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Bayesian reinforcement learning

The reinforcement learning problem

Learning to act in an unknown environment, by interaction and reinforcement.
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The optimal policy for a given w
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rt in expectation.
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Markov decision processes (MDP)

We are in some environment µ, where at
each time step t:

Observe state st ∈ S.

Take action at ∈ A.
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The optimal policy for a given w

Find policy π : S → A maximising the utility U =
∑

t
rt in expectation.

When w is known, use standard algorithms, such as value or policy iteration.
However this is contrary to the problem definition!
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Bayesian reinforcement learning

The reinforcement learning problem

Learning to act in an unknown environment, by interaction and reinforcement.

Markov decision processes (MDP)

We are in some environment µ, where at
each time step t:
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Receive reward rt ∈ R.
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Bayesian RL: Use a subjective belief ξ(µ)

E(U | π, ξ)
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Bayesian reinforcement learning

The reinforcement learning problem

Learning to act in an unknown environment, by interaction and reinforcement.

Markov decision processes (MDP)

We are in some environment µ, where at
each time step t:

Observe state st ∈ S.

Take action at ∈ A.

Receive reward rt ∈ R.

µ

ξ

at

st st+1

rt+1

Bayesian RL: Use a subjective belief ξ(µ)

Not actually easy as π must now map from complete histories to actions.

U∗
ξ = max

π
E(U | π, ξ) = max

π

∑

µ

E(U | π, µ)ξ(µ)

Planning must take into account future learning
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Bayesian reinforcement learning

Updating the belief

Example

When the number of MDPs is finite

Exercise

Another practical scenario is when we have an independent belief over the transition
probabilities of each state-action pair. Consider the case where we have n states and k
actions. Similar to the product-prior in the bandit exercise of exercise set 4, we assign a
probability (density) ξs,a to the probability vector θ(s,a) ∈ S

n. We can then define our
joint belief on the (nk)× n matrix Θ to be

ξ(Θ) =
∏

s∈S,a∈A

ξs,a(θ(s,a)).

Derive the updates for a product-Dirichlet prior on transitions and a
product-Normal-Gamma prior on rewards.
What is the meaning of using a Normal-Wishart prior on rewards?
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Bayesian reinforcement learning

The expected MDP heuristic

1 For a given belief ξ, calculate the expected MDP:

µ̄ξ , Eξ µ.

2 Calculate the optimal memoryless policy for µ̄ξ:

π∗(µ̄ξ) ∈ argmax
π∈Π1

V π
µ̄ξ
,

where Π1 =
{

π ∈ Π
∣

∣ Pπ(at | s
t , at−1) = Pπ(at | st)

}

.

3 Execute π∗(µ̄ξ).

Problem

Unfortunately, this approach may be far from the optimal policy in Π1.
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Bayesian reinforcement learning

Counterexample1

0

ǫ0 0

1

(a) µ1

0

ǫ0 0

1

(b) µ2

0

ǫ0 0

1

(c) µ̄ξ

Figure: M = {µ1, µ2}, ξ(µ1) = θ, ξ(µ2) = 1− θ, deterministic transitions.

For T → ∞, the µ̄ξ-optimal policy is not optimal in Π1 if:

ǫ <
γθ(1− θ)

1− γ

(

1

1− γθ
+

1

1− γ(1− θ)

)

In this example, µ̄ξ /∈ M.

For smooth beliefs, µ̄ξ is close to µ̂∗
ξ .

1Based on one by Remi Munos
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Bayesian reinforcement learning

Counterexample for µ̂∗
ξ , argmaxµ ξ(µ)

MDP set M = {µi | i = 1, . . . , n} with A = {0, . . . , n}. In all MDPs, a0 gives you a
reward of ǫ and the MDP terminates. In the i-th MDP, all other actions give you a
reward of 0 apart from the i-th action which gives you a reward of 1.

a = 0

a = 1a = i

a = n

r = ǫ

r = 0r = 1

r = 0

Figure: The MDP µi .

The ξ-optimal policy takes action i iff ξ(µi ) ≥ ǫ, otherwise takes action 0.

The µ̂∗
ξ-optimal policy takes a = argmax

i
ξ(µi ).
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Bayesian reinforcement learning The expected utility

Policy evaluation

Expected utility of a policy π for a belief ξ

V π
ξ , E(U | ξ, π) (2.1)

=

∫

M

E(U | µ, π) dξ(µ) (2.2)

=

∫

M

V π
µ dξ(µ) (2.3)

Bayesian Monte-Carlo policy evaluation

input policy π, belief ξ
for k = 1, . . . ,K do

µk ∼ ξ.
vk = V π

µk

end for

u = 1
K

∑

K

k=1 vk .
return u.
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Bayesian reinforcement learning The expected utility

Upper bounds on the utility for a belief ξ

V ∗
ξ , sup

π

E(U | ξ, π) = sup
π

∫

M

E(U | µ, π) dξ(µ) (2.4)

≤

∫

M

sup
π

V π
µ dξ(µ) =

∫

M

V ∗
µ dξ(µ) , V+

ξ (2.5)

Bayesian Monte-Carlo upper bound

input policy π, belief ξ
for k = 1, . . . ,K do

µk ∼ ξ.
vk = V ∗

µk

end for

u∗ = 1
K

∑

K

k=1 vk .
return u∗.
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Bayesian reinforcement learning The expected utility

Bounds on V
∗
ξ , maxπ E(U | π, ξ)

V ∗
µ1

V ∗
µ2

V ∗
ξ

V

ξ

Figure: A geometric view of the bounds
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Bayesian reinforcement learning The expected utility

Bounds on V
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Bayesian reinforcement learning The expected utility

Better lower bounds [? ]
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Uncertain ⇐ ξ ⇒ Certain

Main idea: maximisation in memoryless policies

Then we can assume a fixed belief.

Backwards induction on n MDPs

This improves the naive lower bound.
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Bayesian reinforcement learning The expected utility

Qπ
ξ,t(s, a) ,

∫

M

{

R̄µ(s, a) + γ

∫

S

V π
µ,t+1(s

′) dT s,a
µ (s ′)

}

dξ(µ) (2.6)

Multi-MDP Backwards Induction

1: MMBIM, ξ, γ,T
2: Set Vµ,T+1(s) = 0 for all s ∈ S.
3: for t = T ,T − 1, . . . , 0 do

4: for s ∈ S, a ∈ A do

5: Calculate Qξ,t(s, a) from (2.6) using {Vµ,t+1} .
6: end for

7: for s ∈ S do

8: a∗ξ,t(s) ∈ argmax
a∈A Qξ,t(s, a).

9: for µ ∈ M do

10: Vµ,t(s) = Qµ,t(s, a
∗
ξ,t(s)).

11: end for

12: end for

13: end for
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Bayesian reinforcement learning The expected utility
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MCBRL
Exploit

MCBRL: Application to Bayesian RL

1 For i = 1, . . .

2 At time ti , sample n MDPs from ξti .

3 Calculate best memoryless policy πi

wrt the sample.

4 Execute πi until t = ti+1.

Relation to other work

For n = 1, this is equivalent to the Thompson sampling used by Strens [? ].

Unlike BOSS [? ] it does not become more optimistic as n increases.

BEETLE[? ? ] is a belief-sampling approach.

Furmston and Barber [? ] use approximate inference to estimate policies.
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Bayesian reinforcement learning The expected utility

Generalisations

Policy search for improving lower bounds.

Search enlarged class of policies

Examine all history-based policies.
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Bayesian reinforcement learning The expected utility

st

ξt

at

st+1

ξt+1

ωt ωt+1

(a) The complete MDP
model

ωt

at

ωt+1

(b) Compact form of
the model

Figure: Belief-augmented MDP

The augmented MDP

The optimal policy for the augmented MDP is the ξ-optimal for the original problem.

P(st+1 ∈ S | ξt , st , at) ,

∫

S

Pµ(st+1 ∈ S | st , at) dξt(µ) (2.7)

ξt+1(·) = ξt(· | st+1, st , at) (2.8)
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Bayesian reinforcement learning The expected utility

Belief-augmented MDP tree structure

Consider an MDP family M with A =
{

a1, a2
}

, S =
{

s1, s2
}

.

ωt
ωt = (st , ξt)
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Bayesian reinforcement learning The expected utility

Belief-augmented MDP tree structure

Consider an MDP family M with A =
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, S =
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}
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ωt
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t+1

a1, s1
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Bayesian reinforcement learning The expected utility
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Bayesian reinforcement learning Stochastic branch and bound

Branch and bound

Value bounds

Let upper and lower bounds q+ and q− such that:

q
+(ω, a) ≥ Q∗(ω, a) ≥ q

−(ω, a) (2.9)

v
+(ω) = max

a∈A
Q+(ω, a), v

−(ω) = max
a∈A

Q−(ω, a). (2.10)

q
+(ω, a) =

∑

ω′

p(ω′ | ω, a)
[

r(ω, a, ω′) + V+(ω′)
]

(2.11)

q
−(ω, a) =

∑

ω′

p(ω′ | ω, a)
[

r(ω, a, ω′) + V−(ω′)
]

(2.12)

Remark

If q−(ω, a) ≥ q+(ω, b) then b is sub-optimal at ω.
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Bayesian reinforcement learning Stochastic branch and bound

Stochastic branch and bound for belief tree search [? ? ]

(Stochastic) Upper and lower bounds on the values of nodes (via Monte-Carlo
sampling)

Use upper bounds to expand tree, lower bounds to select final policy.

Sub-optimal branches are quickly discarded.
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Partially observable Markov decision processes

Partially observable Markov decision processes
(POMDP)

When acting in µ, each time step t:

The system state st ∈ S is not observed.

We receive an observation xt ∈ X and a reward
rt ∈ R.

We take action at ∈ A.

The system transits to state st+1.

µ

at

st st+1

xt xt+1

rt rt+1

Definition

Partially observable Markov decision process (POMDP) A POMDP µ ∈ MP is a tuple
(X ,S,A,P) where X is an observation space, S is a state space, A is an action space,
and P is a conditional distribution on observations, states and rewards. The following
Markov property holds:

Pµ(st+1, rt , xt | st , at , . . .) = P(st+1 | st , at)P(xt | st)P(rt | st) (3.1)
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Definition
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Markov property holds:

Pµ(st+1, rt , xt | st , at , . . .) = P(st+1 | st , at)P(xt | st)P(rt | st) (3.1)

Christos Dimitrakakis (EPFL) Bayesian reinforcement learning and partially observable Markov decision processesNovember 6, 2013 20 / 24



Partially observable Markov decision processes

Belief state in POMDPs when µ is known

If µ defines starting state probabilities, then the belief is not subjective

Belief ξ

For any distribution ξ on S, we define:

ξ(st+1 | at , µ) ,

∫

S

Pµ(st+1 | stat) dξ(st) (3.2)

Belief update

ξt(st+1 | xt+1, rt+1, at , µ) =
Pµ(xt+1, rt+1 | st+1)ξt(st+1 | at , µ)

ξt(xt+1 | at , µ)
(3.3)

ξt(st+1 | at , µ) =

∫

S

Pµ(st+1 | st , at , µ) dξt(st) (3.4)

ξt(xt+1 | at , µ) =

∫

S

Pµ(xt+1 | st+1) dξt(st+1 | at , µ) (3.5)
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Partially observable Markov decision processes

Example

If S,A,X are finite, and then we can define

∂t(j) = P(xt | st = j)

At(i , j) = P(st+1 = j | st = i , at).

bt(i) = ξt(st = i)

We can then use Bayes theorem:

bt+1 =
diag(pt+1)Atbt

p⊤
t+1Atbt

, (3.6)
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Partially observable Markov decision processes

When the POMDP µ is unknown

ξ(µ, s t | x t , at) ∝ Pµ(x
t | s t , at)Pµ(s

t | at)ξ(µ) (3.7)

Cases

Finite M.

Finite S

General case
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Partially observable Markov decision processes

Strategies for POMDPs

Bayesian RL on POMDPs? EXP inference and planning

Approximations and stochastic methods.

Policy search methods.
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