definition
file.

FRODO currently supports the following algorithms: SynchBB (Hirayama and Yokoo,
2003), MGM and MGM-2 (Maheswaran et al., 2004), ADOPT (Modi et al., 2005), DSA
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(Zhang et al., 2005), DPOP (Petcu and Faltings, 2005a), S-DPOP (Petcu and Faltings,
2005b), MPC-Dis(W)CSP4 (Silaghi and Mitra, 2004; Silaghi, 2005), O-DPOP (Petcu
and Faltings, 2006), AFB (Gershman et al., 2006a), MB-DPOP (Petcu, 2007), Max-
Sum (Teacy et al., 2006), ASO-DPOP (Ottens and Faltings, 2008), P-DPOP (Faltings et al.,
2008), P2-DPOP (Léauté and Faltings, 2009b), E[DPOP] (Léauté and Faltings, 2009a,
2011b), Param-DPOP, and P3/2-DPOP (Léauté and Faltings, 2011a). Param-DPOP is
an extension of DPOP that supports special variables called parameters. Contrary
to traditional decision variables, the agents do not choose optimal assignments to
the parameters; instead, they choose optimal assignments to their decision variables
and output a solution to the parametric DCOP that is a function of these parameters.
FRODO also provides a convenient algorithm to count the number of optimal solutions,
which can be found in the package algorithms.dpop.count.

5.2 Experimental Setups

FRODO has been designed not only to be easily extendable and modular, but also to
facilitate experimentation. A command-line-based controller tool allows the user to
run batch experiments, defined in an XML document specifying what algorithm to
run and what XCSP problems to solve. The controller then takes care of setting up the
agents and distributing the subproblems to be solved. However, it is also possible to
set up the different agents and their subproblems locally, after which they register to
the controller and connect to their neighbors.

The controller can be run in two different modes, depending on whether one or more
machines are available to perform the experiments. In the simple mode, all agents are
created in the same JVM as the controller. The advanced mode, however, allows one to
run experiments in a distributed fashion. It requires a daemon to run on each machine
participating in the experiment. These daemons are registered to the controller, which
distributes the agents among them. FRODO currently distributes randomly and evenly
the agents across the daemons, but future versions will support assigning specific
agents to specific daemons.

As for performance evaluation, FRODO measures the amount of information conveyed
via messages, the number of messages sent by each module, the number of Non-
Concurrent Constraint Checks (NCCCs) (Gershman et al., 2006b) and the simulated
time (Sultanik et al., 2007). All these measures are reported to the central controller,
regardless of whether the experiments are run on a single, or on multiple machines.
Aside from these traditional performance measures, agents can also report other
statistics, such as the chosen DFS or the optimal solution found, which is a useful
metric for local-search algorithms.
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5.3 O-DPOP implementation

The description of the O-DPOP algorithm as given in (Petcu and Faltings, 2006) does
not define how received goods should be handled, and how the upper bounds are to
be handled. For this thesis we implemented a data structure related to the HRJN data
structure (Ilyas et al., 2003) used in databases to answer top-k queries. This section
gives some more details on the implementation.

O-DPOP belongs to the inference-based family of DCOP algorithms. It is based on
the concept of Open Constraint Programming (Faltings and Macho-Gonzalez, 2005),
where a problem can be solved without having full information on the problem. The
basic idea is that by eliciting the problem in a best first manner, a solution can be
found before the full problem is elicited.

In inference-based algorithms, every variable must collect enough information to be
able to make the optimal decision on its value given the values of ancestor variables.
Given a variable xi and an assignment a to the variables in its separator sepi, let f i(a, d)

be the utility of the subtree rooted at xi when xi = d. f i consists of the local utility of
variable xi combined with the utilities of the subtrees rooted at the children of xi. If
childrenii is the set of children of xi, then f i(a, d) can be defined as

f i(a, d) = `(a, d) +
∑

j∈childreni

f j(a, d) (5.1)

The values for f j(a, d) are reported by the children of xi. Note that by definition the
separator sepj should be a subset of sepi. Hence, child j reports not on (a, d), but on
some assignment compatible with it, where compatible is defined as

Definition 13 (Compatible). Two assignments a and a′ are compatible if they agree on
the values of the shared values.

In O-DPOP, children report assignments one by one, in a best first order. This best first
order allows one to determine bounds on the utilities of unseen assignments. Let f jlast
be the last utility reported by child j, and (a, d) an assignment for which f j(a, d) is not
yet known, then child j will report at most f jlast for this assignment. Hence, an upper
bound on the utility of a can be defined as
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UBj(a, d) =


f j(a, d) if child j has reported a value

compatible with a,
f jlast otherwise

(5.2)

UBi(a, d) = `(a, d) +
∑

j∈childreni

UBj(a, d) (5.3)

Furthermore, for every assignment (a, d) on which child j has not yet reported a
compatible assignment, f j(a, d) = −∞when maximizing (and∞when minimizing).
The upper bound on unseen assignments can be used to determine whether a variable
is valuation sufficient , i.e. when it has enough information to determine the next best
assignment.

Definition 14 (Valuation sufficient). An agent i is valuation sufficient when there is an
assignment (a, d) such that f i(a, d) ≥ maxa′,d′UBi(a′, d′).

The algorithm as given in (Petcu and Faltings, 2006) can be found in Algorithm 3. The
basic idea is that the root agent initiates the search by sending an ASK message to all
its children. When a variable receives an ASK message, it will start looking for its next
best assignment , by sending ASK message to its children, that reply with assignments
in a best first order. As soon as the variable is valuation sufficient, it replies to its parent
with a GOOD message containing its next best assignment and the corresponding
utility. Do note that the variable does not report its own value in the GOOD message.

5.3.1 Processing received goods

In the original publication, it is not defined how received GOOD messages should be
processed. However, the efficient processing of such messages is paramount to quickly
finding the next best solution. Two things need to be done when processing a GOOD
message. First, the received partial assignment should be joined with all compatible
assignments. Second, the upper bound should be updated.

A variable has two types of sources from which it gets utility information; from its own
local problem and from its children. For the purpose of O-DPOP, all sources should
be able to provide assignments in a best-first order. In order to properly calculate the
upper bound the variable also needs to know the best assignment (a, d) for which no
children have reported a value.

Given two sorted sources, a simple data structure presents itself. Let L be the left
source, R the right source, listL the sorted list of assignments received from L and listR

82



5.3. O-DPOP implementation

Algorithm 9: SimpleJ.next()

1 ass = checkQ();
2 if ass 6= null then
3 return ass;
4 while at least one of the sources still has unreported assignment information do
5 S = chooseSource();
6 if S is finished then
7 minS = −∞
8 else
9 a = S.next();

10 if a is the first utility received from S then
11 maxS = a.utility;
12 list1 and list2 are respectively the list belonging to S and the list belonging to

the other source;
13 insert(a, list1, list2);
14 T = max(L+ +R−, R

+ + L−);
15 ass = checkQ();
16 if ass 6= null then
17 return ass;

Algorithm 10: checkQ()

1 if Q.isempty() then
2 ass = Q.peek();
3 if ass.utility > T then
4 remove ass from Q;
5 if project = true then
6 project out and return ass;
7 else
8 return ass;
9 return null;

the list for R. Without loss of generality, assume that a new assignment xl is received
from source L. Then traverse through listR to find all compatible assignments. Join xl
with every compatible assignment xr ∈ listR and store them in Q, which is a sorted list
of assignments.

Algorithm 11: chooseSource()

1 if T = R+ + L− then
2 return L;
3 else
4 return R;
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Algorithm 12: SimpleJ.insert(a, list1, list2)

1 if a == null ∧¬list1.hasNext() then
2 minlist1 = −∞;
3 UBlist1 = −∞;
4 else
5 add a to list1;
6 minlist1 = a.utility;
7 for next in list2 do
8 join = a.join(next);
9 if project = true and then

10 if join is compatible with an already reported assignment then
11 continue;
12 Q.add(join)

In order to determine the next best assignment, an upper bound on unseen assign-
ments can be calculated as follows. Let L+ and L− be the highest, respectively the
lowest utility present in listL, and R+ and R− be the same for listR. Then the threshold
T is defined as

T = max(L+ +R−, R
+ + L−) (5.4)

All elements in Q with a utility higher than T are now guaranteed to be in best-first
order. The data structure described above is called a Simple Join (SimpleJ) and can
be found in Algorithm 9. Notice that next() alternates between L and R by querying
the source that provides the min part of the current threshold. Only a change in this
source’s minimal value can result in a change to the threshold.

A SimpleJ also reports assignments in a best first order, and can thus be seen as a
source. Hence, a variable that gets information from more than 2 sources can combine
this information by pipelining multiple SimpleJs. For example, if a variable has a local
problem and 2 children, the data received from the 2 children can be combined using
a SimpleJ. The output of this SimpleJ can then be combined with the output of the
local problem using another SimpleJ.
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This thesis has dealt with the topic of Distributed Constraint Reasoning (DCR). DCR
is a paradigm that can be used to model constraint optimization problems that are
inherently distributed. The work in the DCR community can be subdivided into work
on satisfaction problems (DCSP), and work on optimization problems (DCOP). In the
former, it is enough to find a solution that satisfies all constraint, while in the latter one
is interested in finding the best solution. This thesis focussed solely on optimization
problems.

The DCOP framework can be used to model a wide range of distributed optimization
problems. Initially the field focussed on synthetic problems, like the n-queens problem
or the graph coloring problem. Later work has attempted to model more realistic
problems. Examples are the use of DCOPs to solve sensor network problems, meeting
scheduling problems or distributed vehicle routing problems.

This thesis consists of two parts. In the first part, we have looked at coordination
problems with preferences, while in the second part of this thesis we introduce a new
sampling-based algorithm for solving DCOPs.

6.1 Coordination Under Complex Local Preferences

Coordination among agents is an important, and interesting problem that has applica-
tions in many different problems and fields. In this thesis, we have argued that certain
types of coordination problems are naturally modeled using the Distributed Constraint
Optimization framework. Although early on it has been recognized that agents can
have complex local problems, the role of preferences and how they are obtained has
largely been ignored in the present DCOP literature.

We have introduced a general DCOP model for coordination problems with preferences,
where we make an explicit distinction between the coordination constraints, and the
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preference constraints of the agents. Based on this general model, we introduced
two benchmark problems. The first, the Truck Task Coordination (TTC) problem, is a
logistics problem where packets must be assigned to trucks. Each truck is assigned a
region in which it can accept packets, while each packet can only be offered to trucks
within a certain range. The local problem of an agent consists of a set of Vehicle Routing
Problems (VRP), one for each possible packet assignment.

The second benchmark is an adaptation of the well known meeting scheduling prob-
lem. While the meeting scheduling problems presented in the literature do deal with
preferences, these preferences are generally defined over single meetings. We intro-
duce a variant where agents have preferences over their entire schedule.

Many existing DCOP algorithms assume that the preferences of the agents are known
a-priori. DPOP, for example, requires an agent to submit preferences on all possible
variable assignments, while ADOPT can request the preference on a single assignment
multiple times. O-DPOP assumes that the best-first order over assignments is readily
available. When the local problems defining the agents’ preferences are non-trivial to
solve, these assumptions do not hold anymore. We have evaluated the performance
of DCOP algorithms under the presence of complex, non-trivial local problems. The
algorithms have been evaluated on the TTC problem (a problem with complex, non-
trivial local problems), the meeting scheduling problem (a problem with complex local
problems) and the graph coloring problem. The results show that in the presence of
preferences O-DPOP outperforms other complete DCOP methods in terms of runtime,
queries to the local solver and the information transmitted.

Furthermore, the presence of non-trivial local problems implies that the best-first
order is not a-priori available. For the TTC problem, we have used a local solver
that was not guaranteed to provide a correct best-first order. Despite this, O-DPOP
still found solutions that were close to the optimal solution, and better or on par
with the solutions found by local-search algorithms. When dealing with coordination
problems with preferences, using a best-first preference elicitation is thus an efficient
strategy when finding a coordinated solution, even when the best-first order is only
approximate.

6.2 Solving DCOPs Using Sampling

Methods for solving DCOPs can be divided into search-based, inference-based and
local-search-based methods. The first two are complete methods, i.e. they are guaran-
teed to find the optimal solution. Their complexity, however is exponential in the size
of the problem. The latter family of algorithms has a much smaller complexity, but
does not provide any guarantees in terms of finding the optimal solutions. A notable
exception is the Max-Sum algorithm, that is optimal in the absence of cycles in the
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factor graph.

Solving a DCOP basically involves finding the maximal value of a function, ranging over
multiple variables. In a centralized optimization setting, the UCT (Upper Confidence
bounds on Trees) algorithm has shown to perform well. UCT is based on the Upper
Confidence Bound (UCB) approach to solving the multi-armed bandit problem. In
a multi-armed bandit problem, an agent must find a strategy for choosing gambling
machines in such a way as to minimize its regret. The same strategy can be used to
choose values for variables, where the reward is given by the function that is to be
optimized.

In this thesis we have introduced a new UCB inspired algorithm, DUCT, for solving
DCOPs. DUCT is a sampling-based algorithm that uses confidence bounds to steer
the search into promising parts of the search space. Although the UCB algorithm,
and its generalizations to tree structured problems, have been designed for problems
where the function is unknown and stochastic, we have shown that similar confidence
bounds are applicable to the deterministic DCOP setting as well. We have analyzed
several different bounds, and evaluated them on a range of different problems. In
particular, we have introduced a new benchmark problem based on the channel
allocation problem. In a channel allocation problem, wireless access points must be
assigned channels over which to transmit and receive data. Channels that are close
to each other can cause interference. When two channels interfere with each other,
the capacities of their channels are reduced. The goal is to assign channels to access
points, so as to minimize the number of overlapping channels. Traditionally, channel
allocation problems have been modeled as graph coloring problems. Since many such
problems are over-constraint, i.e. interference cannot be prevented, it is important to
incorporate the interference in the model such that the final solution maximizes the
capacity of the selected channels.

Given a weak assumption on the structure of the problem, we give bounds on both
the quality of the solution found, as on the number of times DUCT samples sub-
optimal parts of the search space. Furthermore, our experiments show that the DUCT
algorithm consistently performs well on different types of problems, while scaling
better than complete DCOP approaches. It sends less information than both the
complete algorithms. Given the same amount of time, local-search methods find
worse solutions, while also exchanging more information than the DUCT algorithm.

6.3 Future Work

Our work on coordination problems with preferences has shown that a systematic
approach, combined with incremental preference elicitation results in an efficient
method to find an optimal solution. Calculating a best first order, however, can be a
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difficult task. A similar problem can by found in the database literature. Much research
in the database community deals with how to efficiently perform joins on databases.
A particular type of join is the top-k join. In a top-k join, the aim is to produce the k
best elements in a join, based on some ordering of the tuples. Some of the methods
used to efficiently solve top-k joins can also be used to improve the performance of
the O-DPOP algorithm. In particular, mixing random access queries with a best-first
order has shown significant improvements in solving top-k joins. How to allow for
random access queries in a DCOP setting is not obvious, since the information must
be collected and combined from different hierarchically ordered sources.

The bounds given for the DUCT algorithm are based on a weak assumption on the
structure of the problem to be solved. An important property needed for the centralized
UCB algorithm to function is the smoothness of the function. The assumption used
in this thesis is similar to a smoothness property, but there might exist other types of
assumptions that result in better bounds. Performing a more thorough analysis of the
problem structure of different types of DCOP problems could give a deeper insight into
the performance of the DUCT algorithm on those problems. Furthermore, the analysis
could shed light on the question whether better bounds exist for the deterministic
DCOP setting.
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