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Abstract

Previous work from Opelt et al. [50, 49] and Fussenegger et al. [31] has shown
that image categorisation using AdaBoost [29, 59] is a powerful method.
They have used AdaBoost to select discriminative features to learn a clas-
sifier against a background class. As proposed in [3, 4] we present recent
extensions to that framework by (a) incorporating geometric relations be-
tween features into the weak learner and (b) providing a weight optimisation
method to combine pairwise classifiers for multiclass classification. We eval-
uate our framework on the Xerox data set [18] where we compare our results
to the bag-of-keypoints approach. Moreover we report our results from the
PASCAL Visual Object Classes Challenge 2006 [24].

The mass of images available through image databases, photo sharing
websites, surveillance cameras a.s.o. is huge but obtaining the class informa-
tion needed to learn a classifier is usually considered to be costly. One way to
deal with the general problem of costly labels is active learning, where points
to be labelled are selected with the aim of creating a classifier with better
performance than that of a classifier trained on an equal number of randomly
sampled points. Previous work [2, 14, 1, 13, 57, 43, 38, 6, 36, 19, 7] showed
that active learning can improve the performance compared to standard pas-
sive learning. However the basic question of whether new examples should
be queried at all is seldom addressed. This work deals with the labelling
cost directly as recently proposed in [22]. The learning goal is defined as
the minimisation of a cost which is a function of the expected model perfor-
mance and the total cost of the labels used. This allows the development of
general strategies and specific algorithms for (a) optimal stopping, where the
expected cost dictates whether label acquisition should be terminated, and
(b) empirical evaluation, where the cost is used as a performance metric for
a given combination of learning, stopping and sampling methods. Though
the main focus is optimal stopping, we also aim to provide the background
for further developments and discussion within the field of active learning.
Experimental results illustrate the proposed evaluation methodology and
demonstrate the use of the introduced stopping method.
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Nomenclature

a weight of a classifier
β exponential convergence parameter
c class of convergence
C random variable corresponding to the cost
D slackness factor
V C VC-dimension
ε error given the training data
f classifier
F learning algorithm
g error function
γ query cost
h convergence function
κ quadratic convergence parameter
kφ number of clusters for feature type φ
λ linear convergence parameter
m number of examples
mφ total number of feature vectors extracted for feature type φ
mt number of observations of the error made per iteration
mγ (c, r0, r∞) number of admissible convergence parameters at a cost-level

of γ given c, r0, r∞
µ margin
n number of classes
ν slackness parameter
OBSV one-step bounded stopping algorithm with validation
ω model
φ feature type
q realised error
QF (γ) stopping algorithm
r expected error
R random variable corresponding to the classification error
r0 initial error
r∞ final error
ρ0 bayes risk
̺ convergence parameter

xi



xii NOMENCLATURE

spam spambase database from UCI

tγ outcome for Tγ

tγ (c, ̺, r0, r∞) stopping time minimising the cost given c, ̺, r0, r∞ and γ
Tγ random variable corresponding to the stopping time
θ threshold
υ reference feature
UCI repository of machine learning databases from the University

of California, Irvine
ve expected costs given a specific (training) dataset
VOC06 PASCAL Visual Object Classes Challenge 2006 data set
v feature
w weight of an example
wdbc Wisconsin breast cancer data set from UCI

x example
Xerox Xerox data set
ξ belief
y class
z observation of the error
ζ slackness variable



Chapter 1

Image categorisation

1.1 Introduction

The field of Computer Vision recently has drawn the attention of many re-
searchers. Today, their findings are fundamental to typical applications like
driver assistance systems, robotics, surveillance and many others. According
to [52] some of these applications represent an object categorisation problem:

The research goals in object categorisation are to detect ob-
jects in images and to determine the objects categories. Cate-
gorisation aims for the recognition of generic classes of objects,
and thus has also been termed ‘generic object recognition’. This
is in contrast to the recognition of specific, individual objects.
. . .Major problems are related to the concept of a ‘visual cat-
egory’, where a successful recognition algorithm has to manage
large intra-class variability versus sometimes marginal inter-class
differences. . . . We can define visual object categorisation as the
process of assigning a specific object to a certain category.

For some applications it is sufficient to predict the occurrence of an object
of a specific category while its localisation within the image or its shape are
not of primary interest. This problem is termed image categorisation.

Image categorisation is usually performed upon real-world images in-
cluding small or partially occluded objects that can be surrounded by back-
ground clutter. Therefore localisation and shape modelling become harder
than in case of generic object recognition where target objects are usually
more prominent with little variation in pose and the background is more
homogeneous [27, 39, 28]. Although background information can contain
valuable side information, for example asphalt points to a car rather than a
horse, the question whether such classifiers can be learned using real-world
images and if they really improve performance remains open.

Furthermore there exist many approaches to specific object categorisa-
tion problems like face detection [66], but the task becomes more difficult

1



2 Chapter 1. Image categorisation

if the goal is to develop a more general learning algorithm that can learn
various target categories. One reason is that it is not always clear which
types of features are advisable to learn a certain visual category. Thus even
when most of the detected features are located on the target object, shape
modelling may fail. These issues become even more important in case of a
multiclass learning problem.

This work addresses those problems by extending a recent method from
Opelt et al. [50, 49] and Fussenegger et al. [31]. They have shown that
image categorisation using AdaBoost [29, 59] is a powerful method. In
particular they have used AdaBoost to select discriminative features of var-
ious types to learn a classifier against a background class, which consists
of similar scenes but without target objects or perceptually similar cate-
gories. In this chapter we introduce their framework in more detail (Sec. 1.3)
and propose extensions to it along the way. More specifically, we will pro-
vide (a) a method to learn geometric relations between the locations of de-
tected features (Sec. 1.3.3) and (b) a weight optimisation method to combine
the predictions of the resulting pairwise classifiers for multiclass classifica-
tion (Sec. 1.4). We conclude with an evaluation of our framework on the
Xerox data set (Xerox) where we compare our results to the bag-of-keypoints
approach (Sec. 1.5.2). Moreover we report our results from the PASCAL Vi-
sual Object Classes Challenge 2006 [24] (Sec. 1.5.3). Throughout this work
we will use VOC06 to refer to the corresponding data set whenever we conduct
experiments not related to the challenge.

1.2 Related work

One recent approach to a general learning algorithm for various object cat-
egories is the ”bag of keypoints” idea by Csurka et al. [18]. This method
calculates a feature histogram for every image in the data set. Its main
advantage is that standard learning algorithms like a SVM [35, 65], which
need a fixed dimensional input vector, can be used to construct a classifier.
On the other hand, using a fixed set of features for learning is critical as the
features selected by the expert may lack discriminative information. Thus
Farquhar et al. [25] proposed to make identification of suitable features a
part of the learning process. However we argue that feature histograms
cannot exploit geometric relationships between the features contained in an
image although this might be discriminative information.

There exist various methods for incorporating such relationships between
parts using statistical models. Early work in this direction was done by Burl
et al. [11] for the recognition of planar object classes. There, important parts
are selected by previously learned detectors, and afterwards a shape model
is learned from the detected locations. This approach was later improved by
using a soft-detection strategy in [12]. The two problems, detecting features
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and building a shape model from the detection, are solved simultaneously.
Later, unsupervised scale-invariant learning of parts and shape models has
been done in [27], where an entropy-based feature detector from Kadir [37]
has been used to select the important parts from an image.

Recently, graph-based models called ”k-fans” were introduced [17]. The
structure of the graph, and therefore the representational power of the shape
model is controlled by the parameter k. There exist well defined algorithms
to solve the learning and detection problems for models with k-fan graphs.
In general, methods like [11, 12, 17, 27] force the user to predefine a fixed
number of parts considered for learning. In consequence this quantity is usu-
ally determined using an independent validation set. In contrast, we show
how to estimate the correct number of parts and how to learn the relative
positions within the image at the same time using a boosting algorithm.

1.3 Categorisation of images through boosting

Fig. 1.1 shows an overview of the framework of Opelt et al. where our
extensions to it are marked red. The training data D = {(xi, yi)}mi=1 con-
sists of m labelled real-world images xi where the label yi ∈ {+1,−1} indi-
cates whether an object of a visual category is visible in the image or not.
After preprocessing the images, different types of features are extracted
from discontinuous or homogeneous regions using various existing meth-
ods (Sec. 1.3.1). Given those features a classifier is learned which predicts
whether a visual category appears in an image or not. As it is not always
clear beforehand which feature types are advisable for learning a certain
category, Opelt et al. propose using all types simultaneously and to leave it
up to the learning algorithm to determine the useful types.

In contrast to the original framework we suggest using LPBoost [9, 21]
instead of AdaBoost since the former is more robust to noise (Sec. 1.3.2).
Moreover, we propose incorporating geometric relations between features
into the weak learner (Sec. 1.3.3). Our final extension to the original frame-
work addresses the multiclass classification problem (Sec. 1.4) where we
provide a weight optimisation method to combine pairwise classifiers by a
SVM. For convenience the processing of an image by our framework will be
illustrated by the running example shown in Fig. 1.2, an image from the
visual category ’person’ taken from the ’Graz-02’ database set up by Opelt
et al.1.

1.3.1 Feature extraction

This section describes the methods used for feature extraction. As some
of the feature extraction methods used here require grey-value images, we

1available at http://www.emt.tugraz.at/~pinz/data/
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Figure 1.1: The image categorisation framework by Opelt et al. with our
extensions marked in red. The weak learner of the boosting algorithm deter-
mines useful feature types automatically and searches for geometric relations
between selected features. We suggest using LPBoost instead of AdaBoost
to learn a pairwise classifier. The multiclass classification problem is ad-
dressed by combining such classifiers using a weight optimisation method.

transform the images accordingly whenever appropriate (Fig. 1.2(a) - 1.2(b)).
Then two groups of feature types are extracted from each image. The first
describes various types of regions of discontinuity which have been located
by various interest point detectors. The second group describes regions
of homogeneity which are extracted by several segmentation methods. As a
result of this process each image xi will be represented by sets Vi,φ of feature
vectors v, where φ = 1, 2, . . . denotes the specific feature type as obtained
from a specific combination of a localisation and a description method,

xi → {Vi,1,Vi,2, . . . } . (1.1)

Regions of discontinuity

The first step to extract regions of discontinuity is their localisation at salient
events within an image. Based on a recent evaluation [61] the original frame-
work proposes the use of the scale-invariant Harris-Laplace detector, the
affine invariant interest point detectors, both proposed by Mikolajczyk and
Schmid [44, 45], and the difference of Gaussian (DoG) detector as proposed
by Lowe [40]. The interested reader may refer to [52] for a comprehensive
overview on common detectors.

These methods utilise the concept of scale-space to detect interest points
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(a) (b)

(c) (d)

(e)

Figure 1.2: An example of how an image is processed by our framework.
We transform the original image (Fig. 1.2(a)) to grey-scale (Fig. 1.2(b)).
Interest points (crosses) at various scales (circles) are detected and the cor-
responding features of various type φ are extracted (Fig. 1.2(c)). We obtain
reference features by clustering each type. Fig. 1.2(d) shows weak classifiers
(green marks) built by the boosting algorithm using a similarity thresh-
old on the reference features in feature space, where it combines some of
them geometrically. Useless weak classifiers will be discarded in subsequent
iterations (Fig. 1.2(e)).



6 Chapter 1. Image categorisation

at their characteristic scale σ. The scale space of an image is obtained via
a convolution of its intensity values I (i, j) with a variable-scale Gaussian
G(I, σ) where σ denotes the standard deviation. Given such a space the goal
is to extract visual features at their characteristic scale. For example apply-
ing the DoG function to the image given a certain value of σ emphasises the
edges at this scale. The characteristic scale is then determined by searching
for local maxima of the DoG over various scales [40]. Other approaches
like the Harris-Laplace detector utilise more than one function to find an
interest point. There the Harris function is used to localise interest points
such as edges and corners given different values of σ, while the Laplacian
response at those points is used to search for local maxima over the scales.
As Mikolajczyk et al. have shown earlier [60] localisation using the Harris
function is more reliable in the presence of image rotation and changes in
illumination or perspective, while the Laplacian turns out to be most re-
liable in estimating the characteristic scale. Fig. 1.2(c) shows the interest
points returned by this detector where the size of the surrounding circle
indicates the characteristic scale. This approach was later extended toward
affine-invariance of the detector [45]. More specifically, given an initial set
of interest points obtained from a multi-scale Harris-detector, an iterative
procedure is applied which modifies positions, scale and shape of the point
neighbourhood, and converges toward a stable point that is invariant to
affine transformations.

Given such detectors different types of features are extracted by apply-
ing different description methods to the image region around each interest
point. According to a recent evaluation of different descriptors [46, 47],
Opelt et. al suggest the use of sub-sampled grey-values (see [50]), basic
intensity moments2 and moment invariants [33] as well as scale invariant
feature transforms (SIFTs) [40, 41]. We introduce these descriptors briefly.

One of the simplest methods to describe a region of interest is to sub-
sample its grey-values using a window around each interest point. Although
available information like the characteristic scale can be used to make it
scale-invariant it is however not invariant to geometric distortions or changes
in illumination.

Basic intensity moments are weighted averages of the pixel intensities of
a region I ′ ⊂ I in the image,

mk
p,q =

∑

i

∑

j

ipjq
(
I ′(i, j)

)k

of order p, q = 0, 1, 2, . . . and degree k = 0, 1, 2 . . . , and provide information
about the centroid of the region and its orientation. These can be extended

2sometimes also referred to as raw intensity moment
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to moment invariants like the central moment

µp,q =
∑

i

∑

j

(

i− m1,0

m0,0

)p (

j − m0,1

m0,0

)q

Ii,j .

which is invariant to translation. Through combination of moments of dif-
ferent p, q one can attain further types of invariance. According to the work
of Van Gool et al. [33], Opelt et. al suggest the use of four first order and five
second order moment invariants which are affine and photometric invariant.

Finally Opelt et al. suggest the use of SIFT descriptors. Given an in-
terest point together with its characteristic scale, a quadratic region around
it is transformed w.r.t to this scale for normalisation. Next the region is
normalized with respect to orientation. For this purpose a histogram for
the 36 major directions of the local gradients at each pixel is calculated.
The orientation of the region is then determined by the highest peak of
that histogram. The region descriptor itself is calculated in a similar way.
More specifically, the normalized region is divided into four non-overlapping
quadratic subregions. For each subregion a histogram for the eight major di-
rections (0◦, 45◦, . . . , 315◦) of the gradients at each pixel is calculated. Thus
the resulting descriptor is also partially invariant to illumination changes
and affine or 3D projection.

It is important to note that subsampled grey-values, basic moments and
moment invariants are not invariant to changes in illumination. Therefore
Opelt et al. perform an intensity normalisation of the image regions for these
three methods using homomorphic filtering (see for example [32], Chap.
4.9.6).

Regions of homogeneity

According to Opelt et al. regions of homogeneity are regions of limited
difference of intensity values or regions with homogeneous texture. They
suggest the use of two popular region-based segmentation algorithms: the
Mean Shift algorithm [15] and their own method called Similarity-Measure-
Segmentation [31]. Additionally we used the graph-based segmentation
method by Felzenszwalb et al. [26] for some experiments.

The Mean Shift algorithm searches for modes of density over the joined
space defined by pixel coordinates and intensity values. Instead of estimat-
ing the density itself, this method utilises a kernel density estimator [51]3

together with an efficient density gradient estimation technique. At each
data point an iterative procedure is started which moves along the estimate
of the current gradient until convergence at some stationary point, the rep-
resentative of a cluster. Then clusters are merged if the distance of their

3also known as Parzen window
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representatives is below the kernel bandwidth. Finally segments are ob-
tained by labelling each cluster’s support in the space of pixel coordinates
uniquely.

Similarity-Measure-Segmentation extends the joint space of pixel coor-
dinates and intensity values by textual information, high-pass, local binary
patterns and wavelets, i.e. by information which accounts for the neighbour-
hood of a pixel as well. Given this space they calculate a similarity criterion
based on a Gaussian kernel density function. Thereby the sensitivity of the
similarity measure can be controlled by choosing a different bandwidth for
the kernel along each dimension. Starting with a seeding pixel, this crite-
rion is used to iteratively merge regions of pixels whose similarity is above
a specified threshold until all pixels are labelled. Similarly to Mean Shift,
all regions that are smaller than a specified value are eliminated by merging
them with the spatially nearest region being larger than this value.

Felzenszwalb et al. [26] take a similar approach as they consider the
joint feature space over spatial locations and intensity values as well. In
contrast to Mean Shift and Similarity-Measure-Segmentation they utilise an
undirected weighted graph to represent the similarity between points in this
space. Then they apply a greedy strategy to search for a minimal cut given
a parametrised merging criterion which trades off the internal dissimilarity
of two segments versus the dissimilarity across both.

Given the segments obtained by Mean Shift and Similarity-Measure-
Segmentation, Opelt et al. apply two kinds of description methods. The
first describes the intensity values and their spatial distribution by their
mean, variance, coefficient of variation, smoothness, skewness, kurtosis and
the grey-value energy [34]. The second one contains invariant moments [42]
which are invariant to scaling, rotation and translation, and are calculated
from basic moments of inertia. It is important to note that Opelt et. al do
not use colour information to describe segments although the Mean Shift al-
gorithm and the Similarity-Measure-Segmentation are capable of such. Uti-
lizing the fast segmentation method of Felzenszwalb et al. for segmentation,
we therefore introduce a new description method where we characterise each
segment by its colour information in Lab-space and its relative size com-
pared to the image to which it belongs. We will refer to this type of features
as colour segments.

1.3.2 Boosting algorithms

Boosting algorithms are a family of learning algorithms which combine a
number of weak classifiers in an iterative process to improve overall classifi-
cation performance. For this purpose they utilise a weak learning algorithm
and call it on different weightings of the training data where the focus is set
on examples that were hard to classify by the previous weak classifiers.
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Algorithm 1 AdaBoost

Given a data set D = {(xi, yi)}mi=1 with y ∈ {−1,+1}, a weak learning
algorithm WeakLearn and a maximum number of iterations J ,

initialise w←
(

1
m . . . 1

m

)

for j = 1 : J do
fj ←WeakLearn(D,w)

εj ←
m∑

i=1
wi [yi 6= fj (xi)]

aj ← 1
2 ln

(
1−εj

εj

)

wi ← wi · exp (−ajyifj (xi)) , i = 1, . . . ,m
wi ← wi/||w||, i = 1, . . . ,m

end for
return f (x) = sgn

(
∑J

j=1 ajfj (x)
)

AdaBoost

A popular boosting algorithm is AdaBoost (Alg. 1). It reduces the training
error on a given set of labelled examples exponentially fast as long the weak
classifiers have a classification error εj ≤ 1/2 − ǫ for some ǫ > 0.

As shown by Alg. 1, initially the weights wi of the examples are the
same. At each round j AdaBoost calls the weak learning algorithm and
measures the training error εj of the weak classifier fj returned given the
current example weights. In consequence fj is assigned a fixed weight aj

within the ensemble, where aj → 0 as εj → 1/2. Finally the weights for the
misclassified examples are increased whereas those for correctly classified
examples are decreased. Thus the misclassified examples will receive more
attention by the weak learning algorithm in round j + 1. After the specified
number of iterations J is reached AdaBoost returns the strong classifier

f(x) = sign
(

f⊥(x)
)

= sign





J∑

j=1

ajfj(x)



 ∈ {+1,−1}, (1.2)

where the magnitude of the signed distance f⊥(x) of x to the decision bound-
ary provides a measure of confidence with which f is making the prediction.

A common measure of performance is the generalisation error4 of a clas-
sifier f given the data distribution D over X × Y,

E [R | f,D ] =

∫

X

∑

y∈Y

p (y | x,D) [f(x) 6= y] p (x | D) dx. (1.3)

Thus the realised error of a learning algorithm F : D → F given a specific

4sometimes also referred to as the true error
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training set D drawn according to D is

q = E [R | F,D,D ] =

∫

F

E [R | f,D ] p(f | F,D) df. (1.4)

where F is the space of classification functions5 and the integral directly
evaluates to E[R | f,D ] if F is deterministic.

Usually we only have access to a finite sample D = {(xi, yi)}mi=1 drawn
i.i.d. according to D and therefore cannot observe the generalisation error
directly. For this purpose we consult learning theory which analyses the
factors that determine the generalisation error. Besides other approaches,
one way to bound the generalisation error of a classifier is to adopt the
notion of confidence, as given by Eq. 1.2, via the (two-class hard) margin,

µ (x, y) = yf⊥(x) = y

J∑

j=1

ajfj(x) ∈ [−1, 1] , (1.5)

and the related margin error given the training data D,

P [µ (x, y) ≤ θ] =
1

m

m∑

i=1

[µ (xi, yi) ≤ θ] (1.6)

For weighted average functions f as such from AdaBoost it has been shown
by Schapire et al. [58] that with probability at least 1− δ,

E [R | f,D ] ≤ P [µ (x, y) ≤ θ]+

O





√

1

m

(
V C (F ′) · log2 (m/V C (F ′))

θ2
+ log(1/δ)

)


 , (1.7)

where θ > 0 and V C (F ′) is the VC-dimension of the space F ′ of weak
classifiers with m ≥ V C (F ′) ≥ 1. This means that, under the assumptions
made, the maximisation of the margins minimises the generalisation error.
Furthermore Schapire et al. validated these theoretical findings using data
with a small amount of noise, i.e. few outliers or mislabelled points. Their
experiments showed that continued boosting after ε ≈ 0 maximizes the
margin of difficult examples, i.e. of those examples having minimum margin,

µ = min
1≤i≤m

µ (xi, yi) . (1.8)

5also known as hypothesis space
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LPBoost

While AdaBoost maximises the margin implicitly, Linear Programming Boost-
ing (LPBoost, [21]) formulates margin maximisation explicitly. That is, the
maximisation of the minimum margin becomes the objective of the linear
optimisation problem (LP)

maxµ,a µ

s.t. yi
∑|F ′|

j=1 ajfj(xj) ≥ µ i = 1, . . . ,m

aj ≥ 0 j = 1, . . . , |F ′|
∑|F ′|

j=1 aj = 1,

(1.9)

where the dual is given by

minw,b b
s.t.

∑m
i=1 yiwifj(xi) ≤ b j = 1, . . . , |F ′|

0 ≤ wi i = 1, . . . ,m
∑m

i=1 wi = 1.

(1.10)

For data sets with a larger amount of noise however, increasing the small-
est margin often degrades the generalisation error due to overfitting as shown
by [53, 10, 54]. As pointed out by [54], maximisation of µ is indeed not ob-
vious from the PAC-bound given in Eq. 1.7. Moreover, since the first term
on the right hand side takes the whole margin distribution into account,
allowing for a training error larger than zero leads to a larger value of θ,
but therefore the second term can become smaller. Thus, a relaxation of
the hard margin concept to allow for mistrusting parts of the data could be
beneficial.

The concept of the soft margin was introduced by Cortes et al. [16]
to improve the performance of the related SVMs given noisy data. More
specifically, the soft margin of an example is defined by

µ̃ (xi, yi) = µ (xi, yi) + D · ζi, (1.11)

where ζi is a non-negative quantity expressing the mistrust in example xi

and D is an a priori chosen constant which trades off between margin max-
imisation and misclassification error. Accordingly, Demiriz et al. provide an
alternative formulation for the LP given by Eq. 1.9 where the constraints
are relaxed,

maxµ,a,ζ µ−D
∑m

n=1 ζi

s.t. yi
∑|F ′|

j=1 ajfj(xi) + ζi ≥ µ i = 1, . . . ,m

ζi ≥ 0 i = 1, . . . ,m
aj ≥ 0 j = 1, . . . , |F ′|
∑|F ′|

j=1 aj = 1,

(1.12)



12 Chapter 1. Image categorisation

and the dual LP is given by

minb,w b
s.t.

∑m
i=1 yiwifj(xi) ≤ b j = 1, . . . , |F ′|

0 ≤ wi ≤ D i = 1, . . . ,m
∑m

i=1 wi = 1.

(1.13)

It is instructive to note that in order to obtain any meaningful solutions the
amount of slackness is controlled by a linear term within the objective of
the primal. As can be seen by Eq. 1.13, the linear term and the relaxed
constrains translate to an upper bound of D for the weights of the examples
in the dual.

Demiriz et al. follow [55] and suggest controlling the generalisation capa-
bility according to D = 1

νm with ν ∈ (1/m, 1). More specifically, when ν → 1
the misclassification cost in the dual becomes the same for each example and
only a few constraints will be active, i.e. equal b, within the solution. By the
complementary slackness condition aj (

∑m
i=1 yiwifj(xi)− b) = 0 these cor-

respond to those weak classifiers having aj > 0 within the primal. Thus the
resulting strong classifier combines only a few weak classifiers which usually
results in a poor generalisation error. However as ν decreases the misclas-
sification costs will increase for hard-to-classify points and will be zero for
the others. Thus w becomes sparser and therefore the number of active
constraints in the solution of the dual can increase. For ν → 1/m however
the number of aj > 0 can become too large and the generalisation error of
the strong classifier is poor due to overfitting to the training data. Thus ν
is a critical parameter and therefore its optimal value is usually determined
using a validation set.

For practical situations usually the dual problem (Eq. 1.13) is considered,
since, in contrast to the primal, its solution does not require the generation
of all f ′ ∈ F ′. More specifically, given a solution (b,w) for a problem
consisting of j weak classifiers, the task of the weak learning algorithm
WeakLearn: (w,D) → F ′ is to find a weak classifier fj+1 in the space of
weak classifiers F ′ which maximises the accuracy under the current boosting
weights,

fj+1 = arg max
f ′∈F ′

m∑

i=1

yiwif
′(xi) = arg max

f ′∈F ′

1− ε′

2
. (1.14)

In fact, it is sufficient to either find a weak classifier for which

m∑

i=1

yiwifj+1(xi) > b

or guarantee that no such fj+1 ∈ F ′ exists. In the first case boosting is
continued by adding the new weak classifier to the problem, i.e. by increasing
j in Alg. 2. In the second case the current strong classifier f is optimal and
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Algorithm 2 LPBoost

Given a data set D = {(xi, yi)}mi=1 with y ∈ {−1,+1}, a weak learning
algorithm WeakLearn and a slackness parameter D,

initialise w←
(

1
m , . . . , 1

m

)
, b← 0, j ← 0

loop
j ← j + 1
fj ←WeakLearn(w,D)

if
m∑

i=1
wiyifj(xi) ≤ b then

j ← j − 1, break
else

(w, b)←







arg min
w,b

b

s.t.
∑m

i=1 wiyifk(xi) ≤ b k = 1, . . . , j
0 ≤ wi ≤ D i = 1, . . . ,m
∑m

i=1 wi = 1
a← Lagrangian multipliers from LP

end if
end loop

return f (x) = sgn
(
∑j

k=1 akfk (x)
)

boosting can be stopped. In contrast to AdaBoost this provides a natural
stopping criterion for the linear programming boosting (LPBoost) algorithm
shown in Alg. 2.

1.3.3 Weak learner

Next we will describe the different types of weak learners used. The original
framework by Opelt et al. suggests to build a weak classifier using a reference
feature vector of some type together with a similarity threshold. Thus the
prediction of a category is based on the appearance of such reference features
within an image. We extend this idea and search for spatial geometric
relations between the detected locations of reference features within the
images.

Simple weak learner

For visual categorisation purposes we are interested in a set of reference
features to represent the content of an image with respect to the target
category6. For this the original framework suggests clustering the feature
vectors for each type φ and to use the resulting sets of cluster centres Υφ =
{υ} for that purpose. Thus the weak learning algorithm has to determine

6such a set is sometimes also referred to as visual vocabulary
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the most useful reference feature for classification given the current example
weights. This is done as follows.

Let υ ∈ Υφ be some distinctive reference feature vector with respect to
the target category. Opelt et al. define its similarity to a feature vector v
of same type φ by the euclidean distance

d (v,υ) = ‖v − υ‖2. (1.15)

Thus if there is any v ∈ Vi,φ with a sufficiently low distance, the appearance
of υ in xi, and therefore of the target category, is indicated. In order to
select such distinctive reference feature vectors Opelt et al. consider the
minimal euclidean distance between image xi and some υ of type φ,

d(xi,υ) = min
v∈Vi,φ

d (v,υ) = min
v∈Vi,φ

‖v − υ‖2 (1.16)

and use a similarity threshold θ to define a simple weak classifier

f(x;υ, θ) =

{

1 d(x,υ) ≤ θ,

−1 else.
(1.17)

According to Eq. 1.14 we want θ to minimise the error given w and υ,

θ = arg max
θ′≥0

m∑

i=1

yiwif(xi;υ, θ′).

For this they sort the distances of υ to the training images, i.e. let π be a
permutation such that

d(xπ(1),υ) ≤ · · · ≤ d(xπ(m),υ), (1.18)

and determine the index s of the image at the optimal decision boundary
given π and w,

s = arg max
s′∈S′

s′∑

i=1

yπ(i)wπ(i) (1.19)

Finally they choose

θ =
d(xπ(s),υ) + d(xπ(s+1),υ)

2
.

Thus, given the multitude of reference features of various type φ the
weak learner returns the weak classifier with lowest error (Eq. 1.14) and
thereby automatically determines the useful φ. It is useful to note that one
can calculate a sorted minimal distance matrix Dm×kφ , kφ = |Υφ| according
to Eq. 1.18 prior to boosting and thereby reduce the amount of memory to
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represent the data to O(m · kφ). Thus at every boosting round the compu-
tational effort is reduced to solving Eq. 1.19 which can be done efficiently
in O(m · kφ) time.

Fig. 1.2(d) visualises the detections by the simple weak classifiers that
have been generated after multiple rounds of LPBoost. More specifically,
the green crosses denote the image locations of interest points whose feature
vectors triggered a simple weak classifier according to Eq. 1.17. The charac-
teristic scales of these interest points are denoted by the surrounding green
circles. The marks of different colour denote the detections by the geometric
weak classifiers which we introduce next.

Geometric weak learner

The geometric weak learner we propose searches for spatial geometric rela-
tions between distinctive reference features. When searching for geometric
relations the search space covers all detected locations and their relative
positions. Thus a full search over all possible geometric directions is a com-
putationally time consuming process. Therefore we use rather simple geo-
metric relations. More precisely, we use the four geometric directions (up,
down, left, right) by which we relate up to three reference features. We dub
those geometric primitives. As learning some object category may require
geometric relations that consist of more than three primitives, our search
algorithm builds hierarchies of such relations as trees. These relations are
referred to as ’relations A’ throughout this work. We also consider more
precise geometric primitives which distinguish between eight geometric di-
rections. We refer to the corresponding relations as ’relations B’. Note that
our geometric relations are invariant to translation and scale but not to
rotation.

To speed up computation, our geometric weak learner uses a greedy
search strategy to find geometric relations as shown by Alg. 3. More specifi-
cally, we combine the previous weak classifiers f1, . . . , fk, . . . , fj−1 only with
the best simple weak classifier f(x;υφ, θ) (Alg. 3, step 3) given the cur-
rent boosting weights. This is reasonable due to Eq. 1.14. Although there
might exist a better weak classifier f̂AND, the search for it would require
the combination of every reference feature of every type φ with each fk.
Nevertheless, we tested this search strategy on a subset of the data. More
specifically, instead of fAND as built in step 3, we generate an optimal
weak classifier f̂AND

k by choosing such an additional simple weak classifier

f̂k from all possible simple weak classifiers given Υ1,Υ2, . . . , that the error
of the combined hypothesis f̂AND

k = fk AND f̂k given the current example
weights is minimised. However, as this approach yielded comparable results
at higher computational cost, we omit it further on.

Fig. 1.3 illustrates the progress made by LPBoost using Alg. 3 in build-
ing a geometric relation. At each boosting round j, the weak learner ei-
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Algorithm 3 Geometric weak learner.

Given a data set D = {(xi, yi)}mi=1 with y ∈ {−1,+1} and asso-
ciated example weights wi, and previously generated weak classifiers
f1, . . . , fj−1,

1: Select weak classifier f ′ according to Eq. 1.14.
2: for k = 1, . . . , j − 1 do
3: Create a weak classifier using a logical AND: fAND

k ← fk AND f ′.
4: Calculate the set X ′ ⊆ X of all images for which fAND

k triggers.
5: The two weak sub-classifiers fk, f

′ are applied on all x ∈ X ′ yielding
two sets of detected locations per image. We select the most frequent
geometric relation between these sets and build the geometric weak
classifier f geom

k .
6: end for
7: Compare performance of f ′, f geom

1 , . . . , f geom
j−1 according to Eq. 1.14 and

output the best.

ther builds a simple or a geometric weak classifier. During the incremental
construction of the geometric weak classifiers, various geometric weak sub-
classifiers are generated. If such a weak sub-classifier is useful with respect
to the final example weights, LPBoost incorporates it into the final decision
function by assigning a positive weight aj to it; otherwise aj will be set to
zero (see Fig. 1.2(e) for a geometric relation actually observed during the
experiments). Hence, the final strong classifier can contain more than one
geometric weak classifier per object. In consequence we do not have to flip
input images such that the objects always face the same way (e.g. motor-
bikes, airplanes), but rather to ensure that there are sufficient examples for
all the important orientations in the data set.

1.4 Multiclass image categorisation

Within our experiments for multiclass classification on Xerox, we observed
large generalisation errors when using a common one-vs-all strategy or hi-
erarchic classifiers. Considering the object categories of this database, it is
likely that the extracted features are shared within different classes. Actu-
ally, Csurka et al. [18] do achieve good results learning feature histograms
with a one-vs-all strategy. Nevertheless, feature histograms cannot exploit
geometric relationships between the features contained in an image, although
this might be discriminative information. Hence, we chose a pairwise strat-
egy and combine our individual classifiers by a voting scheme.

Simple voting methods such as majority voting using hard labels,

y = arg max
y′:1,...,n

n∑

y′′=1

fy′,y′′(x),
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Figure 1.3: The development of a (fictional) hierarchy of geometric prim-
itives by Alg. 3. At boosting iteration j = 1 the simple weak classifier
f1 consisting of an reference feature and a threshold is selected. It trig-
gers for bar-like structures like the mounting point of the handle-bar. Next
(j = 2) the geometric weak learner selects a similar simple weak classifier
f ′ in Step 1 which triggers at the right hand of f1. This geometric relation
is most the frequent among all relations between the detections of f1 and
f ′, yielding f geom

2 (Step 5). Since f geom
2 performs performs better than f ′

it is selected as output (Step 7). With ongoing iterations it becomes more
complex (f60). Meanwhile other geometric weak classifiers like f12 were gen-
erated independently. At j = 77 however both get combined as indicated
by f77.
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where the subscript y′, y′′ denotes a specific combination of target and
counter class, not only ignore available information about the different de-
grees of overall confidence in some pairwise classifier, but also the classifier’s
own confidence in its prediction. Hence, a weighted voting scheme incorpo-
rating such information seems more reasonable.

According to Eq. 1.2 we propose measuring the confidence of a pairwise
classifier fy′,y′′ in its prediction by the signed distance f⊥

y′,y′′(xi) of an ex-
ample xi to the decision boundary. Thus for an n-class problem we obtain
n · (n− 1) signed distances

f⊥(xi) =
(

f⊥
1,2(xi), f

⊥
2,1(xi), ..., f

⊥
n−1,n(xi), f

⊥
n,n−1(xi)

)′
∈ [−1, 1]n·(n−1)×1.

(1.20)
Using such we address the overall confidence in each classifier given a certain
class y ∈ Y. More specifically, for each yi ∈ Y we try to find weights wy ∈
R1×n·(n−1) together with a by ∈ R such that the overall vote corresponds to
the true class yi,

yi = arg max
y∈Y

wy · f⊥(xi) + by. (1.21)

For this purpose we formulate the following quadratic problem

min ‖ (wn, ...,wn) ‖2 + C ·∑
i

ζi

s.t. wy · f⊥(xi) + by ≥ 1− ζi, y = yi

−wy · f⊥(xi)− by ≥ 1− ζi, ∀y ∈ Y : y 6= yi

ζi ≥ 0 i = 1, . . . ,m,

(1.22)

which corresponds to a linear SVM. Similar to Eq. 1.12, the amount of
slackness over all f⊥(xi) is controlled by the parameter C.

1.5 Experimental evaluation

Within this section we will evaluate our framework. First we describe the
choice of the parameters for the feature extraction methods and the learning
algorithms used (Sec. 1.5.1). Then we evaluate our framework on the Xerox
data and compare our results to those reported in literature [18]. Thereby
we also evaluate the improvements of our weighted voting approach over
majority voting. Furthermore, we will report the results of our framework
from the PASCAL Visual Object Classes Challenge 2006 (Eq. 1.5.3).

1.5.1 Parameter selection

For our experiments we use the Harris-Laplace detector to locate interest
points and to extract regions of discontinuity of 16 × 16 pixels. To ensure
at least one interest point per image we chose a minimum threshold with a
value of 2900 for the response of the Laplacian and omit small regions with



Section 1.5. Experimental evaluation 19

a characteristic scale of σ < 1.5. Following Opelt et al. we extract four
types of features from the regions of discontinuity: subsampled grey-values,
basic moments, moment invariants and SIFTs.

For the first three feature types, we normalise illumination of the regions
by homomorphic filtering, where we use a frequency threshold with a value
of 2.1 below which values in the frequency domain are decreased by a factor
of 0.6 and above which they are increased by a factor of 2. As it is not
clear if discriminative information is lost by this normalisation we obtain
three additional feature types using unnormalized image regions for these
description methods. Furthermore, we use PCA to normalise all features
types. Moreover we extract the SIFT descriptors using the binaries from
D.G. Lowe7. Additionally we obtain another feature type by reducing these
SIFT descriptors to their 40 largest components as obtained from PCA,
which accounts for their sparseness.

According to the results reported by Opelt et al. Similarity-Based-
Segmentation outperforms the Mean Shift approach. Therefore we use only
the former method for segmentation with the parameter values suggested
by Opelt et al., i.e. a value of 0.83 for the similarity threshold and of 50 for
the minimum number of pixels in a region. Then we extract intensity values
and their spatial distribution as described in Sec. 1.3.1 since Opelt et al.
showed that this description method outperforms the method of invariant
moments. We normalise these descriptors through whitening.

In a second preprocessing step we calculate the reference features. For
this we cluster the different features by k-means using kφ = |Υφ| = 2·⌊√mφ⌋
centres with a random initialisation from the data, where

mφ =

∣
∣
∣
∣
∣

m⋃

i=1

Vi,φ

∣
∣
∣
∣
∣

is the total number of feature vectors extracted.

1.5.2 Xerox database

We evaluate our image categorisation on the Xerox data. First we relate the
performance of our multiclass framework to that reported for the bags-of-
keypoints approach. Then we will investigate the geometric relations learned
within the pairwise classifiers. Finally we will investigate the actual types
of features learned by given different class combinations.

The Xerox database consists of 1774 real-world images from n = 7 differ-
ent categories. The categories are faces (790), buildings (150), trees (150),
cars (201), phones (216), bikes (125) and books (142). The numbers in
parentheses indicate the number of images per category. Table 1.1 shows an

7available at http://www.cs.ubc.ca/~lowe/keypoints/
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φ feature type ill. norm. PCA mφ kφ

1 subs. grey-values no yes 854 376 1 848
2 yes yes 854 376 1 848
3 basic moments no yes 852 755 1 846
4 yes yes 854 376 1 848
5 moment invariants no yes 854 360 1 848
6 yes yes 854 313 1 848
7 SIFTS no yes 809 063 1 798
8 no PCA 40 809 063 1 798
9 segments no yes 690 070 1 661

Table 1.1: Feature types with normalisation steps for Xerox. For each fea-
ture type φ, mφ denotes the total number of regions extracted from the data
while kφ denotes the number of reference features obtained by clustering the
region descriptors with k-means.

overview of the extracted feature types where we note that the numbers of
extracted feature vectors are considerable.

Due to time restrictions we determine the optimal slackness parameters
D,C given the whole data set. More specifically we initially split the data
into a training set and a test set, and utilise a simple iterative search using
nested intervals over the parameter space which optimises the test error.
We fix the optimal parameters. Then we perform a 10-fold stratified cross-
validation to asses the sensitivity of the results to the data. For each run
we split the data into a training set D and a test set DE . From D we
select n · (n − 1) training sets where each includes only the examples for
a specific class combination. Given the fixed parameters we first train our
pairwise classifiers and then utilise the weighted voting scheme8 to obtain
our multiclass classifier. Tab. 1.2 shows the average in realised accuracy, i.e.
1− q (Eq. 1.4), as measured on DE . For reference Tab. 1.3 (top) shows the
confusion matrix given the more complex ’relations B’.

As can be seen by Tab. 1.2 on average our weighted voting scheme out-
performs standard majority voting by at least 16%. Furthermore our im-
age categorisation framework outperforms the bag-of-keypoints approach of
Csurka et al. by at least 5% on average, even without geometry. Although
slight improvements can be observed for the more complex ’relations B’, the
difference is however not very significant as the confidence intervals overlap.
Nevertheless the geometric relations learned seem reasonable as shown by
Fig. 1.4, where we show exemplary images together with the detections of

8For the SVM we use SVM-light [35], available at http://svmlight.joachims.org/,
where we also tried nonlinear kernels but omit their use further on since those kernels
performed worse than the linear one.
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F φ voting accuracy

LPBoost + simple 1 . . . 9 majority 64.25 (3.21)
LPBoost + ’relations A’ 1 . . . 9 majority 74.78 (2.92)
LPBoost + ’relations B’ 1 . . . 9 majority 75.08 (2.51)
SVM + bag-of-keypoints [18] 7 maxy f⊥

y (x) 85.00 (n/a)

LPBoost + simple 1 . . . 9 weighted 90.60 (2.06)
LPBoost + ’relations A’ 1 . . . 9 weighted 90.90 (2.16)
LPBoost + ’relations B’ 1 . . . 9 weighted 91.28 (2.28)

Table 1.2: Average accuracy as observed on Xerox from 10-fold stratified
cross-validation given different types of learning algorithms and sets of fea-
ture types used.

the weak classifiers learned. All example images were taken from a single fold
of the cross-validation procedure. For buildings vs. trees our method selects
only one simple weak classifier using reference feature of type SIFT (PCA40)
feature for classification. As can be seen by Fig. 1.4(a) - 1.4(c) it triggers par-
ticularly at window corners. Figures 1.4(d)-1.4(e) show false detections of
that classifier since both images belong to the class of trees as those are in
the foreground. Although the buildings are in the background, our classifier
detects the window corners that are visible through and around the tree
and is therefore still able to predict the building. On the other hand, Fig-
ure 1.4(f) gets misclassified as tree because there are no such corners visible.
These examples show the difficulties in building an unambiguous database,
and confirm the quality of our classifiers.

In that line of argument, one would expect that such a simple feature
would be insufficient to distinguish buildings from books, since window cor-
ners are similar to corners of books. Indeed, the weak classifier of highest
weight is a geometric relation between two features: one feature represents
a window corner and the other triggers on green fields. The second best
weak classifier uses three features, and votes in the case where there is a
hedgerow in front of a building Fig. 1.4(g) - 1.4(i). This is reasonable con-
sidering that the class book contains only books on bookshelves or desktops,
but no plants. Figures 1.4(j) and 1.4(k) belong to the class faces. The geo-
metric weak classifier selected votes on triangle configurations of an ear, the
hair line and the collar. Figures 1.4(l) and 1.4(m) show a weak classifier for
the class of phones.

Furthermore, we analysed the overall selection of feature types by the
total weight LPBoost assigns to the simple weak classifiers that utilize a
certain feature type φ (Eq. 1.2). Given the optimal parameters, the ini-
tial split of the data and only simple weak classifiers (i.e. no geometry), it
turned out that most pairwise classifiers select segments along with PCA40-
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→ faces bldgs trees cars phns bikes books

faces 98.99 0.67 1.33 8.48 2.65 0 0.72
bldgs 0 70.67 8.00 0 0 2.84 8.93
trees 0 10.00 87.33 0 0 0.83 1.43
cars 0.51 0 0.67 84.10 9.42 0 0
phns 0.51 0 0 7.43 87.94 0 0
bikes 0 2.67 2.67 0 0 94.66 2.14
books 0 16.00 0 0 0 1.67 86.79
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Table 1.3: (top) Confusion matrix as obtained from 10-fold cross validation
using the more complex geometry ’relations B’ and the weighted voting
scheme. The true classes are denoted in the top row. (bottom) Total weight
LPBoost assigns to each feature type φ given different class combinations
of the initial split of the data for the non-geometric case. The lower right
histogram shows the average in total weight over all class-combinations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Figure 1.4: Example images with detections of selected weak classifiers.
Fig. 1.4(a) - 1.4(f) are used for learning buildings vs. trees. Only the most
important weak classifier and its matching feature locations are drawn.
Fig. 1.4(a) - 1.4(c) show correct classifications, Fig. 1.4(d) - 1.4(f) show in-
correct ones. Fig. 1.4(g) - 1.4(i) show correct classifications using a geomet-
ric classifier learned from buildings vs. books. Fig. 1.4(j) - 1.4(m) show
geometric weak classifiers for faces and simple weak classifiers for phones.
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SIFTs (Tab. 1.3). As shown in Table 1.3, for each pairwise classifier we
observe a strong correlation between its average test error and the distribu-
tion of different feature types. That is, if two categories are hard to classify,
the learning algorithm uses more feature types. This indicates the intrinsic
flexibility of the framework when dealing with difficult class combinations.
For example the results of Csurka et al. have shown that around 33% of
all phones get misclassified by faces when learning is based solely on SIFT
features. In contrast the misclassification rate of our method for this class
combination is around 2.65% on average where our pairwise classifier utilises
various feature types (Tab. 1.3). Although this specific result of Csurka et
al. may have other reasons, we observed such improvements given other
difficult class combinations as well.

1.5.3 PASCAL VOC Challenge 2006

This section reports the results of our framework at the PASCAL VOC
challenge 2006, where the goal was to categorise real-world images. The
results for the participants were compared using the area under the ROC
curve (AUC).

The data set for this challenge consists of 5304 images from n = 10
different classes covering bicycles (538), buses (354), cars (1097), cats (774),
cows (403), dogs (735), horses (501), motorbikes (469), persons (1341) and
sheep (489). The numbers in parentheses denote the number of images per
category. As can be seen by the examples shown in Fig. 1.5 one image may
contain objects of various classes.

The data set was split into 25% for training, 25% for validation and 50%
for testing, where the labels for the latter were withheld until the submission
deadline. For each target category the participants were free to submit their
predictions using a separate learning method. More specifically, evaluation
was based on the confidence value the classifier assigns to the occurrence of
a target object of label y in a test image. The AUC for the target class was
then calculated using different thresholds on such confidence values.

We split the training the data into n · (n − 1) training sets where each
set includes only the examples for a specific class combination. As an im-
age can contain objects from more than one category, for pairwise learning
we label an image as positive when an object of the target class is visi-
ble, irrespective of the appearance of the counter class. In contrast to the
experiments on Xerox, we only used simple weak hypotheses since the com-
putational effort to calculate geometric relations is huge given the number
of extracted features and the number of classes. However, this time the
slackness parameters D and C were optimised on the validation set, where
C itself was optimised to maximise the AUC instead of the error. Thereby
we use wy · f⊥(xi) + by (see Eq. 1.21) as a measure of confidence in each
y ∈ Y given xi.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

Figure 1.5: Example images from the PASCAL VOC Challenge 2006 for
each class.
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Within preliminary experiments we observed that our pairwise classifiers
attain only moderate validation accuracy given class-combinations of cows,
horses, sheep, cats and dogs. For this reason we decided to add the colour
segments proposed in Sec. 1.3.1 to the set of feature types. More specifically,
we used the binaries of Felzenszwalb et al.9 and smoothed the images using a
Gaussian filter as suggested choosing σ = 0.3. For the trade-off parameter of
the merging criterion we used the default value of 500 and require a minimal
segment size of 100. In addition to relative size w.r.t the image, we described
these segments by their mean colour within the Lab-space relative to the
standard D65 white point10. To preserve the perceptual uniformness of the
Lab-space we calculate the similarity of two feature vectors vφ, ṽφ of this
type as follows. First we calculate their euclidean distance in Lab-space,
and normalise the result using a logistic function,

d′(vφ, ṽφ) = 2 · (0.5+

exp

(

−η1 ·
√

(vφ,L − ṽφ,L)2 + (vφ,a − ṽφ,a)
2 + (vφ,b − ṽφ,b)

2

))−1

,

with η1 = 0.02. Then we penalise a large difference in segment size A by

d(vφ, ṽφ) =







d′(vφ, ṽφ),
max(A,Ã)
min(A,Ã)

≤ η2

1
η2
· max(A,Ã)

min(A,Ã)
· d′(vφ, ṽφ),

max(A,Ã)
min(A,Ã)

> η2

with η2 = 4. We use this measure for both, to cluster the features of this
type (Sec. 1.5.1) and to calculate the minimal distance between an image xi

and a reference feature of this type (Eq. 1.16).
Tab. 1.4 shows an overview of the extracted feature vectors where we

note that their numbers are considerable. Fig. 1.6 shows the total weight
LPBoost assigns to simple weak hypotheses utilising reference features of
specific types. As can be seen there for most class-combinations shown
the total weight assigned to colour segments has either first or second rank
amongst all feature types. Notably, the validation error of these pairwise
classifiers improved compared to our preliminary experiments without colour
segments. Thus we argue that the other feature types lack of discriminative
information given these combinations of classes and that colour segments
provide additional discriminative information. Moreover, given the average
in total weight assigned over all class-combinations (as shown in the lower
right) colour segments attain the second rank and therefore prove to be
useful for other classes as well.

Tab. 1.5 shows the results of those participants of the challenge that
achieve at least one top rank with respect to the AUC as measured on the

9available at http://people.cs.uchicago.edu/~pff/segment/
10ISO 10526:1999/CIE S005/E-1998, http://www.cie.co.at/publ/abst/s005.html
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φ feature type ill. norm. PCA mφ kφ

1 subs. grey-values no yes 4 017 292 4 008
2 yes yes 4 017 292 4 008
3 basic moments no yes 4 017 292 4 008
4 yes yes 4 017 292 4 008
5 moment invariants no yes 4 017 292 4 008
6 yes yes 4 017 292 4 008
7 SIFTS no yes 7 132 276 5 341
8 no PCA 40 7 132 276 5 341
9 segments no yes 2 838 449 3 369

10 colour segments no no 287 704 1 072

Table 1.4: Feature types with normalisation steps for VOC06. For each fea-
ture type φ, mφ denotes the total number of regions extracted from the data
while kφ denotes the number of reference features obtained by clustering the
region descriptors with k-means.
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Figure 1.6: Total weight LPBoost assigns to each feature type φ given the
combinations of the classes cats, cows, dogs, horses and sheep from the VOC06
database. The lower right histogram shows the average in total weight over
the class-combinations given all n = 10 classes.
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INRIA QMUL XRCE MUL
Marsz. Moosm. HSLS LSPCH 1vs1

bicycle 0.929 0.903 0.944 0.948 0.943 0.864
bus 0.984 0.933 0.984 0.981 0.978 0.945
car 0.971 0.957 0.977 0.975 0.967 0.928
cat 0.922 0.883 0.936 0.937 0.933 0.826
cow 0.938 0.895 0.936 0.938 0.940 0.789
dog 0.856 0.825 0.874 0.876 0.866 0.764
horse 0.908 0.824 0.922 0.926 0.925 0.733
motorbike 0.964 - 0.966 0.969 0.957 0.906
person 0.845 0.780 0.845 0.855 0.863 0.718
sheep 0.944 0.930 0.946 0.956 0.951 0.872

Table 1.5: Results of the PASCAL VOC challenge 2006. The columns show
the AUC of all participants having at least one top rank (indicated by the
bold letters) as measured on the test set given the target categories. The
results of our framework are shown in the last column (MUL 1vs1).

test set given a specific target class. The results of our framework are shown
in the last column. As can be seen there on average we obtain around
0.1 less AUC compared to the top rank of each class. Given a total of 20
submissions we achieve an average rank of 12.8 over all target classes. These
results are reasonable as we (a) made little effort in tuning target-specific
feature extractors, the number of clusters and so on, and (b) utilise the
predictions of only one multiclass classifier to distinguish among all classes.

1.6 Discussion

This chapter discussed extensions to the image categorisation framework
of Opelt et al.. Specifically we presented a method for learning geometric
relations between features through boosting. Furthermore we provided a
weighted voting scheme to combine the predictions of pairwise classifiers.
To our knowledge this has not been done before.

During our experiments we found that learning without geometry al-
ready gives good performance, and that slight improvements are achieved
by moving from simple weak classifiers to more complex geometric rela-
tions. An evaluation of the geometric weak classifiers obtained from the
experiments on Xerox revealed that it is hard to find a relation with more
than three features. Although the geometric relations learned are reason-
able, simple weak classifiers using a single feature and pairwise geometric
relations dominate the final solution. This might be due to the rather small
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number of images for some classes since there seems not to be sufficient
support within the images that would justify more geometric weak classi-
fiers. For larger databases like VOC06 however the computational effort to
learn geometric relations becomes intractable due to the vast number of ex-
tracted features, many of them not located on the target object. Therefore
one alternative would be to increase the amount of supervision by providing
additional information about the location of target objects using bounding
boxes for example. While the features extracted therein would be advis-
able to learn geometric weak classifiers, those located in the background
can provide contextual information which could be learned using the sim-
ple weak learner. This however would shift the learning problem towards
generic object recognition where object localisation matters.
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Chapter 2

Cost-minimising strategies

for data labelling

2.1 Introduction

It has become evident from the last chapter that much of classical machine
learning deals with the case where we wish to learn a target concept in the
form of a function f : X → Y, when all we have is a finite set of examples
D = {(xi, yi)}mi=1. However, in many practical settings, it turns out that
only the observations xi are available, while the availability of observations
yi is restricted in the sense that either (a) they are only observable for a
subset of the examples or (b) further observations may only be acquired at
a cost. This work deals with the second case, where we can actually obtain
labels for any xi, but doing so incurs a cost. Active learning algorithms (i.e.
[14, 62]) deal indirectly with this by selecting examples which are expected
to increase accuracy the most.

The potential of active learning is frequently showed by the following
example. Assume we have data on the real line and we consider threshold
functions of the form

f(x; θ) =

{

1, x ≤ θ

0, else

Then classical learning theory tells us that if the underlying distribution D

can be classified correctly by some f ∈ F , the so-called realisable case, its
enough to draw m = O (1/ǫ · log(1/ǫ)) random labelled examples from D

and return any classifier consistent with them to achieve an error ǫ-close to
zero. But if we draw m unlabelled examples from D we can infer an equally
good classifier by a simple binary search that asks for only O (log (1/ǫ))
labels. Unfortunately this result does not hold in general. When we move
to the unrealisable case, i.e. there is no f ∈ F that classifies D correctly,
it has been shown by [36] that if the best f ∈ F has error r > 0 then the

31
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label complexity becomes Ω
(
r2/ǫ2

)
to obtain an accuracy ǫ-close to r. Thus

active learning would essentially perform like passive learning.
However, the basic question of whether new examples should be queried

at all is seldom addressed. This chapter deals with the labelling cost ex-
plicitly. We introduce a cost function that represents the trade-off between
final performance (in terms of generalisation error) and querying costs (in
terms of the number of labels queried). This is used in two ways. Firstly,
as the basis for creating cost-dependent stopping rules. Secondly, as the ba-
sis of a comparison metric for learning algorithms and associated stopping
algorithms.

To expound further, we decide when to stop by estimating the expected
performance gain from querying additional examples and comparing it with
the cost of acquiring more labels. One of the main contributions is the
development of methods for achieving this in a Bayesian framework where
we show experimentally that the stopping times we obtain are close to the
optimal stopping times.

We also use the trade-off in order to address the lack of a principled
method for comparing different active learning algorithms under conditions
similar to real-world usage. For such a comparison a method for choosing
stopping times independently of the test set is necessary. Combining stop-
ping rules with active learning algorithms allows us to objectively compare
active learning algorithms for a range of different labelling costs.

This chapter is organised as follows. Sec. 2.1.1 introduces the proposed
cost function for when labels are costly, while Sec. 2.1.2 discusses related
work. Sec. 2.2 derives a Bayesian stopping method that utilises the proposed
cost function.

2.1.1 Combining classification error and labelling cost

There are many applications where raw data is plentiful, but labelling is time
consuming or expensive. Classic examples are speech and image recognition,
where it is easy to acquire hours of recordings, but for which transcription
and labelling are laborious and costly. For this reason, we are interested in
querying labels from a given data set such that we find the optimal balance
between the cost of labelling and the classification error of the hypothesis
inferred from the labelled examples. This arises naturally from the following
cost function.

Let some algorithm F which queries labels for data from some unlabelled
data set D, incurring a cost γ ∈ [0,∞) for each query. If the algorithm stops
after querying the labels of examples x1, x2, . . . , xt, with t ∈ [1, |D|] it will
suffer a total cost of γt, plus a cost depending on the generalisation error.
Let ft be the classifier obtained after having observed t examples. Then we
define the total cost for a specific classifier ft as

E[Cγ | ft,D ] = E[Rt|ft,D ] + γt. (2.1)
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We may use this cost as a way to compare learning and stopping algorithms,
by calculating the expectation of Cγ conditioned on different algorithm com-
binations, rather than on a specific hypothesis. In addition, this cost func-
tion can serve as a formal framework for active learning.

Thus, these notions of optimality can in principle be used both for de-
riving stopping and sampling algorithms and for comparing them. Suitable
metrics of expected real-world performance will be discussed in the next
subsection. Stopping methods will be described in Sec. 2.2.

2.1.2 Related work

In the active learning literature, the notion of an objective function for
trading off classification error and labelling cost has not yet been adopted.
However, a number of both qualitative and quantitative metrics were pro-
posed in order to compare active learning algorithms. Some of the latter are
defined as summary statistics over some subset T of the possible stopping
times. This is problematic as it could easily be the case that there exists
T1,T2 with T1 ⊂ T2, such that when comparing algorithms over T1 we get
a different result than when we are comparing them over a larger set T2.
Thus, such measures are not easy to interpret since the choice of T remains
essentially arbitrary. Two examples are (a) the percentage reduction in er-
ror, where the percentage reduction in error of one algorithm over another
is averaged over the whole learning curve [57, 43] and (b) the average num-
ber of times one algorithm is significantly better than the other during an
arbitrary initial number of queries, which was used in [38]. Another metric
is the data utilisation ratio used in [38, 43, 1], which is the amount of data
required to reach a specific error rate. It is instructive to note that the
selection of the appropriate error rate is essentially arbitrary; in both cases
the concept of the target error rate is utilised, which is the average test error
when almost all the training set has been used.

Our setting is more straightforward, since we can use Eq. 2.1 as the basis
for a performance measure. It is important to note that we are not strictly
interested in comparing hypotheses f , rather algorithms F . In particular,
we can calculate the expected cost given a learning algorithm F and an
associated stopping algorithm QF (γ), which is used to select the stopping
time tγ . From this follows that the expected cost of F when coupled with



34 Chapter 2. Cost-minimising strategies for data labelling

QF (γ) given a data set D sampled according to the data distribution D is

ve(γ,QF (γ), F,D,D) ≡ E [Cγ | QF (γ), F,D,D ]

=
∑

t

(E[Rt | F,Dt,D ] + γt)P(Tγ = t | QF (γ), F,D)

=
∑

t

(E[Rt | ft,D ] + γt)P(Tγ = t | QF (γ), F,D)

=
∑

t

E[Cγ | ft,D ]P(Tγ = t | QF (γ), F,D),

(2.2)

where the sum directly evaluates to ve(γ, tγ , F,D,D) when QF (γ) is deter-
ministic. Furthermore we define the expected error of F at time t given the
data distribution D

rt ≡ E [Rt | F,D ] =

∫

St

E [Rt | F,Dt = u,D ] p(Dt = u | F,D) du = E[qt]

(2.3)
and the expected cost given the data distribution D

E [Cγ | QF (γ), F,D ] =

∫

S

E[Cγ | QF (γ), F,D = u,D ]p(D = u | D) du.

(2.4)
By keeping one of the algorithms fixed, we can vary the other in order to

obtain objective estimates of their performance difference. In addition, we
may want to calculate the expected performance of algorithms for a range
of values of γ, rather than a single value, in a manner similar to what [8]
proposed as an alternative to ROC curves. This will require a stopping
method QF (γ) which will ideally stop querying at a point that minimises
E(Cγ).

The stopping problem is not usually mentioned in active learning liter-
ature and there are only a few cases where it is explicitly considered. One
such case is [62], where it is suggested to stop querying when no example
lies within the SVM margin. The method is used indirectly in [13], where if
this event occurs the algorithm tests the current hypothesis1, queries labels
for a new set of unlabelled examples2 and finally stops if the error measured
thereby is below a given threshold; similarly, [6] introduced a bounds-based
stopping criterion that relies on an allowed error rate. These are reasonable
methods, but there exists no formal way of incorporating the cost function
considered here within them. For our purpose we need to calculate the ex-
pected reduction in classification error when querying new examples and

1i.e. a classifier for a classification task
2Though this is not really an i.i.d. sample from the original distribution except when

|D| − t is large.
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compare it with the labelling cost. This fits nicely within the statistical
framework of optimal stopping problems.

2.2 Stopping algorithms

An optimal stopping problem under uncertainty is generally formulated as
follows [20]. At each point in time t, the experimenter needs to make a
decision a ∈ A, for which there is a loss function L(a|ω) defined for all
ω ∈ Ω, where Ω is the set of all possible universes. The experimenter’s
uncertainty about which ω ∈ Ω is true is expressed via the distribution
P(ω|ξt), where ξt represents his belief at time t. The Bayes risk of taking an
action at time t can then be written as ρ0(ξt) = mina

∑

ω L(a, ω)P(ω|ξt).
Now, consider that instead of making an immediate decision, he has the
opportunity to take exactly K more observations DK from a sample space
SK , at a cost of γ per observation, thus allowing him to update his belief
to P(ω|ξt+K) ≡ P(ω|DK , ξt). What the experimenter must do in order to
choose between immediately making a decision a and continuing sampling,
is to compare the risk of making a decision now with the cost of making K
observations plus the risk of making a decision after K time steps, when the
extra data would enable a more informed choice. In other words, one should
stop and make an immediate decision if the following holds for all K:

ρ0(ξt) ≤ Kγ+

∫

SK

p(DK =s|ξt)min
a

[
∑

ω

L(a, ω)P(ω|DK =s, ξt)

]

ds. (2.5)

We can use the same formalism in our setting. In one respect, the prob-
lem is simpler, as the only decision to be made is when to stop and then
we just use the currently obtained classifier. On the other hand for active
learning we are interested in the more general problem where the experi-
menter may choose to stop at any time t + k, 0 ≤ k ≤ K according to the
observations made so far. The difficulty lies in estimating the expected er-
ror. Unfortunately, the metrics used in active learning methods for selecting
new examples (see [38] for a review) do not generally include calculations of
the expected performance gain due to querying additional examples.

There are two possibilities for estimating this performance gain. The
first is an algorithm-independent method, described in detail in Sec. 2.2.1,
which uses a set of learning curves, arising from theoretical convergence
properties. We employ a Bayesian framework to infer the probability of each
learning curve through observations of the error on the next randomly chosen
example to be labelled. The second method, outlined in Chap. 4, relies upon
a classifier with a probabilistic expression of its uncertainty about the class
of unlabelled examples, but is much more computationally expensive.
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Algorithm 4 A general bounded stopping algorithm using Bayesian infer-
ence.
Given a data set D and any learning algorithm F , an initial belief P(ω | ξ0)
and a method for updating it, and additionally a known query cost γ, and
a horizon K,

1: for t = 1, 2, . . . do
2: Use F to query a new example i ∈ D and obtain ft.
3: Observe the empirical error estimate vt for ft.
4: Calculate P(ω | ξt)← P(ω | vt, ξt−1)
5: if ρK(ξt) > ρ0(ξt) then
6: break
7: end if
8: end for
9: return t

2.2.1 Bayesian convergence estimation

The presented Bayesian formalism for optimal sequential decisions follows
[20]. We require maintaining a belief ξt in the form of a probability distri-
bution over the set of possible universes ω ∈ Ω. Furthermore, we require the
existence of a well-defined cost for each ω. Then we can write the Bayes risk
as in the left side of (2.5), but ignoring the minimisation over A as there is
only one possible decision to be made after stopping,

ρ0(ξt) = E(Rt | ξt) =
∑

ω∈Ω

E(Rt | ω)P(ω | ξt), (2.6)

which can be extended to continuous measures without difficulty. We will
write the expected risk according to our belief at time t for the optimal
procedure taking at most k more samples as

ρk+1(ξt) = min {ρ0(ξt),E[ρk(ξt+1) | ξt] + γ} . (2.7)

This implies that at any point in time t, we should ignore the cost for the
t samples we have paid for and are only interested in whether we should
take additional samples. The general form of the stopping algorithm is
defined in Alg. 4. Note that the horizon K is a necessary restriction for
computability. A larger value of K leads to potentially better decisions, as
when K →∞, the bounded horizon optimal decision approaches that of the
optimal decision in the unbounded horizon setting, as shown for example
in Chapter 12 of [20]. Even with finite K > 1, however, the computational
complexity is considerable, since we will have to additionally keep track of
how our future beliefs P(ω | ξt+k) will evolve for all k ≤ K.
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Algorithm 5 OBSV, a specific instantiation of the bounded stopping algo-
rithm.
Given a data set D with examples from the classes Y and any learning
algorithm F , an initial belief P(ω | ξ0) and a method for updating it, and
additionally a known query cost γ for discovering the class label yi ∈ Y of
example xi ∈ D,

1: Split D into DA and DR,
2: r0 ← 1− 1/|Y|.
3: DT ← ∅.
4: Initialise the classifier f .
5: for t = 1, 2, . . . do
6: Sample (xi, yi) ∈ DR without replacement, observe zt ← [f(xi) 6= yi].
7: Calculate P(ω | ξt)← P(ω | zt, ξt−1).
8: If DA 6= ∅, set k ← 2, otherwise k ← 1.
9: if E[Rt+k | ξt] + kγ > E[Rt | ξt] then

10: break
11: end if
12: If DA 6= ∅, use F to query a new example (xj , yj) ∈ DA without

replacement, DT ← DT ∪ (xj , yj).
13: DT ← DT ∪ (xi, yi), f ← F (DT ).
14: end for
15: return t

2.2.2 The OBSV algorithm

In this work we consider a specific one-step bounded stopping algorithm that
uses independent validation examples for observing the empirical error esti-
mate vt, which we dub OBSV and is shown in detail in Alg. 5. The algorithm
considers hypotheses ω ∈ Ω of the learning curve which model how the ex-
pected error rt of the learning algorithm changes with time. Specifically we
assume that the initial error is r0 and that the algorithm always converges to
some unknown final error r∞ ≡ lim

t→∞
rt at some unknown convergence rate.

To model the convergence we will use different classes of theoretical con-
vergence curves, that we index by c, along with a class-specific convergence
rate parameter ̺. Thus we consider models

ω = (c, ̺, r0, r∞) ∈ Ω. (2.8)

where vt will allow us to update our beliefs over Ω. The remainder of this
section discusses the algorithm in more detail.

Steps 1 - 6, 12 - 13. Initialisation and observations

We begin by splitting the training set D in two parts: DA, which will be
sampled without replacement by the active learning algorithm (if there is
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one) and DR, which will be uniformly sampled without replacement. This
condition is necessary in order to obtain i.i.d. samples for the inference
procedure outlined in the next section. However, if we only sample randomly,
and we are not using an active learning algorithm then we do not need to
split the data and we can set DA = ∅.

At each time step t, we will use a sample from DR to update p(ω). If we
then expect to reduce our future error sufficiently, we will query an example
from DA using F and subsequently update the classifier f with both ex-
amples. Thus, not only are the observations used for inference independent
and identically distributed, but we are also able to use them to update the
classifier f .

Step 7. Updating the belief

We model the learning algorithm as a process which asymptotically con-
verges from r0 to r∞. Each model ω will be a convergence estimate, a model
of how the error converges from the initial to the final error rate. More
precisely, each pair (c, ̺) parametrises a function h(t; c, ̺) : N×R+ → [0, 1]
that models how close we are to convergence at time t. The predicted error
at time t given ω will be

g(t;ω) = g(t; c, ̺, r0, r∞) = r∞ + (r0 − r∞) · h(t; c, ̺). (2.9)

We may now use these predictions together with some observations to update
p(ω|ξt−1). More specifically, if P[rt = g(t;ω) | ω] = 1 and we take mt

independent observations

zt = (zt(1), zt(2), . . . , zt(i), . . . , zt(mt)) ∈ {0, 1}mt ,

where zt(i) = [ft(xi) 6= yi], of the error with mean vt, the likelihood of zt

will be given by the Bernoulli density

p(zt | ω) =
(
g(t;ω)vt [1− g(t;ω)]1−vt

)mt
. (2.10)

Then it is simple to obtain a posterior density for ω,

p(ω | zt, ξt−1) =
p(zt | ω)p(ω | ξt−1)

p(zt)
. (2.11)

Starting with a prior distribution p(ω | ξ0), we may sequentially update our
belief using Eq. 2.11 as follows:

p(ω | ξt) ≡ p(ω | zt, ξt−1). (2.12)

The realised learning curve for a particular data set may differ substan-
tially from the expected learning curve: the average learning curve will be
smooth, while any specific instantiation of it will not be. More formally,
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ξt−1 ξt

zt

qt rt

Figure 2.1: Dependency graph for updating the belief. At time t the current
classifier has expected error qt and we observe zt of qt. Together with ξt−1

it then updates its belief to ξt about the models ω ∈ Ω for the expected
error rt. According to Eq. 2.13 we can estimate a distribution for rt from zt

without having to also estimate a distribution for qt.

according to Eq. 1.4 the realised error of F given a specific training set is
qt ≡ E [Rt | F,Dt,D ], while the expected error of F given the data distri-
bution D is rt ≡ E [Rt | F,D ]. The smooth learning curves that we model
would then correspond to models for rt.

Fortunately, in our case we can estimate a distribution over rt without
having to also estimate a distribution for qt, as this is integrated out for
observations z ∈ {0, 1}

p(z | qt) = qz
t (1− qt)

1−z

p(z | rt) =

∫ 1

0
p(z | qt)p(qt = u | rt) du

=

∫ 1

0
uz (1− u)1−z p(qt = u | rt) du

=

{∫ 1
0 (1− u) p(qt = u | rt) du, z = 0

∫ 1
0 u p(qt = u | rt) du, z = 1

=

{

1−E[Rt | rt], z = 0

E[Rt | rt], z = 1

= rz
t (1− rt)

1−z

(2.13)

since by definition rt = E[Rt | rt]. Fig. 2.1 shows the corresponding depen-
dency graph of our model.
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Step 9. Deciding whether to stop

We may now use the distribution over the models to predict the expected
error should we choose to add k more examples. This is simply

E[Rt+k | ξt] =

∫

Ω
g(t + k;ω)p(ω | ξt) dω, (2.14)

where the calculation required for step 9 of Alg. 5 follows trivially.

Specifics of the model

What remains unspecified is the set of convergence curves h(t; c, ̺) that will
be employed. We shall make use of curves related to common theoretical
convergence results. It is worthwhile to keep in mind that we simply aim to
find the combination of the available estimates that gives the best predic-
tions. While none of the estimates might be particularly accurate, we expect
to obtain reasonable stopping times when they are optimally combined in the
manner described in the previous section (Eq. 2.6). Ultimately, we expect
to end up with a fairly narrow distribution over the possible convergence
curves.

One of the weakest convergence results [36] is for sample complexity of
order O(1/ǫ2

t ), which corresponds to the quadratic convergence curve

h(t; 3, κ) =

√
κ

t + κ
, κ > 0, (2.15)

and is denoted using c = 3, ̺ = κ. Another common type is for sample
complexity of order O(1/ǫt), which corresponds to the linear convergence
curve

h(t; 2, λ) =
λ

t + λ
, λ > 0. (2.16)

A final possibility is that the error decreases exponentially fast. This is the-
oretically possible in some cases (see Sec. 2.1 for an example), as was proved
in [6]. The resulting sample complexity of order O(log(1/ǫt)) corresponds
to the exponential convergence curve

h(t; 1, β) = 2−t/β , β > 0. (2.17)

As a simple illustration, we examined the performance of the estimation
and the stopping criterion in a simple classification problem with data of 10
classes, each with an equivariant Gaussian distribution in an 8-dimensional
space. Each new example was simply classified as having the label closest
to the empirical mean of the observations for each class. All examples were
chosen randomly, i.e. DA = ∅.

As can be seen in Fig. 2.2, at the initial stages the estimates are inaccu-
rate. This is due to two facts: (a) The distribution over convergence rates
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Figure 2.2: Illustration of the estimated error on a 10-class problem with
a cost per label of γ = 0.001. On the vertical axis, is the history of the
predicted generalisation error and the predicted costs, i.e E [Rt | ξt] and
E [Cγ (t) | ξt], while qt is the generalisation error a measured on a test-
set of size 1000 and ve is the corresponding actual cost. Finally, E [Rt | ξ1000]
and E [Cγ (t) | ξ1000] are the final estimated learning and cost curves given
all the observations. The stopping time tγ of OBSV is indicated by the blue
dashed line, while the the optimal stopping time t∗γ indicated by the black
dashed line.

is initially dominated by the prior. As more data is accumulated, there is
better evidence for what the final error will be. (b) As we mentioned in the
discussion of step 7, the realised convergence curve is much more random
than the expected convergence curve which is actually modelled. However,
as the number of examples approaches infinity, the expected and realised
errors converge. The stopping time tγ for OBSV is nevertheless relatively
close to the optimal stopping time t∗γ , as ve appears to be minimised near
90. In the following chapter we will present our analytically justified choice
for the unknown convergence parameters and an extensive evaluation of this
stopping algorithm.
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Chapter 3

Experimental evaluation of

OBSV

The purpose of this chapter is to evaluate OBSV. First we describe our
choice of parameters for the learning curves given the difference in cost as
measure of performance (Sec. 3.1). Then we evaluate OBSV using artificial
observations that arise from those learning curves (Sec. 3.2). Using those
we evaluate the various predictions by our model. To evaluate the whole
model we follow [8] and plot performance curves for a range of values of γ.
Thereby we relate the performance to different baselines. Then we move to
real data sets (Sec. 3.3). There we also evaluate different combinations of
sampling strategies and learning algorithms (Sec. 3.4). Finally we evaluate
the performance of the combination of the image categorisation framework
from Chap. 1 and OBSV. For this purpose we utilise image data from VOC06

and show how to chose γ given two scenarios from practice.

3.1 Parameter selection

We want to evaluate OBSV by the difference in cost when compared to
another stopping algorithm. For this we analyse the dependency of this
performance measure on the convergence parameters. As a result we will
obtain a set convergence models (Sec. 3.1.1). Finally we will restrict these
models to those that are reasonable for practice (Sec. 3.1.2).

3.1.1 Solutions towards a constant increase in cost

As shown in Sec. 2.2.2 we model the expected cost at time t given a learning
algorithm F and a data distribution D by some ω ∈ Ω, i.e.

E[Cγ(t) | F,D ] = E [Rt | F,D ] + γt = rt + γt

= g(t;ω) + γt = r∞ + (r0 − r∞) · h(t; c, ̺) + γt.
(3.1)

43
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Then the optimal stopping time tγ(ω) that minimises the expected costs
given the three classes of convergence curves according to Eq. 2.15 - 2.17 is

tγ(1, β, r0, r∞) =
β · ln

(
ln(2)(r0−r∞)

γβ

)

ln(2)
, 0 < β <

ln(2)(r0 − r∞)

γ
(3.2)

tγ(2, λ, r0, r∞) =

√

λ (r0 − r∞)

γ
− λ, 0 < λ <

r0 − r∞
γ

(3.3)

tγ(3, κ, r0, r∞) = κ




3

√
(

r0 − r∞
2γκ

)2

− 1



 , 0 < κ <
r0 − r∞

2γ
(3.4)

where the ranges given on the right-hand side ensure tγ(ω) > 0 and we
further note that the optimal stopping time itself is maximised for

β0 =
ln(2)(r0 − r∞)

eγ
(3.5)

λ0 =
r0 − r∞

4γ
(3.6)

κ0 =

√
3 (r0 − r∞)

18γ
. (3.7)

Assume we are given a sorted set of convergence parameters ̺. According
to Eq. 3.1, the difference in cost inferred by OBSV for stopping according
to a wrong estimate ̺i+1 instead of ̺i is

∆γ(̺i+1, ̺i; c, r0, r∞) =

(r0 − r∞) [h (tγ(c, ̺i+1, r0, r∞); c, ̺i) − h (tγ(c, ̺i, r0, r∞); c, ̺i)]

+ γ [tγ(c, ̺i+1, r0, r∞) − tγ(c, ̺i, r0, r∞)] . (3.8)

For the purpose of evaluation we want ∆γ to remain constant over the whole
range of possible convergence prameters ̺. That is, for any two consecutive
convergence parameters ̺i+1, ̺i we require that

∆γ(̺i+1, ̺i; c, r0, r∞) = ∆γ(̺i, ̺i+1; c, r0, r∞) = K (r0 − r∞) (3.9)

for some constant value K > 0 at scale (r0 − r∞).
Letting ǫ denote the difference between two consecutive convergence pa-

rameters, i.e.
̺i+1 = ̺i + ǫ, (3.10)

we reformulate Eq. 3.9 to

∆γ(̺ + ǫ, ̺; c, r0, r∞) = ∆γ(̺, ̺ + ǫ; c, r0, r∞) = K(r0 − r∞) (3.11)

Thus, given ̺0 and the solution of Eq. 3.11 for ǫ, we could simply calculate
all other convergence parameters according to Eq. 3.10. Unfortunately a
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symbolic solution to Eq. 3.11 is hard to obtain. Therefore we consider the
two subequations

∆γ(̺ + ǫ, ̺; c, r0, r∞)−K(r0 − r∞) = 0 (3.12a)

∆γ(̺, ̺ + ǫ; c, r0, r∞)−K(r0 − r∞) = 0 (3.12b)

of Eq. 3.11 instead and show that the solution of Eq. 3.12a for ǫ yields a
good approximation for solution of Eq. 3.12b.

By substituting

̺ = ̺′(r0 − r∞)/γ (3.13a)

ǫ = ǫ′(r0 − r∞)/γ (3.13b)

in Eq. 3.12a, the dependency on r0, r∞ and γ vanishes and we obtain the
following general equations given the three classes of convergence,

K = 2
− (β′+ǫ′)

β′ ln(2)
ln

(
ln(2)

β′+ǫ′

)

− 2
− ln

(
ln(2)

β′

)

+
(β′ + ǫ′) · ln

(
ln(2)
β′+ǫ′

)

ln(2)
−

β′ · ln
(

ln(2)
β′

)

ln(2)

(3.14)

K =
λ′

√
λ′ + ǫ′ − ǫ′

− 2
√

λ′ − ǫ′ +
√

λ′ + ǫ′ (3.15)

K =

√

2κ′

3
√

2(κ′ + ǫ′)− 2ǫ′
− 3

2
3
√

2κ− ǫ′ + 3
√

2(κ′ + ǫ′). (3.16)

The solutions to Eq. 3.14 are given by

ǫ′ = −β′

+
β′

(

−W
(

b1,− exp
(

−β′+K ln(2)
β′

)

− β′+K ln(2)
β′ + ln

(
β′

ln(2)

)))

W
(

b2, β′
(

−W
(

b1,− exp
(

−β′+K ln(2)
β′

))

− β′+K ln(2)
β′ + ln

(
β′

ln(2)

))) ,

(3.17)

where W denotes the Lambert W -function with its branches b1,2 ∈ {−1, 0, 1},
and the solutions of Eq. 3.15 are given by

ǫ′ = −λ′ +




1 +

√

(1− 2
√

λ′)2 − 2K ± 2
√

K2 + 4K
√

λ′

2





2

. (3.18)

Unfortunately the solutions of Eq. 3.16 have no concise form and since this
causes serious numerical problems, we approximate ǫ′ numerically. Fig. 3.1(a)
shows the actual values of ǫ′ as function of β′ for K = 4.125 ·10−4 according
to the two branches (b1 = −1, b2 = −1) and (b1 = −1, b2 = 0) of the Lam-
bert W-function. Thus starting at β′

0 = ln(2)/e we use the upper branch
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Figure 3.1: The solutions for ǫ′ as a function of ̺′ and the resulting pa-
rameters for K = 4.125 · 10−4. Fig. 3.1(a) shows the two solutions given
exponential parameters according to the branches (b1 = −1, b2 = −1) and
(b1 = −1, b2 = 0) of the Lambert W-function. Fig. 3.1(b) shows the two
solutions given linear parameters. Fig. 3.1(c) shows the numerical solution
given quadratic parameters. The black dashed lines show ̺′0 for each class
of convergence. Fig. 3.1(d) shows the resulting ̺′ ≥ 10−7.

to calculate all β′
0 < β′

i < log(2) and the lower branch for all 0 < β′
i < β′

0.
Although the choice of K is essentially arbitrary, we chose K in order to
obtain about 50 values for κ′. As can be seen by Fig. 3.1(b) - 3.1(c) the
ǫ′-curves for linear and quadratic models look similar. Fig. 3.1(d) shows the
resulting general convergence parameters ̺′. For the experiments we will
determine all ̺ from ̺′ through back-substitution given the different values
of γ, r0, r∞ used.

We now validate the resulting differences in cost according to Eq. 3.12a -
3.12b. Fig. 3.2 shows the differences in cost for the three classes of conver-
gence models when estimating ̺i±1 instead of the true convergence parame-
ter ̺i given for example γ = 10−6, r0 = 0.5, r∞ = 0 and K = 4.125·10−4. As
can be seen there the difference in cost is reasonably close to K · (r0 − r∞).
Only for exponential models when estimating the βi+1 instead of βi the
difference in cost is lower than K · (r0 − r∞) by a bit more than an order
of magnitude. However, for larger values of γ or r∞ this gap becomes less
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Figure 3.2: The difference in cost for the three classes of convergence models
when estimating ̺i±1 instead of the true convergence parameter ̺i given
γ = 10−6, r0 = 0.5, r∞ = 0 and K = 4.125 · 10−4.

than an order of magnitude. Its worthwhile mentioning that we also tried
to balance the differences in cost by solving

ǫ = arg min
ǫ′

(∆(̺′i+1, ̺
′
i, c, r0, r∞)−K)2−(∆(̺′i, ̺

′
i+1, c, r0, r∞)−K)2 (3.19)

instead of Eq. 3.12a. Since it is hard to obtain a symbolic solution for
Eq. 3.19, we calculated a numeric solution. This however yielded almost
identical differences in cost (Eq. 3.8) as those obtained by the solution of
Eq. 3.12a. Also note that we observed such a similarity of the solutions
for all valid offsets s ∈ Z from i. Therefore we argue that our choice of
the parameters is close to optimal with respect to Eq. 3.19. It is clear
that with increasing offset |s| the difference in cost will deviate more from
|s| · K(r0 − r∞). However as shown by Fig. 3.3 our performance measure
is reasonably linear in the neighbourhood of the true parameter ̺. As can
be seen there the contours are x-shaped. The reason is that, since ̺0 is
maximising the optimal stopping time, there are always some ̺i, ̺j such
that ̺i < ̺0 < ̺j and tγ(c, ̺i, r0, r∞) ≈ tγ(c, ̺j , r0, r∞) < tγ(c, ̺0, r0, r∞).

3.1.2 Convergence models for practice

Finally we restrict our parameters such that the remaining models do not
converge faster than h(t; 1, 1) = 2−t, which is the fastest convergence cur-
rently known from practice (Sec. 2.1). That is, we want to use only those λ
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Figure 3.3: The difference in costs for the three classes of convergence models
when estimating ̺i+s instead of the true convergence parameter ̺i given
valid s ∈ Z and γ = 10−6, r0 = 0.5, r∞ = 0 and K = 4.125 · 10−4. The levels
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and κ for which

2−t ≤ 2−t/β (3.20)

2−t ≤ λ

λ + t
(3.21)

2−t ≤
√

κ

κ + t
(3.22)

for all t ≥ 0. Solving for β, λ of κ respectively, we obtain

β ≥ 1

λ ≥ t · 2−t

1− 2−t
(3.23)

κ ≥ t · 2−2t

1− 2−2t
(3.24)

and by maximising the right-hand sides of Eq. 3.23 - 3.24 over all t ≥ 0 we
obtain the lower bounds for our convergence parameters

β ≥ 1 (3.25)

λ ≥ 1

ln (2)
(3.26)

κ ≥ 1

2 ln (2)
. (3.27)

We will refer to such as admissible convergence parameters. Fig. 3.4 - 3.5
show examples of admissible convergence parameters according to Eq. 3.13a
as functions of r∞ ∈ R∞ (left column) and γ ∈ Γ (right column), where we
chose

R∞ = {0, 1/300, 2/300, . . . , 149/300},
Γ = {9 · 10−k, 8 · 10−k, . . . , 1 · 10−k}, k = 1, . . . , 6,

and r0 = 0.5, which we will also use for the experiments. Furthermore we
will denote the set of models ω that result from all admissible convergence
parameters ̺i given some specific values for γ, c, r0, r∞ by Ωγ,c,r0,r∞ . Note
that we will slightly abuse notation and use shorthands of the form

Ωγ,c,r0 =
⋃

r∞∈R∞

Ωγ,c,r0,r∞ .1

Furthermore will use mγ (c, r0, r∞) = |Ωγ,c,r0,r∞| to denote the total number
of admissible convergence parameters ̺i given specific values for γ, c, r0, r∞.
Then for example m10−6 (1, 0.5, 0) = 106, m10−6 (2, 0.5, 0) = 57 and
m10−6 (3, 0.5, 0) = 42.

1This means that a missing subscript indicates the union of the sets indexed by it.
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Figure 3.4: Some admissible convergence parameters given the three dif-
ferent classes of convergence. The left column shows the convergence pa-
rameters given r0 = 0.5 and γ = 10−6 as a function of r∞, while the right
column shows the convergence parameters given r0 = 0.5, r∞ = 0 as a
function of γ. The black horizontal lines correspond to multiples of the
lower bound for the convergence parameters as given by Eq. 3.25 - 3.27.
More specifically, a black line corresponds to a level of 2j in case of the
exponential parameters (Fig. 3.4(a) - 3.4(b)), of 2j/ ln (2) in case of linear
parameters (Fig. 3.4(c) - 3.4(d)) and of 2j/(2 ln (2)) in case of quadratic pa-
rameters (Fig. 3.4(e) - 3.4(f)) with j = 0, 1, 2, . . . .
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Figure 3.5: Projections of the admissible convergence parameters shown in
Fig. 3.4. The left column shows the convergence parameters given r0 =
0.5 and γ = 10−6 as a function of r∞ projected on the ̺, r∞-plane. The
right column shows the convergence parameters given r0 = 0.5, r∞ = 0
as a function of γ projected on the ̺, γ-plane. The black horizontal lines
correspond to multiples of the lower bound for the convergence parameters
as given by Eq. 3.25 - 3.27. More specifically, a black line corresponds to
a level of 2j in case of the exponential parameters (Fig. 3.4(a) - 3.4(b)), of
2j/ ln (2) in case of linear parameters (Fig. 3.4(c) - 3.4(d)) and of 2j/(2 ln (2))
in case of quadratic parameters (Fig. 3.4(e) - 3.4(f)) with j = 0, 1, 2, . . . .
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Choosing the prior for the models

As can be seen by Fig. 3.4(a), 3.4(c), 3.4(e) the grid of convergence parame-
ters over the pairs (i, r∞) is not fully populated. More specifically, there are
no entries for i → 1 and r∞ → 0.5− since these would correspond to non-
admissible convergence parameters which violate Eq. 3.25 - 3.27. Therefore,
as r0 = 0.5 is given, it is reasonable to model the distribution of the unknown
parameters ̺ and r∞ as a joint distribution for each class of convergence,

P(ω | ξt) = P(ω | c, ξt)P(c | ξt) = P(̺, r∞ | c, ξt)P(c | ξt), (3.28)

since Ωγ,c ∩ Ωγ,c′ = ∅ for c 6= c′. Since we do not know which class of con-
vergence is more probable a priori, we will choose the prior by distributing
the probability mass uniformly over all convergence classes and then also
uniformly amongst all models that belong to each class,

P(ω | ξ0) =
1

∑

r∞∈R∞

mγ (c = j, 0.5, r∞)
· 1
3
. (3.29)

A lower bound on γ

As can be seen by Fig. 3.4(b), 3.4(d), 3.4(f) and Fig. 3.5(b), 3.5(d), 3.5(f),
mγ (c, r0, r∞) becomes smaller or even zero as γ increases. More specifically,
by Eq. 3.25 - 3.27 and Eq. 3.2 - 3.4 is follows that

1 ≤ ln(2) (r0 − r∞)

γ
⇒ γ ≤ r0 ln(2), (3.30)

since r∞ ≥ 0. Thus, when γ > r0 ln(2), there is no admissible convergence
parameter, and therefore no admissible model ω, under the assumptions
made and we should stop immediately without querying any labels at all.

However, the upper bound on γ for immediate stopping is even lower.
Specifically the reduction in error is at most

g(t; 1, 1, r0 , r∞)− g(t + 1; 1, 1, r0, r∞) ≥ g(t;ω) − g(t + 1;ω),

∀ω ∈ Ω and maximised at t = 0. Therefore OBSV should query any label
only when

γ ≤ g(0; 1, 1, r0 , r∞)− g(1; 1, 1, r0 , r∞) =
1

2
(r0 − r∞) ≤ r0

2
, (3.31)

since r∞ ≥ 0. Thus for γ →
(

r0
2

)−
the set of admissible convergence models

becomes smaller and therefore biased towards exponential convergence, i.e.
h(t, 1, 1). For such values of γ we cannot model h(t), r∞ or rt when the actual
convergence is slower. However, in such cases the optimal stopping time is
zero and since our main focus is optimal stopping this point is irrelevant.

For reference, Fig. 3.6 shows some convergence and cost curves given
γ = 2 · 10−4 and r∞ = 0.
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Figure 3.6: The final convergence and cost curves for the experiments given
the three different classes of convergence at γ = 2·10−4, r0 = 0.5 and r∞ = 0.
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3.2 Artificial observations

It is laborious to choose combinations of datasets and learning algorithms
such that the resulting learning curves would cover those one can generally
expect to observe in practice (Sec. 3.1.2). Therefore we choose to run a
controlled experiment where we generate artificial observations zt by sam-
pling along learning curves that stem from Ωγ . Using such observations we
evaluate the various predictions of our model for different values of γ. These
values of γ are also used as input to the stopping algorithm. We evaluate
OBSV using the resulting stopping times and costs. Finally we relate the
performance of our model to maximum a posteriori predictions and a naive
stopping criterion.

Let ξ∗ be the true belief over Ωγ . At every time step t we generate mt

random observations zt = (zt(1), . . . , zt(mt)) ∈ {0, 1}mt of the error, where

P[zt(i) = 1 | ξ∗] = rt ≡ E[Rt | ξ∗], i = 1, . . . ,mt,

calculate their mean vt and update our belief ξt−1 according to Eq. 2.10 -
2.12. Thus for each ξ∗ we can generate a sequence of artificial observations
〈zt〉 = (z1, z2, . . . , zm) along the corresponding artificial learning curve.

For our experiments we choose various ξ∗, each corresponding to a true
model ω∗ ∈ Ω∗

γ ⊂ Ωγ , i.e. P(ω∗ | ξ∗) = 1. More specifically, given r∗0 = 0.5
and some value of γ, for each c∗ we choose various ω∗ = (c∗, ̺∗, r∗0 , r

∗
∞) using

a grid over ̺ and r∞. That is, letting

r∗∞ ∈ R∗
∞ = {0, 0.05, 0.1, . . . , 0.45} ⊂ R∞

we select

Ω∗
γ =

⋃

c∗=1,2,3

Ωγ,c∗ ∩
⋃

r∗
∞
∈R∗

∞

{

(c∗, ̺∗i , 0.5, r
∗
∞) | i =

⌈

0.5 + k · m0(c
∗, 0.5, r∗∞)− 1

9

⌉

with k = 0, . . . , 9

}

.

(3.32)

For example, given γ = 10−6 we obtain our exponential targets Ω∗
γ,c∗=1 by

intersecting the models shown in Fig. 3.4(a) with those on the grid. It is
important to note that we choose the prior for the targets by

P
(
ω∗ | Ω∗

γ

)
=

1

|Ω∗
γ |

. (3.33)

and that, as γ < r0/2 within the experiments, mγ (c, 0.5, r∞) > 0 and there-
fore Ωγ will always include the largest admissible convergence parameter
according to the ranges given on the right side of Eq. 3.2 - 3.4.
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For each target ω∗ we perform 10 randomised runs making m = 1000
observations of the true error, i.e. mt = 1 and t = 1, . . . ,m. To keep the
optimal stopping times tγ(ω) < m for all ω ∈ Ωγ , we will only consider
query costs of γ ≥ 2 · 10−4. This gives a total number of 34310 runs.

Thereby we will evaluate the prediction of the expected convergence and
of the expected final error given ξt

E[h(t; c, ̺) | ξt] =
∑

ω∈Ωγ

h(t; c, ̺)P(ω | ξt) (3.34a)

E[r∞ | ξt] =
∑

ω∈Ωγ

r∞ P(ω | ξt), (3.34b)

as well as the prediction of the expected error according to Eq. 2.14. It is im-
portant to note that the prior of the targets as given by Eq. 3.33 is uniform
whereas the prior of the models as given by Eq. 3.29 depends on the con-
vergence class. Therefore we utilise importance sampling. More specifically,
when averaging the results over different classes of target convergence, we
will weight the result for each target ω∗ ∈ Ω∗

γ by its (normalised) probability
given the prior belief ξ0 of our model,

P
(
ω∗ | Ω∗

γ , ξ0

)
=

P (ω∗ | ξ0)
∑

ω̃∗∈Ω∗

γ

P (ω̃∗ | ξ0)
, (3.35)

where P
(
ω∗ | Ω∗

γ , ξ0

)
6= P

(
ω̃∗ | Ω∗

γ , ξ0

)
only if c∗ 6= c̃∗.

Since OBSV is a deterministic stopping algorithm we obtain one stopping
time tγ ← OBSV(γ) for each run and value of γ. Thus we also calculate the
(weighted) averages in tγ and in ve(γ, tγ , 〈zt〉) according to Eq. 2.2 over all
runs. By examining those averages and their extreme values we are able to
estimate the sensitivity of our results to the target belief.

3.2.1 Prediction of the expected convergence and the ex-

pected final error

First we compare the prediction of the expected convergence to its true value
h(t; c∗, ̺∗). Fig. 3.7 (left column) shows the weighted average in absolute dif-
ference between the predicted convergence and the target value as a function
of t given different values of γ. As can be seen the average reaches a maxi-
mum after approximately 10 to 20 observations and converges towards zero
afterwards. However for increasing values of γ, OBSV needs an decreasing
number of observations to approach the true convergence to a certain level,
i.e. the progress is faster. The reasons are that (a) |Ωγ | becomes smaller
and (b) ω∗ ∈ Ω∗

γ become biased towards faster convergence.
Next we investigate the sensitivity of these results given different classes

of target convergence. Although these results do not differ significantly, they
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provide useful insights. As shown by Fig. 3.7 (right column) when t is small
the convergence results for exponential targets (c∗ = 1) are a bit worse
compared to linear or quadratic ones (c∗ = 2, 3). Later on the situation
changes and our model performs worst when c∗ = 3. The rationale behind
this is (a) the model is initially dominated by the prior belief ξ0 and the
uncertainty about a particular observation vt of rt, which (b) could have
also been sampled from a learning curve of slower convergence but smaller
r∞ or (c) from a learning curve of faster convergence but larger r∞. As
the the prior belief represents something between exponential and quadratic
convergence our model favours linear targets. Thus the absolute difference
in convergence is affected the most when c∗ = 1 and t is small, since many
of those targets converge very fast (see Fig. 3.6(a) for an example of such
convergence curves). However with an increasing number of observations the
uncertainty becomes smaller and the absolute difference in convergence goes
to zero. A similar argument holds for the comparably worse performance
of our model when c∗ = 3 and t is large. There we find that some of the
exponential and linear models are still assigned some probability and in turn
the performance upon quadratic targets is worse compared to linear ones.
Vice versa for slow exponential targets at late points in time, there is still
some probability for linear or quadratic alternatives which can be seen by
the 95th-percentiles for c∗ = 1 at γ = 2 · 10−3, 2 · 10−4.

Next we validate these findings by investigating the predicted final error
and its true value r∗∞. As shown by Fig. 3.8 (left column) the weighted
average in their absolute difference becomes smaller with increasing t. We
note that corresponding to the results above the progress made becomes
faster as γ increases. Although the results given different classes of target
convergence (Fig. 3.8, left column) do not differ significantly they provide
useful insight. More specifically, for each value of γ both the average and
the 95th-percentile given c∗ = 3 are always a bit larger than in case of
c∗ = 1, 2. This is due to the fact that, given c∗ = 3, at later points in time
the uncertainty about the target is comparably larger than in case of other
c∗ since the latter converge earlier. More precisely, for such t where the
remaining alternatives of c 6= 3 have yet not been ruled out a shift in r∞ is
still plausible.

3.2.2 Prediction of the expected error and its reduction

The question now is how well those predictions together are estimating rt and
rt+1 (and therefore the reduction in expected error which in turn determines
the stopping time). Evaluating the latter is important since the prediction
of the current error given ξt may be reasonably good, while the prediction
for t + 1 given ξt may not be.

Fig. 3.9 (left column) shows the weighted average in absolute difference
between the prediction of the expected error at time t and its true value.
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Figure 3.7: Results as obtained from 10 runs over all ω∗ ∈ Ω∗
γ . The

left column shows the weighted average in absolute difference between
the predicted convergence and the target value as a function of t given
γ ∈

{
2 · 10−2, 2 · 10−3, 2 · 10−4

}
. The right column shows the corresponding

unweighted averages given the different Ω∗
γ,c∗ with c∗ = 1, 2, 3. The dashed

lines denote the 5th and 95th-percentiles.
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Figure 3.8: Results as obtained from 10 runs over all ω∗ ∈ Ω∗
γ . The

left column shows the weighted average in absolute difference between
the predicted final error and the target value as a function of t given
γ ∈

{
2 · 10−2, 2 · 10−3, 2 · 10−4

}
. The right column shows the corresponding

unweighted averages given the different Ω∗
γ,c∗ with c∗ = 1, 2, 3. The dashed

lines denote the 5th and 95th-percentiles.
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Corresponding to our findings above, the average goes to zero as t increases
while progress becomes faster as γ increases. Investigating these results
in more detail given different c∗ (Fig. 3.9, right column) we find that the
predictions of the expected error are almost equally good after around 20
to 50 observations. For smaller values of t the predictions are worst given
c∗ = 1 since such targets converge fastest. It is particularly interesting
perhaps to note that the predictions for t + 1 given ξt are very similar as
shown by Fig. 3.10. Thus our model seems to produce reasonable estimates
of the error after a sensible amount of observations.

We investigate this claim more formally by evaluating the resulting
weighted average in absolute difference between the predicted reduction in
expected error and its true value (Fig. 3.11). As before the overall progress
(left column) becomes faster as γ increases. Although the 95th-percentiles
shown on the right are worst given c∗ = 1, they are however still in the same
order of magnitude as those given c∗ = 2, 3. Similarly the performance at
large values of t given c∗ = 3 is also within the same order of magnitude as
for c∗ = 1, 2. Thus the reduction in expected error becomes reasonably small
and we can hope to obtain sensible stopping times, even for small values of
γ.

3.2.3 Expected stopping time and expected costs

Finally we evaluate the performance of OBSV by its expected stopping times
and expected costs, and compare them to their optimal values. More specif-
ically, we compare tγ = E[Tγ | F,QF (γ), 〈zt〉] to the stopping time t∗γ of the
oracle. The latter is defined simply as the stopping time that minimises ve

when qt is known. We will use ve and v∗e as a shorthand for the expected
costs of OBSV and of the oracle.

For reference we plot the average in tγ and t∗γ (Fig. 3.12(a)) and note that
OBSV never takes more than 3 observations when γ ≥ 3 · 10−2 due to the
prior. Furthermore OBSV follows the stopping times of the oracle on average
within the same order of magnitude while the 5th- and 95th-percentile are
well within the oracle’s. However as is indicated by the 5th-percentiles
for γ → 0, OBSV is late by more than an order of magnitude upon early
stopping targets which is also due to its prior. The corresponding averages
in absolute difference between tγ and t∗γ are shown in Fig. 3.12(c) - 3.12(d).
As can be seen by the 95th-percentiles, tγ deviates by up to around 400 from
t∗γ when c∗ = 1. Investigating the posterior beliefs we found that this is due
to the slow exponential targets, where faster alternatives of c > 1 together
with an overestimate of r∗∞ indicate convergence and therefore lead to an
early stopping of OBSV. However those maximum values are reached only
for small γ where the contribution of the stopping time itself to the cost is
comparably small unless rt∗γ → 0.

Finally we evaluate the average difference between the expected costs of
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Figure 3.9: Results as obtained from 10 runs over all ω∗ ∈ Ω∗
γ . The

left column shows the weighted average in absolute difference between
the predicted error and the target value as a function of t given γ ∈
{
2 · 10−2, 2 · 10−3, 2 · 10−4

}
. The right column shows the corresponding un-

weighted averages given the different Ω∗
γ,c∗ with c∗ = 1, 2, 3. The dashed

lines denote the 5th and 95th-percentiles.
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Figure 3.10: Results as obtained from 10 runs over all ω∗ ∈ Ω∗
γ . The left

column shows the weighted average in absolute difference between the pre-
dicted error for t + 1 given ξt and the target value as a function of t given
γ ∈

{
2 · 10−2, 2 · 10−3, 2 · 10−4

}
. The right column shows the corresponding

unweighted averages given the different Ω∗
γ,c∗ with c∗ = 1, 2, 3. The dashed

lines denote the 5th and 95th-percentiles.



62 Chapter 3. Experimental evaluation of OBSV

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

number of observations

ab
s.

 d
iff

er
en

ce

γ = 2 · 10−2

 

 
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣

(a)

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

number of observations

ab
s.

 d
iff

er
en

ce

γ = 2 · 10−2

 

 
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 1
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 2
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 3

(b)

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

number of observations

ab
s.

 d
iff

er
en

ce

γ = 2 · 10−3

 

 
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣

(c)

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

number of observations

ab
s.

 d
iff

er
en

ce

γ = 2 · 10−3

 

 
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 1
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 2
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 3

(d)

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

number of observations

ab
s.

 d
iff

er
en

ce

γ = 2 · 10−4

 

 
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣

(e)

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

number of observations

ab
s.

 d
iff

er
en

ce

γ = 2 · 10−4

 

 
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 1
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 2
∣

∣E [Rt −Rt+1|ξt] −
(

r∗t − r∗t+1

)
∣

∣ , c∗ = 3

(f)

Figure 3.11: Results as obtained from 10 runs over all ω∗ ∈ Ω∗
γ . The left

column shows the weighted average in absolute difference between the pre-
dicted reduction in error given ξt and the target value as a function of t given
γ ∈

{
2 · 10−2, 2 · 10−3, 2 · 10−4

}
. The right column shows the corresponding

unweighted averages given the different Ω∗
γ,c∗ with c∗ = 1, 2, 3. The dashed

lines denote the 5th and 95th-percentiles.
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OBSV and the oracle where we scale each cost difference by the costs of the
oracle before averaging. Thus we evaluate the ratio (ve − v∗e) /v∗e = ve/v

∗
e−1.

As can be seen by Fig. 3.12(e) the 95th-percentiles of the additional costs
induced by using OBSV instead of the oracle averaged over all ω ∈ Ω∗

γ is
bounded from above by around 10% for values of γ ≤ 3 · 10−2 where OBSV
takes more than 3 observations. For more reasonable values of γ ≤ 2 · 10−3

where the oracle takes at least 20 observations on average, the average in
additional costs is around 3%. For larger values of γ however the advantage
of the oracle becomes larger due to its full information.

We investigate these results in more detail given different c∗. As shown
by Fig. 3.12(f) for c∗ = 2, 3 the additional costs of OBSV are around 2% to
3% on average while for c∗ = 1 the average costs are around 8%. We found
that the results around the 95th-percentile for c∗ = 1 correspond to fast
converging targets of low final error. For such targets even a small deviation
from the optimal stopping time leads to a comparbly larger ratio in cost as
the same deviation from the optimal stopping would do given other targets.
Thus, corresponding to our findings about stopping times reported above,
the comparably larger ratio in cost for c∗ = 1 is due to (a) late stopping of
OBSV upon fast converging targets of small final error (see 5th-percentiles in
Fig. 3.12(a)) and (b) early stopping of OBSV upon slow exponential targets
(see 95th-percentiles in Fig. 3.11(d)).

It is worthwhile to mention that we performed the same experiments
using mt = 3, 10 observations per iteration and obtained almost identical
results. That is, when mt increases the predictions of our model as well as
the stopping time and cost of OBSV improve when plotted against the num-
ber of iterations t. However since we take more observations per iteration
the results basically remain the same when plotted against the number of
observations mt · t. The only real difference is that for increasing mt the
immediate stop of OBSV mentioned above already occurs for smaller values
of γ. However for γ → 0 the ratios in cost become almost the same as for
mt = 1.

3.2.4 Maximum a posteriori predictions

We compare the results of OBSV using Bayesian predictions to those for
maximum a posteriori (MAP) predictions which we will denote by

ω̂ = arg max
ω∈Ωγ

P (ω | ξt)

and imply the dependence on ξt on the right side unless stated otherwise.
We will denote the MAP prediction of the convergence by h(t; ĉ, ˆ̺), OBSV

itself using MAP predictions by ÔBSV and its stopping time and costs by
t̂γ and v̂e respectively.
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Figure 3.12: Results as obtained from 10 runs over all ω∗ ∈ Ω∗. Fig. 3.12(a)
shows the weighted average number of observations taken by OBSV and
by the oracle as a function of γ. Fig. 3.12(b) shows the average number
of observations taken by OBSV given different c∗. Fig. 3.12(c) - 3.12(d)
show the (weighted) absolute differences between the number of observations
taken by OBSV and by the oracle averaged over ω ∈ Ω∗

γ and over ω ∈ Ω∗
γ,c.

Fig. 3.12(e) - 3.12(f) shows the (weighted) average of the ratio in cost. The
dashed lines denote the 5th and 95th-percentiles where a triangle denotes a
value of zero.
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The MAP predictor is a common baseline for learning algorithms [48]. In
our case it also allows us to confirm uncertainty within our model. That is, if
the models of the expected learning curves would (a) overlap weakly over all
Ωγ,c, c = 1, 2, 3 or (b) would be far apart from each other within each Ωγ,c,
then the identification of the target would be easy. Thus the experimental
setup would lack of uncertainty and we would expect that the performance
of the MAP predictions would be almost as good as the Bayesian ones.

It is important to note that, given our model, the MAP prediction corre-
sponds to the expected error of the most probable learning curve g (t; ω̂) given
ξt whereas the full Bayesian prediction corresponds to the most probable ex-
pected error given ξt, i.e. a linear combination of all ω ∈ Ωγ . Therefore, even
if the observed learning curve given some real F and D may not be in Ωγ we
can still hope to predict it reasonably well. However, in our experimental
setup we consider only such artificial target beliefs ξ∗ which correspond to
a specific target model ω∗ ∈ Ω∗ and therefore give the MAP predictor a fair
chance.

As can be seen by Fig. 3.13, the 95th-percentiles of both, (1) the weighted
average in absolute difference between the predicted MAP convergence and
its true value and (2) that between the predicted MAP final error and its true
value are comparably larger than those given the full Bayesian setting. This
discrepancy becomes largest after around 10 to 20 observations. Afterwards
the MAP predictions approach the Bayesian ones but nevertheless remain
worse. This has the following reason: investigating the posteriors we found
that the MAP-predictor is overfitting the data when only few observations
are given.

Next we evaluate the impact of this finding on the prediction of the cur-
rent error and on its predicted reduction. As can be seen by the averages
and 95th-percentiles shown in Fig. 3.14 the performance of ÔBSV remains
inferior. Furthermore we note that the MAP predictions can be superior
compared to the Bayesian ones as shown by the 5th-percentiles of the esti-
mated reduction in error after around 20 observation. Such superiority for
small values of t is related to the event of incidentally overfitting the data
using an appropriate model or even the target itself (for example see the
5th-percentiles for small t in Fig. 3.14(f)).

Furthermore for small values of t we frequently observed that as long as
zt = 0 the MAP-predictor selects rather fast converging models, whereas it
directly switches to models of slow convergence and large final error upon
zt = 1. For many targets we observe that if t is small, rt is of the same
order of magnitude as r0. Therefore it is likely that zt = 1 at least once for
such small values of t. In consequence ÔBSV regularly stops too early as
indicated by Fig. 3.15(a). As shown there the 95th-percentiles of the num-

ber of observations taken by ÔBSV are regularly smaller than the weighted
average of the number of observations taken by the oracle. Therefore the
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Figure 3.13: Results as obtained from 10 runs over all ω∗ ∈ Ω∗
γ . The

left column shows the weighted average in absolute difference between
the predicted convergence and the target value as a function of t given
γ ∈

{
2 · 10−2, 2 · 10−3, 2 · 10−4

}
. The right column shows the weighted av-

erage in absolute difference between the predicted final error and the target
value. The dashed lines denote the 5th and 95th-percentiles.
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Figure 3.14: Results as obtained from 10 runs over all ω∗ ∈ Ω∗
γ . The

left column shows the weighted average in absolute difference between the
predicted error at time t and the target value as a function of t given
γ ∈

{
2 · 10−2, 2 · 10−3, 2 · 10−4

}
. The right column shows the weighted aver-

age in absolute difference between the predicted reduction in error and the
target value. The dashed lines denote the 5th and 95th-percentiles where a
triangle denotes a value of zero.
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weighted average in absolute difference of number of observations taken be-
tween ÔBSV and the oracle is frequently larger than that between OBSV
and the oracle (Fig. 3.15(b)). Hence the additional costs by using ÔBSV
instead of the oracle are on average larger by up to an order of magnitude
than those of using OBSV instead of the oracle (Fig. 3.15(c)).

In conclusion these results (a) show that there is uncertainty about the
models ω ∈ Ωγ and (b) confirm the commonly known superiority of Bayesian
predictions over MAP predictions under uncertainty.

3.2.5 A naive stopping algorithm

Finally we compare OBSV to a naive stopping algorithm. The latter will
ignore all observations of the error and, since rt − rt+1 ≤ r0 − r∞ ≤ r0,

stop when t > r0
γ .2

We will use t̄γ and v̄e as shorthands for its stopping time and the expected
cost.

Fig. 3.16(a) shows the the average number of observations taken by the
naive stopping algorithm, OBSV and the oracle. There we can see that the
naive algorithm always stops later than the oracle or OBSV. Therefore we
omit the figures for the absolute differences in stopping times. Investigating
the additional costs (Fig. 3.16(b)) we find that the performance of OBSV
is frequently better by more than an order of magnitude when compared to
that of the naive stopping criterion.

3.3 UCI data sets

The main purpose of this section is to evaluate the performance of the OBSV
stopping algorithm upon real data sets and learning algorithms. First we
relate the performance of OBSV to the baselines introduced in Sec. 3.2.3 -
3.2.5 given different sampling strategies (Sec. 3.3.1). Then we compare these
sampling strategies to each other (Sec. 3.3.2). Finally we compare different
combinations of sampling strategies and learning algorithms (Sec. 3.3.3).

Following [8], we plot performance curves for a range of values of γ,
utilising multiple runs of cross-validation in order to assess the sensitivity
of the results to the data. Given some specific randomisation of the data
and some specific split of the corresponding folds into a training set D and a
test set DE , we split D itself into random and active sampling sets whenever
appropriate. Such an experiment will be referred to as a run unless stated
otherwise.

2More precisely when |DT | > r0/γ = 0.5/γ it updates the classifier (Alg. 5, Step 13)
and stops immediately without taking any observations of its error (Alg. 5, Step 6).
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Figure 3.15: Results as obtained from 10 runs over all ω∗ ∈ Ω∗. Fig. 3.15(a)
shows the weighted average in number of observations taken by OBSV, by
ÔBSV and by the oracle as a function of γ. Fig. 3.15(b) shows the weighted
average in absolute difference of observations taken between OBSV and the
oracle and between ÔBSV and the oracle over ω ∈ Ω∗

γ . Fig. 3.15(c) shows
the weighted average of the ratio in cost. The dashed lines denote the 5th
and 95th-percentiles where a triangle denotes a value of zero.
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Figure 3.16: Results as obtained from 10 runs over all ω∗ ∈ Ω∗. Fig. 3.16(a)
shows the weighted average in number of observations taken by OBSV, by
the naive stopping criterion and by the oracle as a function of γ. Fig. 3.16(b)
shows the weighted average of the ratio in cost between the naive stopping
criterion and the oracle, and between OBSV and the oracle. The dashed
lines denote the 5th- and 95th-percentiles where a triangle denotes a value
of zero.

As we generally do not have ξ∗ given real data, we cannot compare the
predictions of our model to a target convergence h (t; c∗, ̺∗) or target final
error r∗∞ and therefore directly evaluate the stopping times and costs. For
every value of γ we obtain a different stopping time tγ from each run. We
then calculate ve(γ, tγ , F ) as given in Eq. 2.2 on the corresponding test set
of the run. Thus we define the oracle stopping time as the stopping time
minimising the cost as measured on the independent test set for a specific
run. By examining the averages and extreme values over all runs we are
able to estimate the sensitivity of the results to the data.

For random sampling, we simply query unlabelled examples without re-
placement from DR. For the mixed sampling procedure, we actively query
an additional label for the example from DA closest to the decision bound-
ary of the current classifier, also without replacement. This strategy relies
on the assumption that those labels are most informative [1], [43], [38] and
therefore convergence will be faster. For active sampling we only actively
query examples from DA in Step 6 instead of Step 12 and use those to
determine whether to stop or not. Although this clearly violates the i.i.d
assumption for the validation data, we are interested in OBSV’s behaviour
under such circumstances. Stopping times and differences in cost are shown
for a set of γ values. Note that our comparison of any two stopping algo-
rithms QF (γ), QF (γ)′ covers only such values of γ where max (tγ , tγ ′) < m,
since m = |D| < ∞. Furthermore we plot the average test error curves for
reference.

For the experiments we use two data sets from the UCI repository [5]:
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the Wisconsin breast cancer data set (wdbc) with 569 examples and the
spambase database (spam) with 4601 examples. We evaluate wdbc and spam

using 20 randomised runs of 3-fold stratified cross-validation. Hence we
obtain a total of 60 runs for each dataset. The classifiers used are AdaBoost
with 100 decision stumps as base hypotheses and the classical Perceptron
learning algorithm using 20 iterations over the training data (see Sec. A.1,
Alg. 6). For the Perceptron the data sets were normalised by PCA.

3.3.1 Comparing OBSV to the baselines given different sam-

pling strategies

First we compare the performance of OBSV given the different sampling
strategies. This is done by examining the costs and stopping times when
compared to (a) ÔBSV, (b) the the naive stopping algorithm and (c) the
the oracle.

Random sampling

We evaluate the performance of OBSV for random sampling on both data
sets. As a reference we plot the realised error qt as measured on the test
set3. Fig. 3.17(a) - 3.17(b) shows the average in test error over all runs.

As can be seen by Fig. 3.17(c) - 3.17(d), ÔBSV regularly stops too early,
whereas for OBSV the 5th- and 95th-percentiles of the stopping times are
well within the oracle’s. As already observed for artificial data, the reason for
the early stopping of ÔBSV is overfitting. The greater variation of the oracle
on wdbc is partially a result of the small dataset. Since we can only measure
an error in quanta of 1/|DE |, any actual performance gain lower than this
will be unobservable. More specifically, the oracle exploits local minima of
qt which become more prominent as the size of the test set decreases. We
expect the oracle’s behaviour would be smoother with larger data sets. This
can actually be observed for spam.

In consequence the additional costs of using OBSV instead of the oracle
are always lower than the those for ÔBSV or the naive stopping algorithm
by up to an order of magnitude (Fig. 3.17(e) - 3.17(f)). As can be seen on
spam only for γ ≤ 2 · 10−5, when around 100 observations have been taken,
the MAP predictions stabilise and their additional costs approach those of
the Bayesian ones. Furthermore, as t̄γ is far away from t∗γ , both OBSV and

ÔBSV yield comparably better stopping times and therefore ratios in cost.

As can be seen by Fig. 3.17(a) - 3.17(b) the true final error r∗∞ is low and
therefore, compared to larger values of r∗∞, a deviation from the oracle’s
stopping time yields a larger ratio in cost. Thus the results for spam are
comparable to those for artificial observations (Sec. 3.2). For wdbc however

3also known as the test error
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the cost ratios shown are larger due to the advantage of the oracle upon
smaller test sets as discussed above.

Mixed sampling.

Next we compare OBSV to the baselines given mixed sampling. The cor-
responding test errors are shown in Fig. 3.18(a) - 3.18(b). As before the
stopping times of OBSV are well within the oracle’s which indicates a satis-
factory performance. ÔBSV however regularly stops too early due to over-
fitting. Similar to random sampling, the additional costs of using OBSV
instead of the oracle are always lower than those of ÔBSV or the naive stop-
ping algorithm by up to around an order of magnitude (Fig. 3.18(e) - 3.18(f)).

Active sampling.

Finally we compare OBSV to the baselines given active sampling. The
corresponding test errors are shown in Fig. 3.19(a) - 3.19(b). As can be seen
by Fig. 3.19(c) - 3.19(d) the stopping times of OBSV are not as smooth as
for the other sampling strategies. More specifically, the changes of tγ can
be divided into 3 phases depending on γ:

1. If γ →
(
7 · 10−4

)+
for wdbc or γ →

(
10−4

)+
for spam OBSV stops

a bit earlier than the oracle on average. That is, OBSV takes up to
around 50 observations from wdbc and up to around 200 observations
from spam. According to the strategy of sampling along at the cur-
rent decision boundary, we found that the error vt observed on those
examples is frequently much higher than qt, i.e. than the error given
i.i.d. examples. Thus OBSV assigns more weight to slow convergence
models of large final error. In turn the predicted reduction in error is
too low and therefore OBSV stops too early.

2. With 3 · 10−4 ≤ γ < 7 · 10−4 for wdbc or 5 · 10−5 ≤ γ < 10−4 for
spam the slope of the stopping times increases and on average OBSV
stops later than the oracle. By investigating the margins we find that
the informative examples are exhausted for t ≈ tγ . Thus the error
observed at such t corresponds more to the realised error qt than be-
fore. In consequence the predicted reduction in error increases and
OBSV takes more observations than necessary. Therefore the addi-
tional costs shown in Fig. 3.19(e) - 3.19(f) actually increase suddenly
for these values of γ.

3. For γ < 3 · 10−4 given wdbc and γ < 5 · 10−5 given spam the slope
of the stopping times becomes smaller again. The reason is that now,
as even more observations have been taken, OBSV has adapted to
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Figure 3.17: Results for random sampling on the wdbc (left column) and
the spam data (right column) as obtained from 60 runs of AdaBoost using
100 decision stumps as weak classifiers. The first row (Fig. 3.17(a) - 3.17(b))
shows the realised error as measured on the test set averaged over of all
runs. The second row (Fig. 3.17(c) - 3.17(d)) shows the average of the ex-

pected number of observations taken by OBSV, ÔBSV, the naive stopping
algorithm and the oracle. The third row (Fig. 3.17(e) - 3.17(f)) shows the
average of the ratio in cost w.r.t. the oracle. The dashed lines denote the
5th- and 95th-percentiles.
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Figure 3.18: Results for mixed sampling on the wdbc (left column) and
the spam data (right column) as obtained from 60 runs of AdaBoost using
100 decision stumps as weak classifiers. The first row (Fig. 3.18(a) - 3.18(b))
shows the realised error as measured on the test set averaged over of all
runs. The second row (Fig. 3.18(c) - 3.18(d)) shows the average of the ex-

pected number of observations taken by OBSV, ÔBSV, the naive stopping
algorithm and the oracle. The third row (Fig. 3.18(e) - 3.18(f)) shows the
average of the ratio in cost w.r.t. the oracle. The dashed lines denote the
5th- and 95th-percentiles.
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the convergence of qt towards r∞. Therefore it predicts a comparably
lower reduction in error than before.

We conclude that the violation of the i.i.d. assumption deteriorates the
stopping times of OBSV in comprehensible manner. Nevertheless its per-
formance remains superior compared to ÔBSV and the naive stopping algo-
rithm.

3.3.2 Comparing different sampling strategies

Finally we compare the three sampling strategies directly. As a reference
the test errors are shown together in Fig. 3.20. We note that qt decreases
fastest for active sampling and that on average it is closely followed by the
mixed strategy. Compared to the random strategy the faster convergence
of qt given mixed or active sampling is however, except for around 500
observations on spam, not very significant as the percentiles overlap strongly.

Therefore the stopping times of OBSV are around the same as shown
in Fig. 3.21(a) - 3.21(b). It is important to note that the stopping times
of the oracle also overlap strongly (Fig. 3.21(c) - 3.21(d)). We believe that
the difference in stopping time between the sampling strategies would in-
crease if the active selection procedure were more effective. Particularly
we expect OBSV to produce more diverse stopping curves, similar to those
shown in Sec. 3.2 for artificial observations given different classes of tar-
get convergence. However given the similar learning curves observed here
OBSV produces similar stopping times as desired. Thus the slightly lower
cost of the mixed strategy compared to the random strategy, as shown in
Fig. 3.21(e) - 3.21(f), is mainly due to the difference in test error. However
as will we see next, OBSV produces more diverse stopping curves when the
learning curves differ significantly.

3.3.3 Comparing different combinations of sampling strate-

gies and learning algorithms

Finally we provide a comparison of different combinations of sampling strate-
gies and learning algorithms by utilising OBSV. This is straight forward
given our framework. As we have seen before, OBSV produces similar stop-
ping times given similar learning curves. To confirm the adaption of stop-
ping times by OBSV we choose a setting which yields more diverse learning
curves. More specifically, we compare AdaBoost using mixed sampling to
the Perceptron using the random sampling strategy.

As can be seen by Fig. 3.22(a) - 3.22(b), on average learning proceeds
much more slowly given the Perceptron with the random strategy compared
to AdaBoost using mixed sampling. In consequence the average stopping
times for AdaBoost given values of γ ≤ 10−3 are comparably smaller for
both data sets (Fig. 3.22(c) - 3.22(d)). It is important to note that, with
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Figure 3.19: Results for active sampling on the wdbc (left column) and
the spam data (right column) as obtained from 60 runs of AdaBoost using
100 decision stumps as weak classifiers. The first row (Fig. 3.19(a) - 3.19(b))
shows the realised error as measured on the test set averaged over of all
runs. The second row (Fig. 3.19(c) - 3.19(d)) shows the average of the ex-

pected number of observations taken by OBSV, ÔBSV, the naive stopping
algorithm and the oracle. The third row (Fig. 3.19(e) - 3.19(f)) shows the
average of the ratio in cost w.r.t. the oracle. The dashed lines denote the
5th- and 95th-percentiles.



Section 3.4. PASCAL VOC Challenge 2006 data sets 77

10
1

10
2

10
−2

10
−1

10
0

number of observations

er
ro

r

 

 

qt, random
qt, mixed
qt, active

(a)

10
1

10
2

10
3

10
−2

10
−1

10
0

number of observations

er
ro

r

 

 

qt, random
qt, mixed
qt, active

(b)

Figure 3.20: Results comparing random, mixed and active sampling
on the wdbc (left column) and the spam data (right column) as obtained
from 60 runs of AdaBoost using 100 decision stumps as weak classifiers.
The figures show the average in test error over of all runs. The dashed lines
denote the 5th- and 95th-percentiles.

reference to the stopping times of the oracle (Fig. 3.22(e) - 3.22(f)), this
difference is justified. Therefore the averages in cost of AdaBoost utilising
the mixed sampling strategy are also significantly smaller than the cost of
the Perceptron using the random sampling procedure (Fig. 3.23(a) - 3.23(b)).
Moreover these cost curves are very similar to those obtained by using the
oracle (see Fig. 3.23(c) - 3.23(d) for comparison). Therefore we conclude that
OBSV is reasonably adaptive and produces diverse stopping curves when the
learning curves differ significantly.

3.4 PASCAL VOC Challenge 2006 data sets

The following section demonstrates the practical use of combining an im-
age categorisation framework as described in Chap. 1 with OBSV proposed
in Chap. 2. We will evaluate the performance given image data from VOC06

according to two concrete scenarios. Thereby we will show (a) how to choose
γ in practice, (b) that OBSV performs better than the baselines, and (c) that
mixed and random sampling perform almost the same.

3.4.1 The choice of γ given concrete scenarios

In practice the perception of costs depends on the actual goal for using such
a framework. One obvious goal could be to minimise the monetary costs
of its implementation. In this case one could chose γ depending on the
monetary costs ML of labelling one example and the monetary costs MR

of the misclassification of all examples that we expect during the systems
lifetime. That is, the total cost, as given by Eq. 2.1, could be used to measure
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Figure 3.21: Results comparing random, mixed and active sampling on
the wdbc (left column) and the spam data (right column) as obtained from
60 runs of AdaBoost using 100 decision stumps as weak classifiers. The
first and the second row show the average number of observations taken
by OBSV (Fig. 3.21(a) - 3.21(b)) and by the oracle (Fig. 3.21(c) - 3.21(d))
over of all runs. The last row (Fig. 3.21(e) - 3.21(f)) shows the average in
expected cost when OBSV is used for stopping. The dashed lines denote
the 5th- and 95th-percentiles where a triangle denotes a value of zero.
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Figure 3.22: Results comparing AdaBoost using mixed sampling to the
Perceptron using random sampling on the wdbc (left column) and the
spam data (right column) as obtained from 60 runs of AdaBoost using 100
decision stumps as weak classifiers and of the Perceptron learning algorithm
with 20 iterations over the current training set. The first row (Fig. 3.19(a) -
3.19(b)) shows the average in test error over all runs given these combina-
tions of sampling and learning algorithms. The second and third row show
the average number of observations taken by OBSV (Fig. 3.21(a) - 3.21(b))
and by the oracle (Fig. 3.21(c) - 3.21(d)) given these combinations. The
dashed lines denote the 5th- and 95th-percentiles where a triangle denotes
a value of zero.
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Figure 3.23: Results comparing AdaBoost using mixed sampling to
the Perceptron using random sampling on the wdbc (left column)
and the spam data (right column) as obtained from 60 runs of AdaBoost
using 100 decision stumps as weak classifiers and of the Perceptron learn-
ing algorithm with 20 iterations over the current training set. The first
row (Fig. 3.23(a) - 3.23(b)) shows the average in cost of OBSV over all runs
given different combinations of sampling and learning algorithms. The sec-
ond row (Fig. 3.23(c) - 3.23(d)) shows the average cost of the oracle given
these combinations. The dashed lines denote the 5th- and 95th-percentiles.
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the fraction between the expected monetary cost Mt for training the system
up to time t and the monetary cost of a complete system failure,

E[Mt | ft,D ] = MR ·E[Rt | ft,D ] + ML · t

⇒ E[Mt/MR
︸ ︷︷ ︸

=:Cγ

| ft,D ] = E[Rt | ft,D ] +
ML

MR
︸︷︷︸

=:γ

·t.

Thus γ denotes the fraction between the monetary cost of labelling one image
and the cost for a complete system failure. A complete failure may seem
unrealistic in practice, since one may expect for example that the random
hypothesis has an error of r0 = 1− 1/n < 1. Then one would rather choose

γ =
ML

r0 ·MR
. (3.36)

Below, we describe scenarios from practice where an image categorisation
system has to distinguish between two different visual categories. Thereby
we will calculate γ using reasonable assumptions about monetary costs in
the application domain:

• Toll Collection for anonymous customers. Toll collection on highways
involves vehicle dependent rates. Currently Austria’s ASFINAG of-
fers video-based road-taxation for registered customers. However the
majority of anonymous customers still have to be served by humans.
As there are many toll stations, that company might be interested in
a system that is capable of categorising for example cars and buses
based on image data to determine the correct toll, e.g. 5e for cars
and 10e for buses. In this scenario a false classification of a bus leads
to a deficit of 5e whereat a misclassification of a car involves a recla-
mation process with a handling charge of e.g. 5e for the company.
Assuming that the expected traffic volume during the system’s lifetime
is about 106, the cost of a complete system failure is MR = 5 · 106 e.
Now if labelling one image costs the company ML = 2e, according to
Eq. 3.36 it would choose

γ =
2e

0.5 · 5 · 106 e
= 8 · 10−7.

• Vehicle dependent parking fees. The municipality of a city is operating
several parking-lots and may wish to charge vehicle dependent fees, e.g.
for cars and motorbikes, without employing parking wardens. Using
cameras put up at the barriers the task is now to train a classifier
for categorising the images. Assume that the fee is 4e for cars and
only 2e for motorbikes. In this scenario a false positive classification
of a car would lead to a deficit of 2e, while upon a false negative
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classification the customer is likely to leave which causes also a deficit
of 2e. Assuming that the municipality expects 5·104 customers during
the system’s lifetime we have MR = 2 · 5 · 104 e = 105 e. Now if
labelling one image costs the municipality ML = 2e, according to
Eq. 3.36 it would choose

γ =
2e

0.5 · 105 e
= 4 · 10−5.

For the scenarios we assumed that both types of misclassification error
incur the same monetary cost. Our model however is not limited to such
cases since we can incorporate various misclassification costs into our cost
function as follows.

Let M ∈ [0, 1]|Y|×|Y|, with
∑|Y|

i,j=1 Mi,j = 1, be some normalised matrix
for monetary misclassification costs, i.e. Mi,j denotes the relative monetary
costs for predicting class i instead of the true class j. Then the total cost of
a hypothesis ft at time t w.r.t. M can be written as

E[Cγ | ft,D ,M] = E[Rt | ft,D ,M] + γt

= γt +

∫

X

∑

y∈Y

p(y | x,D)Mft(x),y p(x | D) dx

and we can apply OBSV to estimate the optimal stopping time. It is useful
to note that there exist cost-sensitive learning algorithms to infer ft for such
learning problems. The interested reader may refer to [64, 63] for a recent
review of cost-sensitive classification using boosting.

3.4.2 Experimental setup

The purpose of this section is to evaluate the performance of the combined
framework given image data according to our scenarios. First we relate
its performance to the oracle’s given different sampling strategies. Then we
compare the performance of these sampling strategies to each other. We plot
stopping times and cost-curves for a range of values of γ utilising multiple
runs of cross-validation over data sets from the VOC06 database.

For the experiments we use 1097 images of cars, 354 of buses and 469
for motorbikes with the same features as described in Sec. 1.5.3. For each
of the two resulting data sets, cars vs. buses and cars vs. motorbikes, we
perform 5 runs of 2-fold stratified cross-validation. For each run, we split
the data into a training set D and test set DE , the training set itself being
split into a random sampling set DR and active sampling set DA whenever
appropriate. To reduce the computational effort we query multiple labels
within each iteration of OBSV. That is for random sampling we query 3
unlabelled examples from DR without replacement. For mixed sampling we
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actively query another 3 examples without replacement from DA, which are
closest to the decision boundary of the current classifier.

As our main focus is optimal stopping we reduce the computational
effort for learning each ft by (a) using AdaBoost (with 100 decision stumps
as weak classifiers) instead of LPBoost and (b) omitting geometric relations
between features as done in Sec. 1.5.34.

3.4.3 Comparing OBSV to the baselines given different sam-

pling strategies

We start by comparing the performance of OBSV given random and mixed
sampling. For this purpose we examine its stopping times and costs when
compared to (a) ÔBSV, (b) the naive stopping algorithm and (c) the or-
acle. Note that active sampling is omitted since the violation of the i.i.d.
assumption prohibits its use for concrete scenarios such as those considered
here (see Sec. 3.4.1).

Random sampling

First we evaluate the performance of OBSV given the random sampling
strategy. For reference Fig. 3.24 shows the average test errors qt for cars vs.
buses and for cars vs. motorbikes over all runs. It becomes obvious that
the error rates are too large for practical situations since the acceptance of
the costumers would be very low. However the final errors reported here
are almost the same as the error rates as observed for LPBoost using no
geometric relations.

As shown by Fig. 3.24(c) - 3.24(d), ÔBSV stops too early due to overfit-
ting, while the naive stopping strategy is always late. The stopping times of
OBSV however follow those of the oracle closely. It is important to note that
we observed similar results on wdbc and spam (Sec. 3.3.1). Consequently the
average ratio in cost for using OBSV instead of the oracle is lower by up to
an order of magnitude when compared to the average ratio in cost of using
ÔBSV instead of the oracle (Fig. 3.24(e) - 3.24(f)). Furthermore for cars vs.
motorbikes and γ = 4 · 10−5, as given by our second scenario, the additional
costs of OBSV when compared to the oracle are bounded from above by a
around 30%. For cars vs. buses the given dataset is too small to investigate
reasonable values of γ < 3 · 10−5. However considering the available values,
the additional costs of OBSV for cars vs. buses are about as good as that
for cars vs. motorbikes.

4Since we have two-class problems and omit geometry, the decision stumps here can
have both orientations, i.e. f(x; θ) = [x ≤ θ] or f(x; θ) = [x > θ].
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Figure 3.24: Results for random sampling on cars vs. buses (left col-
umn) and on cars vs. motorbikes (right column) as obtained from 10
runs of AdaBoost using 100 decision stumps as weak classifiers. The first
row (Fig. 3.24(a) - 3.24(b)) shows the realised error as measured on the test
set averaged over of all runs. The second row (Fig. 3.24(c) - 3.24(d)) shows

the average of the expected number of observations taken by OBSV, ÔBSV,
the naive stopping algorithm and the oracle. The third row (Fig. 3.24(e) -
3.24(f)) shows the average ratio in cost w.r.t. the oracle. The dashed lines
denote the 10th- and 90th-percentiles where a triangle denotes a value of
zero.
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Mixed sampling

We perform the same analysis for mixed sampling. As a reference the test
errors are shown in Fig. 3.25(a) - 3.25(b). Fig. 3.25(c) - 3.25(f) show that the
stopping times and therefore the additional costs of OBSV are much better
when compared to the other baselines. Furthermore we note that these re-
sults are very similar to those for random sampling. Therefore it remains
questionable whether mixed sampling gives any advantage over random sam-
pling. This will be investigated next.

3.4.4 Comparing different sampling strategies

As shown by Fig. 3.26(a) - 3.26(b) the test error curves given random sam-
pling and given mixed sampling are almost identical. Consequently the
stopping times of OBSV are also approximately the same as shown by
Fig. 3.26(c) - 3.26(d). Considering Fig. 3.26(e) - 3.26(f) we note that the stop-
ping times of the oracle also overlap strongly. Thus as shown by Fig. 3.27(a) -
3.27(b), the average in cost of both sampling strategies are almost identical
when OBSV utilised for stopping. This corresponds to the average in cost
for the oracle shown below (Fig. 3.27(c) - 3.27(d)).

3.5 Discussion

The results of this chapter showed that OBSV produces stopping times that
are reasonably close to optimal. Specifically, we demonstrated that for the
range of values for γ and the specific prior used here our model can adapt
to artificial learning curves from various classes of convergence. Thereby
it turned out that OBSV always outperformed the other baselines. We
confirmed those results on real data from the UCI database and the VOC06

database using various sampling strategies and learning algorithms. Per-
haps the most interesting results for active learning practitioners are (a) the
different stopping times and costs obtained from OBSV given significantly
different learning curves and (b) the comparable results of random sampling
w.r.t. the mixed or active strategy which sample along the current decision
boundary. By combining both frameworks, image categorisation through
boosting and OBSV, we provided a system that is capable of learning vari-
ous classes while learning itself can be stopped according to a customisable
cost measure. Although the error rates reported on images from VOC06

would not be acceptable in practice, we believe that this is an adequate first
step and deserves further attention.
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Figure 3.25: Results for mixed sampling on cars vs. buses (left col-
umn) and on cars vs. motorbikes (right column) as obtained from 10
runs of AdaBoost using 100 decision stumps as weak classifiers. The first
row (Fig. 3.25(a) - 3.25(b)) shows the realised error as measured on the test
set averaged over of all runs. The second row (Fig. 3.25(c) - 3.25(d)) shows

the average of the expected number of observations taken by OBSV, ÔBSV,
the naive stopping algorithm and the oracle. The third row (Fig. 3.25(e) -
3.25(f)) shows the average ratio in cost w.r.t. the oracle. The dashed lines
denote the 10th- and 90th-percentiles where a triangle denotes a value of
zero.
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Figure 3.26: Results comparing random and mixed sampling on cars
vs. buses (left column) and on cars vs. motorbikes (right column) as
obtained from 10 runs of AdaBoost using 100 decision stumps as weak
classifiers. The first row (Fig. 3.26(a) - 3.26(b)) show the average in test
error over of all runs. The second and the third rows show the average
number of observations taken by OBSV (Fig. 3.26(c) - 3.26(d)) and by the
oracle (Fig. 3.26(e) - 3.26(f)) over of all runs. The dashed lines denote the
10th- and 90th-percentiles where a triangle denotes a value of zero.
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Figure 3.27: Results comparing random and mixed sampling on cars vs.
buses (left column) and on cars vs. motorbikes (right column) as obtained
from 10 runs of AdaBoost using 100 decision stumps as weak classifiers.
The first row row (Fig. 3.27(a) - 3.27(b)) shows the average in expected cost
over all runs when OBSV is used for stopping. The second row (Fig. 3.27(c) -
3.27(d)) shows the average in cost over all runs given the oracle. The dashed
lines denote the 10th- and 90th-percentiles.



Chapter 4

Conclusion

The first chapter presented extensions to the image catgorisation framework
of Opelt et al. by (a) incorporating geometric relations between features
into the weak learner as proposed in [3] and (b) providing a weight optimi-
sation method to combine pairwise classifiers for multiclass classification as
proposed in [4]. The presented results on Xerox showed that our method
outperforms the bag-of-keypoints approach of Csurka et al. and that the
geometric relations learned are reasonable. Furthermore, the results at the
PASCAL VOC Challenge 2006 showed that, even without geometry, we
achieve reasonable results when compared to other methods although we
(a) made little effort in tuning target-specific feature extractors, the number
of clusters and so on, and (b) utilise the predictions of only one multiclass
classifier to distinguish among all classes. Thus, the most interesting re-
sult for practitioners may be the intrinsic flexibility of our framework given
different visual categories.

The last chapters discussed the interplay between a well-defined cost
function, stopping algorithms and objective evaluation criteria and their re-
lation to active learning. Specifically, we have argued that (a) learning when
labels are costly is essentially a stopping problem, (b) it is possible to use
optimal stopping procedures based on a suitable cost function, (c) the goal
of active learning algorithms could also be represented by this cost function,
(d) metrics on this cost function should be used to evaluate performance
and finally that, (e) the stopping problem cannot be separately considered
from either the cost function or the evaluation. To our current knowledge,
these issues have not been sufficiently addressed in previous work.

For this reason, we have proposed a suitable cost function and presented
a practical stopping algorithm which aims to be optimal with respect to
this cost. Experiments with this algorithm for a specific prior show that
it suffers only small loss compared to the optimal stopping time and is
certainly a step forward from ad hoc stopping rules. Perhaps the most
interesting results for practitioners are that (a) given the data set considered
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the performance of active sampling along the current decision boundary is
not superior compared to random sampling and (b) the combination of our
image categorisation framework and OBSV according to concrete scenarios
from practice yields reasonable stopping times and therefore costs.

On the other hand, while the presented stopping algorithm is an ade-
quate first step, its combination with active learning is not perfectly straight-
forward since the balance between active and uniform sampling is a hy-
perparameter which is not obvious how to set.1 An alternative is to use
model-specific stopping methods. This could be done if we restrict ourselves
to probabilistic classifiers, as for example in [14]; this way we may be able
to simultaneously perform optimal example selection and stopping. If such
a classifier is not available for the problem at hand, then judicious use of
frequentist techniques such as bootstrapping [23] may provide a sufficiently
good alternative for estimating probabilities. Such an approach was advo-
cated by [56] in order to optimally select examples; however in our case we
could extend this to optimal stopping. Briefly, this can be done as follows.

Let our belief at time t be ξt, such that for any point x ∈ X , we have
a distribution of probabilities P(y | x, ξt) over Y. For example when using
boosting algorithms such as given by Alg. 1, 2 (see Sec. 1.3.2), according
to [30] we could calculate

P(y | x, ξt) =
∑

j:fj(x)=y

aj ,

where aj is the weight of the weak classifier fj within the strong classifier at

time t and we normalized
∑J

j=1 aj = 1 if necessary. We may now calculate
this over the whole dataset to estimate the realised generalisation error as
the expected error given the empirical data distribution and our classifier

ED(vt | ξt) =
1

|D|
∑

i∈D

[1− arg max
y

P(yi = y | xi, ξt)]. (4.1)

We can now calculate (4.1) for each of the different possible classes. So we
calculate the expected error on the empirical data distribution if we create a
new classifier from ξt by adding example i as

ED(vt | xi, ξt) =
∑

y∈Y

P(yi = y | xi, ξt)ED(vt | xi, yi = y, ξt), (4.2)

where we note that P(yi = y | xi, ξt) is just the probability of example
i having label y according to our current belief, ξt. Furthermore, ED(vt |
xi, yi = y, ξt) results from calculating (4.1) using the classifier resulting from
ξt and the added example i with label y. Then ED(vt, ξt) − ED(vt | xi, ξt)
will be the expected gain from using i to train. The (subjectively) optimal

1In this work, the active and uniform sampling rates were equal.
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one-step stopping algorithm is as follows: Let i∗ = arg mini ED(vt | xi, ξt).
Stop if ED(vt | ξt)−ED(vt | xi∗ , ξt) < γ.

A particular difficulty in the presented framework, and to some extent
also in the field of active learning, is the choice of hyperparameters for the
classifiers themselves. For Bayesian models it is possible to select those that
maximise the marginal likelihood.2 One could alternatively maintain a set
of models with different hyperparameter choices and separate convergence
estimates. In that case, training would stop when there are no models for
which the expected gain is larger than the cost of acquiring another label.
Even this strategy, however, is problematic in the active learning framework,
where each model may choose to query a different example’s label. Thus, the
question of hyperparameter selection remains open and should be addressed
it in future work.

Finally, we hope that the presented exposition will increase awareness
of optimal stopping and evaluation issues in the active learning community,
lead to commonly agreed standards for the evaluation of active learning
algorithms, or perhaps even encourage the development of example selection
methods incorporating the notions of optimality suggested in this work.

2Other approaches require the use of techniques such as cross-validation, which creates
further complications.
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Appendix A

Supplemental learning

algorithms

A.1 The Perceptron learning algorithm

Algorithm 6 Perceptron

Given a data set D = {(xi, yi)}mi=1 with xi ∈ Rd and yi ∈ {−1,+1} and a
maximum number of iterations J ,

initialise w← 0 ∈ R1×d, b← 0,
for j = 1 : J do

for i = 1 : m do
calculate prediction for the current example:
if wxi + b ≥ 0 then y′i ← 1 else y′i ← −1 end
update upon an error:
if y′i 6= yi then

w← w + yix
T
i , b← b + yi

end if
end for

end for

return f (x;w, b) =

{
1, wx + b ≥ 0
−1, else
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