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Rewards that depend on the outcome of an experiment

Decisions d ∈ D

Experiments with outcomes in Ω.

Reward r ∈ R depending on experiment and outcome.

Utility U : R → R.

Example (Taking the umbrella)

There is some probability of rain.

We don’t like carrying an umbrella.

We really don’t like getting wet.
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Rewards that depend on the outcome of an experiment Formalisation of the problem

Assumption (Outcomes)

There exists a probability measure P on (Ω,FΩ) such that the probability of the random

outcome ω being in A ⊂ Ω is:

P(ω ∈ A) = P(A), ∀A ∈ FΩ . (2.1)

Assumption (Utilities)

Preferences about rewards in R are transitive, all rewards are comparable and there exists

a utility function U, measurable with respect to FR such that U(r ′) ≥ U(r) iff r ≻∗ r ′.

Definition (Reward function)

r = ρ(ω, d). (2.2)
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Rewards that depend on the outcome of an experiment Formalisation of the problem

The probability measure induced by decisions

For every d ∈ D, the function ρ : Ω × D → R induces a probability Pd on R. In fact, for
any B ∈ FR :

Pd(B) , P(ρ(ω, d) ∈ B) = P({ω | ρ(ω, d) ∈ B}). (2.3)

Assumption

The sets {ω | ρ(ω, d) ∈ B} must belong to FΩ . In other words, ρ must be

FΩ-measurable for any d.
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Rewards that depend on the outcome of an experiment Formalisation of the problem

UrPdd

(a) The combined decision problem

U

r

ω d

P

(b) The separated deci-
sion problem

Expected utility

EPi
(U) =

∫

R

U(r) dPi (r) =

∫

Ω

U[ρ(ω, i)] dP(ω) = EP(U | d = i) (2.4)
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Rewards that depend on the outcome of an experiment Formalisation of the problem

Example

You are going to work, and it might rain. The forecast said that the probability of rain
(ω1) was 20%. What do you do?

d1: Take the umbrella.

d2: Risk it!

ρ(ω, d) d1 d2
ω1 dry, carrying umbrella wet
ω2 dry, carrying umbrella dry

U[ρ(ω, d)] d1 d2
ω1 0 -10
ω2 0 1

EP(U | d) 0 -1.2

Table: Rewards, utilities, expected utility for 20% probability of rain.

.
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Rewards that depend on the outcome of an experiment Formalisation of the problem

Application to statistical estimation

The unknown outcome of the experiment ω is called a parameter.
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Rewards that depend on the outcome of an experiment Formalisation of the problem

Application to statistical estimation

The unknown outcome of the experiment ω is called a parameter.

The set of outcomes Ω is called the parameter space.

Definition (Loss)

ℓ(ω, d) = −U[ρ(ω, d)]. (2.5)
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Rewards that depend on the outcome of an experiment Formalisation of the problem

Application to statistical estimation

The unknown outcome of the experiment ω is called a parameter.

The set of outcomes Ω is called the parameter space.

Definition (Loss)

ℓ(ω, d) = −U[ρ(ω, d)]. (2.5)

Definition (Risk)

σ(P, d) =

∫

Ω

ℓ(ω, d) dP(ω). (2.6)
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Rewards that depend on the outcome of an experiment Formalisation of the problem

Application to statistical estimation

The unknown outcome of the experiment ω is called a parameter.

The set of outcomes Ω is called the parameter space.

Definition (Loss)

ℓ(ω, d) = −U[ρ(ω, d)]. (2.5)

Definition (Risk)

σ(P, d) =

∫

Ω

ℓ(ω, d) dP(ω). (2.6)

Of course, the optimal decision is d minimising σ.
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Bayes risk and Bayes decisions

Bayes risk

Consider parameter space Ω, decision space D, loss function ℓ.

Definition (Bayes risk)

σ∗(P) = inf
d∈D

σ(P, d) (3.1)

Remark

For any function f : X → Y , where Y is equipped with a complete binary relation <, we

define, for any A ⊂ X

M = inf
x∈A

f (x)

s.t. M ≤ f (x) for any x ∈ A. Furthermore, for any M ′ > M, there exists some x ′ ∈ A

s.t. M ′ > f (x ′).
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Bayes risk and Bayes decisions

Example

Let Ω = {0, 1} and D = [0, 1]. For an α ≥ 1, we define the loss L : Ω × D → R as

ℓ(ω, d) = |ω − d |α. (3.2)

Assume that the distribution of outcomes is

P(ω = 0) = u P(ω = 1) = 1− u. (3.3)

For α = 1 we have

σ(P, d) = ℓ(0, d)u + ℓ(1, d)(1− u) = du + (1− d)(1− u). (3.4)

Hence, if u > 1/2 the risk is minimised for d∗ = 0, otherwise for d∗ = 1.
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Bayes risk and Bayes decisions
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Figure: Risk for four different distributions with absolute loss.
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Bayes risk and Bayes decisions

Example

Let Ω = {0, 1} and D = [0, 1]. For an α ≥ 1, we define the loss L : Ω × D → R as

ℓ(ω, d) = |ω − d |α. (3.2)

Assume that the distribution of outcomes is

P(ω = 0) = u P(ω = 1) = 1− u. (3.3)

For α > 1,

σ(P, d) = d
α
u + (1− d)α(1− u), (3.4)

and by differentiating we find that the optimal decision is

d
∗ =

[

1 +

(

1

1/u − 1

) 1
α−1

]−1

.
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Bayes risk and Bayes decisions
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Figure: Risk for four different distributions with quadratic loss.
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Bayes risk and Bayes decisions

Example (Quadratic loss)

Now consider Ω = R with measure P and D = R. For any point ω ∈ R, the loss is

ℓ(ω, d) = |ω − d |2. (3.4)

The optimal decision minimises

E(ℓ | d) =

∫

R

|ω − d |2 dP(ω).

Then, as long as ∂/∂d |ω − d |2 is measurable with respect to FR

∂

∂d

∫

R

|ω − d |2 dP(ω) =

∫

R

∂

∂d
|ω − d |2 dP(ω) (3.5)

= 2

∫

R

(ω − d) dP(ω) (3.6)

= 2

∫

R

ω dP(ω)− 2

∫

R

d dP(ω) (3.7)

= 2E(ω)− 2d , (3.8)

so the cost is minimised for d = E(ω).
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Bayes risk and Bayes decisions Concavity of the Bayes risk

A mixture of distributions

Consider two probability measures P,Q on (Ω,FΩ).
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Bayes risk and Bayes decisions Concavity of the Bayes risk

A mixture of distributions

Consider two probability measures P,Q on (Ω,FΩ).
These define two alternative distributions for ω. For any A For any P,Q and α ∈ [0, 1],
we define

Zα = αP + (1− α)Q

to mean the probability measure such that

Zα(A) = αP(A) + (1− α)Q(A)

for any A ∈ FΩ .
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk

Theorem

For probability measures P,Q on FΩ and any α ∈ [0, 1]

σ∗[αP + (1− α)Q] ≥ ασ∗(P) + (1− α)σ∗(Q). (3.9)

Proof.

From the definition of risk (2.6), for any decision d ∈ D,

σ[αP + (1− α)Q, d ] = ασ(P, d) + (1− α)σ(Q, d).

Hence, by definition (3.1) of the Bayes risk,

σ∗[αP + (1− α)Q] = inf
d∈D

σ[αP + (1− α)Q, d ]

= inf
d∈D

[ασ(P, d) + (1− α)σ(Q, d)].
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk

Theorem

For probability measures P,Q on FΩ and any α ∈ [0, 1]

σ∗[αP + (1− α)Q] ≥ ασ∗(P) + (1− α)σ∗(Q). (3.9)

Proof.

σ∗[αP + (1− α)Q] = inf
d∈D

[ασ(P, d) + (1− α)σ(Q, d)].
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk

Theorem

For probability measures P,Q on FΩ and any α ∈ [0, 1]

σ∗[αP + (1− α)Q] ≥ ασ∗(P) + (1− α)σ∗(Q). (3.9)

Proof.

σ∗[αP + (1− α)Q] = inf
d∈D

[ασ(P, d) + (1− α)σ(Q, d)].

Since infx [f (x) + g(x)] ≥ infx f (x) + infx g(x),

σ∗[αP + (1− α)Q] ≥ α inf
d∈D

σ(P, d) + (1− α) inf
d∈D

σ(Q, d)

= ασ∗(P) + (1− α)σ∗(Q).
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Bayes risk and Bayes decisions Concavity of the Bayes risk

The risk function for quadratic loss
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Figure: Fixed distribution, varying decision. The decision risk under three different distributions.
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk
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Figure: Fixed decision, varying distribution. The risk of a fixed decision is a linear function of P
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk
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Figure: The risk of a few decisions as P varies. Each decision corresponds to one of these lines.
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk
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Figure: For each P, there is at least one decision minimising the risk.
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk
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Figure: The Bayes risk is concave and the minimising decision is tangent to it.
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

r
i
s
k

P

σ∗(P)

Figure: If we are not very wrong about P, then we are not far from optimal.
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Bayes risk and Bayes decisions Concavity of the Bayes risk

Concavity of the Bayes risk
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Figure: We can approximate the Bayes risk by taking the minimum of a finite number of
decisions.
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Methods for selecting a decision

Mixed decisions

A distribution over decisions

Consider a probability measure π on D.

We select decisions according to probability

π(A) , P(d ∈ A).

for any appropriate A ⊂ D.

Theorem

Consider any statistical decision problem with probability measure P on outcomes Ω and

with utility function U : Ω ×D → R. Further let d∗ ∈ D such that

E(U | d∗) ≥ E(U | d) for all d ∈ D. Then for any probability measure π on D,

E(U | d∗) ≥ E(U | π).
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Methods for selecting a decision

Mixed decisions

Theorem

Consider any statistical decision problem with probability measure P on outcomes Ω and

with utility function U : Ω ×D → R. Further let d∗ ∈ D such that

E(U | d∗) ≥ E(U | d) for all d ∈ D. Then for any probability measure π on D,

E(U | d∗) ≥ E(U | π).

Proof.

E(U | π) =

∫

D

E(U | d) dπ(d)

≤

∫

D

E(U | d∗) dπ(d)

= E(U | d∗)

∫

D

dπ(d) = E(U | d∗)
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Methods for selecting a decision Alternative notions of optimality

Alternative decision rules

Maximin rule

Select d maximising minw∈W U(w , d).

ǫ-optimal rule

For some ǫ > 0, select d maximising

P

({

ω

∣

∣

∣

∣

U(ω, d) > inf
d′∈D

U(ω, d ′) + ǫ

})

. (4.1)
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Methods for selecting a decision Alternative notions of optimality

Minimax/Maximin values

U∗ = max
d

min
ω

U(ω, d) = min
ω

U(ω, d∗) (maximin)

U
∗ = min

ω
max

d
U(ω, d) = max

d
U(ω∗, d), (minimax)

Note that by definition
U

∗ ≥ U(ω∗, d∗) ≥ U∗. (4.2)
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Methods for selecting a decision Alternative notions of optimality

Regret

Consider a problem with two possible outcomes ω1, ω2, two possible decisions, d1, d2, a
utility function U(ω, d) and a prior distribution P(ωi ) = 1/2.

U(ω, d) d1 d2
ω1 -1 0
ω2 10 1

E(U | P, d) 4.5 0.5

minω U(ω, d) -1 0

Table: Utility function, expected utility and maximin utility.
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Methods for selecting a decision Alternative notions of optimality

Regret

Consider a problem with two possible outcomes ω1, ω2, two possible decisions, d1, d2, a
utility function U(ω, d) and a prior distribution P(ωi ) = 1/2.

U(ω, d) d1 d2
ω1 -1 0
ω2 10 1

E(U | P, d) 4.5 0.5

minω U(ω, d) -1 0

Table: Utility function, expected utility and maximin utility.

Definition (Regret)

L(ω, π) , max
π′

U(ω, π′)− U(ω, π). (4.3)
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Methods for selecting a decision Alternative notions of optimality

Regret

Consider a problem with two possible outcomes ω1, ω2, two possible decisions, d1, d2, a
utility function U(ω, d) and a prior distribution P(ωi ) = 1/2.

U(ω, d) d1 d2
ω1 -1 0
ω2 10 1

E(U | P, d) 4.5 0.5

minω U(ω, d) -1 0

Table: Utility function, expected utility and maximin utility.

L(ω, d) d1 d2
ω1 1 0
ω2 0 9

E(L | P, d) 0.5 4.5

maxω L(ω, d) 1 9

Table: Regret, in expectation and minimax.
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Methods for selecting a decision Minimax problems

Minimax utility, regret and loss

Remark

For each ω, there is some d such that:

U(ω, d) ∈ max
π

U(ω, π). (4.3)

Remark

L(ω, π) =
∑

d

π(d)L(w , d) ≥ 0, (4.4)

with equality iff π is ω-optimal.

Remark

L(ω, π) = max
d

U(ω, d)− U(ω, π). (4.5)

Remark

L(ω, π) = −U(ω, π) = L(ω, π) iff maxd U(ω, d) = 0.
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Methods for selecting a decision Minimax problems

Example

(An even-money bet)

U ω1 ω2

d1 1 −1

d2 0 0

Table: Even-bet utility
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Methods for selecting a decision Two-person games

For two distributions π, ξ on D and Ω, define our expected utility to be:

U(ξ, π) ,
∑

w∈Ω

∑

d∈D

U(w , d)ξ(w)π(d). (4.6)

Then we define the maximin policy π∗ such that:

min
ξ

U(ξ, π∗) = U∗ , max
π

min
ξ

U(ξ, π) (4.7)

Then we define the minimax prior ξ∗ such that

max
π

U(ξ∗, π) = U
∗
, min

ξ
max
π

U(ξ, π) (4.8)

Expected regret

L(ξ, π) = max
π′

∑

w

ξ(w)
{

U(w , π′)− U(w , π)
}

= max
π′

U(ξ, π′)− U(ξ, π). (4.9)
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Methods for selecting a decision Two-person games

Theorem

If there exist ξ∗, π∗ ∈ D and C ∈ R such that

U(ξ∗, π) ≤ C ≤ U(ξ, π∗)

then

U
∗ = U∗ = U(ξ∗, π∗) = C .

Definition

A bilinear game is a tuple (U, Ξ,Π,Ω,D) with U : Ξ ×Π → R such that all ξ ∈ Ξ are
arbitrary distributions on Ω and all π ∈ Π are arbitrary distributions on D:

U(ξ, π) , E(U | ξ, π) =
∑

w,d

U(w , d)π(d)ξ(w).

Theorem

For a bilinear game, U∗ = U∗. In addition, the following three conditions are equivalent:

1 π∗ is maximin, ξ∗ is minimax and U∗ = C.

2 U(ξ, π∗) ≥ C ≥ U(ξ∗, π) for all ξ, π.

3 U(w , π∗) ≥ C ≥ U(ξ∗, d) for all w , d.
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Methods for selecting a decision Two-person games

Linear programming formulation

The problem
max
π

min
ξ

U(ξ, π),

where ξ, π are distributions over finite domains, can be converted to finding π with the
greatest lower bound. Using matrix notation,

max

{

vπ

∣

∣

∣

∣

∣

(Uπ)j ≥ vπ∀j ,
∑

i

πi = 1, πi ≥ 0∀i

}

,

where everything has been written in matrix form. Equivalently, we can find ξ with the
least upper bound:

min

{

vξ

∣

∣

∣

∣

∣

(ξ⊤
U)i ≤ vξ∀i ,

∑

j

ξj = 1, ξj ≥ 0∀j

}

,

where everything has been written in matrix form. In fact, one can show that vξ = vπ,
thus obtaining Theorem 2.
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Decision problems with observations

Obtaining information

1 We must choose a decision from D.
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Decision problems with observations
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2 There is an unknown parameter ω ∈ Ω with measure ξ.

3 Our loss is ℓ : Ω × D → R.
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Decision problems with observations

Obtaining information

1 We must choose a decision from D.

2 There is an unknown parameter ω ∈ Ω with measure ξ.

3 Our loss is ℓ : Ω × D → R.

4 Now consider a family of probability measures on the observation set S:

{ψω | ω ∈ Ω} .

5 Let x ∈ S be a random variable with distribution ψω.

6 We want to choose d ∈ D, taking into account both ξ and the evidence x .

7 We want to find a decision function δ : S → D that minimises the risk

σ(ξ, δ) = E {ℓ[ω, δ(X )]} =

∫

Ω

(
∫

S

ℓ[ω, δ(x)] dψω(x)

)

dξ(ω).
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Decision problems with observations

Minimising the risk

Expected loss of a fixed decision d with ω ∼ ξ

σ(ξ, d) =

∫

Ω

L(ω, d) dξ(ω). (5.1)

Expected loss of a decision function δ with fixed ω ∈ Ω

σ(ω, δ) =

∫

S

L(ω, δ(x)) dψω(x). (5.2)

Expected loss of a decision function δ with W ∼ ξ

σ(ξ, δ) =

∫

Ω

ρ(ω, δ) dξ(ω), σ∗(ξ) , inf
δ
σ(ξ, δ) = ρ(ξ, δ∗). (5.3)
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Decision problems with observations

Bayes decision functions

Extensive form

σ(ξ, δ) =

∫

Ω

∫

S

ℓ[ω, δ(x)] dξ(ω) dψω(x) (5.4)

=

∫

S

∫

Ω

ℓ[ω, δ(x)] dξ(ω | x) df (x), (5.5)

where f (x) =
∫

Ω
ψω(x) dξ(ω).

δ∗(x) , argmax
d∈D

Eξ(ℓ | x , d) = argmax
d∈D

∫

Ω

ℓ(w , d) dξ(w | x).
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Decision problems with observations

Bayes decision functions

Extensive form

σ(ξ, δ) =

∫

Ω

∫

S

ℓ[ω, δ(x)] dξ(ω) dψω(x) (5.4)

=

∫

S

∫

Ω

ℓ[ω, δ(x)] dξ(ω | x) df (x), (5.5)

where f (x) =
∫

Ω
ψω(x) dξ(ω).

δ∗(x) , argmax
d∈D

Eξ(ℓ | x , d) = argmax
d∈D

∫

Ω

ℓ(w , d) dξ(w | x).

∫

S

∫

Ω

ℓ[w , δ∗(x)] dξ(w | x) df (x) =

∫

S

{

min
d

∫

Ω

ℓ[w , d ] dξ(w | x)

}

df (x).
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Decision problems with observations

Bayes decision functions

Extensive form

σ(ξ, δ) =

∫

Ω

∫

S

ℓ[ω, δ(x)] dξ(ω) dψω(x) (5.4)

=

∫

S

∫

Ω

ℓ[ω, δ(x)] dξ(ω | x) df (x), (5.5)

where f (x) =
∫

Ω
ψω(x) dξ(ω).

Definition (Prior distribution)

The distribution ξ is called the prior distribution of ω.

Definition (Marginal distribution)

The distribution f is called the (prior) marginal distribution of x .

Definition (Posterior distribution)

The conditional distribution ξ(· | x) is called the posterior distribution of ω.
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Decision problems with observations Robust inference and minimax priors

Minimax worlds with observations

Consider a utility function U : Ω × D → R. There are two players, the statistician and
nature, each selecting d ∈ D and ω ∈ Ω respectively. The statistician’s maximin decision
without observations is:

max
d∈D

min
ω∈Ω

E(U | ω, d) = max
d∈D

min
ω∈Ω

U(ω, d).

Now consider an observation x ∈ S , with x ∼ ψ(· | ω). The statistician now selects a
decision function δ ∈ ∆. For any δ, the worst-case expected utility is:

min
ω∈Ω

E(U | ω, δ) = min
ω∈Ω

∫

S

U[ω, δ(x)] dφω(x) (5.6)

= min
ω∈Ω

∑

d∈D

U(ω, d)φω ({x ∈ S | δ(x) = d}) . (5.7)
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Decision problems with observations Robust inference and minimax priors

Minimax priors with observations

The maximin problem

max
δ∈∆

min
ξ∈Ξ

E(U | ξ, δ) = max
δ∈∆

min
ξ∈Ξ

∫

S

∫

Ω

U[ω, δ(x)] dξ(ω | x) dpξ(x). (5.8)

The minimax problem

min
ξ∈Ξ

max
δ∈∆

E(U | ξ, δ) = min
ξ∈Ξ

∫

S

max
d∈D

∫

Ω

U[ω, d ]dξ(ω | x) dpξ(x). (5.9)

Lemma

If Ξ contains all priors, then

inf
ξ∈Ξ

U(ξ, δ) = inf
ω∈Ω

U(ω, δ) (5.10)
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Decision problems with observations Decision problems with two points

Decision problems with two points and hypothesis testing

d1 d2
ω1 0 c1
ω2 c2 0

Table: Cost function of a simple hypothesis testing problem

We observe the value of some random variable X and then choose decision δ(X ).

Let α(δ) be the conditional probability that we choose d2 when ω = ω1.

Let β(δ) be the conditional probability that we choose d1 when ω = ω2.

Let a , c1 P(ω = ω1) and b , c2 P(ω = ω2).

The risk of δ is:
aα(δ) + bβ(δ) (5.11)
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Decision problems with observations Decision problems with two points

Decision problems with two points and hypothesis testing

d1 d2
ω1 0 c1
ω2 c2 0

Table: Cost function of a simple hypothesis testing problem

The risk of δ is:
aα(δ) + bβ(δ) (5.11)

Theorem (Neymann-Pearson lemma)

Let where ψw be densities or probabilities on S. For any a > 0, b > 0, let δ∗ be a

decision function such that,

δ∗(x) = d1, if aψω1(x) > bψω2(x) (5.12)

δ∗(x) = d2, if aψω2(x) < bψω2(x), (5.13)

and either d1, d2 otherwise. Then, for any other δ:

aα(δ∗) + bβ(δ∗) ≤ aα(δ) + bβ(δ)

Christos Dimitrakakis (Chalmers) Decision Problems 1/11/2013 30 / 35



Decision problems with observations Calculating posteriors

Posterior distributions for multiple observations

Assume that we observe a value xn , x1, . . . , xn of a random variable X n , X1, . . . ,Xn.
We have a prior ξ on Ω. For the observations, we write:

Observation probability given history x
n−1 and parameter ω

ψ(xn | xn−1, ω) =
ψω(x

n)

ψω(xn−1)

Posterior recursion

ξ(ω | xn) =
ψω(x

n)ξ(ω)

f (xn)
=
ξ(xn | xn−1, ω)ξ(ω | xn−1)

f (xn | xn−1)
. (5.14)
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Decision problems with observations Calculating posteriors

Posterior distributions for multiple independent observations

If ψ(xn | ω, xn−1) = ψω(xn) then ψω(x
n) =

∏n

k=1 ψω(xk). Then:

Posterior recursion with conditional independence

ξn(w) , ξ0(ω | xn) =
ψω(x

n)ξ0(w)

f0(xn)
(5.15)

= ξn−1(ω | xn) =
ψω(xn)ξn−1(w)

fn−1(xn)
(5.16)

where we define ξt to be the belief at time t.

Conditional independence allows us to write the posterior update as an identical recursion
at each time t.
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Decision problems with observations Cost of observations

Observation cost

Expected cost of observation

Let c : S ×Ω → R be an observation cost function. Then the expected cost is

Eξ[c(x , ω)] =

∫

Ω

∫

S

c(ω, x) dψω(x) dξ(ω). (5.17)

The total risk of observing x and using a decision function δ

is then given by
σ(ξ, δ) + Eξ[c(ω, x)]
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Decision problems with observations Cost of observations

Fixed cost per observation

Consider that we can choose the size n of a sample x1, . . . , xn.

The cost of the sample of size n is γn.

Let δn be the (random) Bayes decision function after observing x1, . . . , xn:

δn , argmin
d∈D

σ[ξ(· | x1, . . . , xn), d ] (5.18)

Thus, the Bayes risk of n observations is

σt(ξ, δn) = σ(ξ, δn) + γn. (5.19)

Now we have another decision problem: How many observations to take?

Exercise

Prove that if the risk is bounded, then there exists an optimal number n of observations.
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Decision problems with observations Cost of observations

Quick summary

We want to make a decision against an unknown parameter W .

The risk is the negative expected utility.

The Bayes risk is the minimum risk, and it is concave with respect to the
distribution of W .

Our decisions can depend on observations, via a decision function.

We can construct a complete decision function by computing σ(ξ, δ) for all decision
functions (normal form).

We can instead wait until we observe x and compute σ[ξ(· | x), d ] for all decisions
(extensive form).

In minimax settings, we can consider a fixed but unknown parameter w or a fixed
but unknown prior ξ. This links decision theory to game theory.

When each observation has cost γ, there is an optimal value n of minimising
σ[ξ(· | Xn), δn] + γn, where δn is the Bayes decision function after n observations.

The posterior given multiple observations can be computed recursively using
independence.

Our decision at a certain time, affects the future information available.

Problems where future decisions must be considered, require planning ahead and are
called sequential decision problems.
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